Electronic Supplementary Information

Experimental and Computational Tuning of Metalla-N-heterocyclic Carbenes at Palladium(II) and Platinum(II) Centers

Maria V. Kashina, Konstantin V. Luzyanin,* Eugene A. Katlenok, Alexander S. Novikov, and Mikhail A. Kinzhalov *

Table of content

S1. X-ray diffraction studies	3
S2. UV-vis absorption spectra in KBr pellets	8
S3. Theoretical studies of chloride complexes	10
S3.1. Geometry optimization of complexes 7, 8, 11 and 12	10
S3.2. TD-DFT calculations	13
S3.3. FMO analysis	14
S3.4 Calculations of one-electron-oxidized forms	18
S3.5. QTAIM and MBO analysis	18
S3.6. ETS-NOCV calculations	19
S4. Theoretical studies of thiocyanate complexes	20
S4.1. DFT studies of M–N coordination bonding in structures of 16 and 18	20
S4.2. DFT studies of noncovalent interactions in structures of 16 and 18	23
S5. CCDC search	
S6. Hirshfeld analysis	
S7. NMR spectra for complexes 9–18	40
S8. FTIR spectra for complexes 9–18	48
S9 References	53

S1. X-ray diffraction studies

Identification code	11	16	18
CCDC	2133432	2133435	2133433
Empirical formula	$C_{45}H_{48}Cl_2N_6Pt_2$	$C_{46}H_{47}N_9Pd_2S_2$	$C_{46}H_{47}N_9Pt_2S_2$
Formula weight	1133.97	1002.84	1180.22
Temperature/K	293(2)	297.2(2)	99.98(10)
Crystal system	triclinic	monoclinic	monoclinic
Space group	P-1	$P2_1/c$	$P2_{1}/c$
a/Å	7.50970(10)	8.2035(2)	8.08540(10)
b/Å	8.75810(10)	30.9219(8)	30.3986(3)
c/Å	33.6683(2)	18.7259(5)	18.7295(2)
α/°	92.1540(10)	90	90
β/°	90.2040(10)	98.347(3)	97.8860(10)
γ/°	92.1370(10)	90	90
Volume/Å ³	2211.26(4)	98.347(3)	4559.89(9)
Z	2	4	4
$\rho_{calc}g/cm^3$	1.703	1.417	1.719
μ/mm^{-1}	13.060	7.325	12.497
F(000)	1100.0	2040.0	2296.0
Crystal size/mm ³	$0.08 \times 0.06 \times 0.02$	$0.1 \times 0.06 \times 0.04$	$0.06 \times 0.14 \times 0.19$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)	$CuK\alpha$ ($\lambda = 1.54184$)	CuKa ($\lambda = 1.54184$)
20 range for data collection/°	5.254 to 124.996	5.56 to 134.996	5.58 to 119.984
Index ranges	$-9 \le h \le 9, -19 \le k \le$ 19, -36 $\le l \le 38$	$\begin{array}{l} -9 \leq h \leq 9, \ -34 \leq k \leq \\ 37, \ -22 \leq l \leq 21 \end{array}$	$\begin{array}{l} -9 \leq h \leq 8, -34 \leq k \leq \\ 34, -21 \leq l \leq 20 \end{array}$
Reflections collected	44150	40403	71892
Independent reflections	7053 [$R_{int} = 0.0405$, $R_{sigma} = 0.0241$]	8447 [$R_{int} = 0.0482$, $R_{sigma} = 0.0370$]	8233 [$R_{int} = 0.0543$, $R_{sigma} = 0.0230$]
Data/restraints/paramet ers	7053/0/508	8447/0/544	8233/0/544
Goodness–of–fit on F^2	1.088	1.042	1.063
Final R indexes [I≥2σ (I)]	$R_1 = 0.0344, wR_2 = 0.0805$	$R_1 = 0.0359, wR_2 = 0.0935$	$R_1 = 0.0212, wR_2 = 0.0493$
Final R indexes [all data]	$R_1 = 0.0362, wR_2 = 0.0815$	$R_1 = 0.0413, wR_2 = 0.0967$	$R_1 = 0.0218, wR_2 = 0.0498$
Largest diff. peak/hole /e·Å ⁻³	3.69/-0.82	0.51/-0.75	0.77/-0.85

Table S1. Crystal data and structure refinement for **11**, **16**, **18**.

	Bond length, Å		Angle, °
Pt1Cl1	2.3498(17)	N2Pt1Cl1	94.46(14)
Pt1–N2	2.038(5)	C1Pt1Cl1	172.41(17)
Pt1–C1	1.983(6)	C1-Pt1-N2	78.8(2)
Pt1–C8	1.924(6)	C8–Pt1–Cl1	84.4 (2)
Pt2–Cl2	2.3907(16)	C8-Pt1-N2	175.8(3)
Pt2–N1	2.054(4)	C8-Pt1-C1	102.6(3)
Pt2–C7	1.989(5)	N1-Pt2-Cl2	101.57(14)
Pt2-C36	1.912(7)	C7-Pt2-Cl2	177.86(18)
N2-C2	1.347(8)	C7-Pt2-N1	79.3(2)
N2-C6	1.350(8)	C36-Pt2-Cl2	81.0(2)
N1C1	1.349(8)	C36-Pt2-N1	177.2(2)
N1-C2	1.398(7)	C36-Pt2-C7	98.0(3)
N3C1	1.341(7)	C2-N2-Pt1	113.4(4)
N3C7	1.449(8)	C6-N2-Pt1	125.4(4)
N3-C18	1.439(7)	C1–N1–Pt2	115.7(4)
N4C7	1.264(8)	C2–N1–Pt2	130.6(4)
N4-C27	1.405(8)	N1–C1–Pt1	116.5(4)
N5-C8	1.136(8)	N3C1Pt1	129.5(4)
N5-C9	1.407(9)	N3-C1-N1	113.9(5)
N6-C36	1.145(8)	N3C7Pt2	111.5(4)
N6-C37	1.395(8)	N4C7Pt2	134.7(5)
		N5-C8-Pt1	168.7(6)
		N6-C36-Pt2	170.0(6)
		C2-N2-C6	120.5(5)
		C1-N1-C2	113.7(5)
		C1-N3-C7	118.6(5)
		C1-N3-C18	123.5(5)
		C18–N3–C7	117.7(5)
		C7-N4-C27	123.9(5)
		N4-C7-N3	113.7(5)
		C8-N5-C9	179.3(7)
		C36–N6–C37	178.0(8)
		N1C2C3	124.2(6)
		N2-C2-N1	116.3(5)
		N2-C2-C3	119.4(5)

 Table S2. Selected bonds and angles in crystal structure of 11.

Figure S1. View of **16** with the atomic numbering schemes. Solvent molecule and hydrogen labels were omitted for simplicity.

	Bond	length, Å		Ar	ıgle, °
	18	16	_	18	16
M1-C1	1.981(3)	1.986(3)	N2-M1-N8	93.17(10)	93.57(11)
M1-C7	1.936(3)	1.947(3)	C7-M1-N8	87.29(11)	87.07(12)
M1-N2	2.032(2)	2.018(2)	C1-M1-N2	78.66(10)	78.85(10)
M2-C6	1.982(3)	1.985(3)	C7-M1-C1	100.92(12)	100.65(12)
M2-C35	1.922(3)	1.951(3)	N1-M2-N9	99.23(10)	100.43(12)
M1-N8	2.031(3)	2.039(3)	C6-M2-N1	79.42(11)	79.58(10)
M2-N9	2.096(3)	2.104(3)	C35-M2-N9	84.67(12)	84.30(13)
N6-C7	1.140(4)	1.149(4)	C35-M2-C6	96.36(18)	95.62(12)
N7–C35	1.148(4)	1.146(4)	N6-C7-M1	168.9(3)	167.5(3)
C1-N1	1.357(4)	1.343(4)	C7-N6-C8	178.7(3)	178.0(4)
C5–N2	1.346(4)	1.339(4)	N7-C35-M2	173.1(3)	169.6(3)
C6-N4	1.461(4)	1.456(4)	C35-N7-C36	170.4(4)	172.5(4)
C6-N5	1.260(4)	1.250(4)	C46-N9-M2	147.1(3)	147.7(3)
N8–C45	1.151(4)	1.135(5)	C45-N8-M1	175.7(3)	178.5(3)
N9–C46	1.158(5)	1.152(5)			
C45–S1	1.619(3)	1.608(4)			
C46–S2	1.612(4)	1.611(5)			

Table S3. Selected bonds and angles in crystal structures of 16, 18.

Figure S2. The view of overlaid 16 and 11 (red) structures with the selected atomic labels for 16.

Figure S3. The view of overlaid 18 and 11 (red) structures with the selected atomic labels for 18.

Figure S4. The crystal packing of complex 11.

Figure S5. The crystal packing of complex 18.

S2. UV-vis absorption spectra in KBr pellets

Figure S6. Normalized UV-Vis absorption spectra for 7–12 in solid state (KBr) at RT.

Figure S7. Normalized UV-Vis absorption spectra for 13–18 in solid state (KBr) at RT.

	Absorption: λ_{max} , nm	
Complex	in CH ₂ Cl ₂	in KBr (pellets)
7	277sh (3.20), 348 (0.95), 382sh (0.78)	281sh, 391
8	303 (2.36), 323sh (1.20) 387 (0.71) 404 (0.55)) 308, 401
9	283sh (2.89), 378sh (0.60)	304, 399
10	281 (3.59), 402 (1.13)	289sh, 318, 410
11	303 (2.53), 321sh (1.62), 398 (0.66)	307, 401
12	311 (2.49), 338sh (1.15), 414 (1.06)	308sh, 339sh, 422
13	281sh, 314sh, 377	285sh, 324, 389
14	304, 332, 395	304, 339, 403
15	272sh, 305, 380	308, 394
16	280sh, 313sh, 481	310sh, 400
17	264sh, 302, 403sh	305sh, 338sh, 395
18	306sh, 351, 415	307sh, 379, 431

Table S4. UV-Vis absorption data for 7–18.

S3. Theoretical studies of chloride complexes

S3.1. Geometry optimization of complexes 7, 8, 11 and 12

Figure S8. View of optimized structures of complexes 7, 11 and 12 with the selected atomic numbering schemes. The atomic numbers in complex 8 is analogous to that in 7.

Complex		Experimental values	Optimized values
7	Bonds, Å		
	Pd1–Cl1	2.3469(5)	2.3430
	Pd2Cl2	2.4082(6)	2.3980
	Pd1–N2	2.0281(17	2.0327
	Pd2–N1	2.0536(17)	2.0836
	Pd1–C8	1.940(2)	1.9157
	Pd2-C33	1.945(2)	1.9169
	Pd1–C1	1.988(2)	1.9912
	Pd2–C7	1.977(2)	1.9785
	C8–N5	1.259(3)	1.1656
	C33–N6	1.153(3)	1.1671
	C1-N1	1.342(3)	1.3352
	C1-N3	1.343(3)	1.3446
	C7–N3	1.458(3)	1.4341
	C7–N4	1.259(3)	1.2663

 Table S5. Selected experimental and optimized bond lengths and angles for complexes 7, 8, 11

 and 12

	Angles, °		
	N2–Pd1–Cl1	100.54(8)	95.656
	C1–Pd1–N2	79.36(8)	78.445
	C8–Pd1–Cl1	86.26(6)	83.619
	C8–Pd1–C1	93.97(5)	102.461
	N1-Pd2-Cl2	96.08(9)	95.656
	C15-Pd2-N1	78.90(8)	79.214
	$C_{33}=Pd_{2}=C_{12}$	83 44(7)	80 701
	C_{33} Pd2 C_{12}	101 47(5)	96.286
	N5_C8_Pd1	169 25(18)	169 901
	N6_C36_Pd2	109.23(10) 171 1(2)	171 321
	C8-N5-C9	171.1(2) 175 9(2)	172 830
	$C_{3}N_{0}C_{3}$	173.9(2) 172.0(2)	172.830
	N1_C1_N3	172.0(2) 116.09(17)	115 286
	N1 - C1 - N3 N3 - C7 - N4	110.09(17) 114.42(18)	115.200
8	Bonds Å	114.45(16)	115.551
0	Pt1_C11	2 3549(14)	2 3487
	Pt2-C12	2.55(13) 2 4083(13)	2 3989
	Pt2 C12 Pt1-N2	2.4005(15) 2.030(4)	2.0402
	$Pt2_N1$	2.030(4) 2.059(4)	2.0402
	$Pt1_C8$	1 913(6	1 8884
	$Pt2_C33$	1.912(6)	1 8802
	$Pt1_C1$	1.972(0) 1.974(5)	1.0002
	$Pt_2 C_7$	1.974(5) 1.974(6)	1.9704
	$\Gamma t2 = C7$	1.974(0) 1 158(7)	1.1714
	C_{32} N6	1.130(7) 1.157(7)	1.1720
	C_{1} N1	1.137(7) 1.252(6)	1.1/29
	C1-N1 C1-N2	1.333(0)	1.3009
	C1 = INS	1.349(0)	1.3083
	C7-N4	1.403(7)	1.30/4
	$\frac{C}{1-1}$	1.200(0)	1.3390
	Migles,	02 80(12)	04 206
	$N_2 - F_{11} - C_{11}$	95.60(15) 70.0(2)	94.390
	C1 = F11 = IN2 C9 = D+1 = C11	79.0(2) 85.40(17)	70.404 94 729
	$C_0 - P(1 - C_1)$	83.40(17) 101.8(2)	04./30 102.510
	Co-P(1-C)	101.8(2) 100.57(12)	102.510
	NI - Pl2 - Cl2	100.57(12)	102.182
	C15-P12-N1	/9.0(2)	/9.134
	C_{33} -Pt2-Cl2	83.28(17)	81.015
	$C_{33} - Pt_2 - C_7$	97.1(2)	97.113
	NO-CO-Pt1	170.5(5)	170.004
	NO-C33-Pt2	1/4.3(3)	175.024
	C8-N5-C9	1/2.2(6)	1/5.824
	C33–N6–C34	174.5(5)	172.396
	NI-CI-N3	113.3(5)	114.380
	<u>N3-C7-N4</u>	113.1(5)	114.318
11	Bonds, A	0.0400/17	
	Pt1–Cl1	2.3499(16)	2.3514
	Pt2–Cl2	2.3909(16)	2.4012
	Pt1–N2	2.037(4)	2.0399
	Pt2–N1	2.055(4)	2.0777
	Pt1–C8	1.925(6)	1.8893
	Pt2-C36	1.911(7)	1.8817
	Pt1–C1	1.984(6)	1.9743

P	t2C7	1.986(5)	1.9716
С	C8–N5	1.268(7)	1.1676
С	C36-N6	1.398(8)	1.1696
С	C1-N1	1.397(7)	1.3508
С	C1-N3	1.341(7)	1.3414
С	27–N3	1.450(7)	1.4397
С	27–N4	1.268(7)	1.2704
A	angles, °		
N	12-Pt1-Cl1	94.51(14)	94.673
С	C1-Pt1-N2	78.8(2)	78.382
С	C8–Pt1–C11	84.36(19)	84.551
С	C8–Pt1–C1	102.5(2)	102.474
Ν	11-Pt2-C12	101.57(13)	102.212
С	C15-Pt2-N1	79.4(2)	79.150
С	C36-Pt2-Cl2	81.0(2)	81.399
С	C36-Pt2-C7	98.0(3)	97.283
Ν	15-C8-Pt1	168.6(6)	170.144
Ν	16-C36-Pt2	170.0(6)	172.027
С	C8-N5-C9	179.3(7)	173.593
С	C36-N6-C37	178.2(8)	172.027
Ν	11C1N3	114.0(5)	114.510
Ν	13C7N4	113.5(5)	114.390
В	Bonds, Å		
P	t1–Cl1		2.3453
P	t2-Cl2		2.3892
P	t1-N3		2.0381
P	t2-N1		2.0749
P	t1–C7		1.8911
P	t2–C35		1.8808
P	t1–C1		1.9764
P	t2-C6		1.9719
С	27–N6		1.1669
С	C35–N7		1.1693
С	C1-N1		1.3555
С	C1-N4		1.3384
С	C6-N4		1.4439
С	C6-N5		1.2700
A	Angles, °		
N	I3-Pt1-Cl1		94.030
С	21-Pt1-N3		78.431
С	C7–Pt1–Cl1		85.348
С	C7–Pt1–C1		102.253
Ν	11-Pt2-Cl2		101.147
С	26-Pt2-N1		79.130
С	C35-Pt2-C12		82.345
С	C35-Pt2-C6		97.371
Ν	I5-C7-Pt1		170.482
Ν	16-C35-Pt2		172.145
С	C7-N6-C8		175.085
С	C35-N7-C36		170.245
Ν	11C1N4		114.329
N	14-C6-N5		114.241

Figure S9. Experimental (red line) and the TD-DFT calculated absorption (blue line) spectra for **7**, **8**, **11** and **12**) in CH₂Cl₂: excitation energies and oscillator strengths are shown by the vertical green bars; the spectrum is convoluted with a Lorenzian function having a full width at half-maximum of 0.35 cm⁻¹. Absorption spectra were calculated from fully optimized geometry in PBE0-D3BJ def2-ZORA-TZVP(–f) in gas phase and using the CPCM model.

Figure S10. The overlaid geometries optimized in gas phase (red) and in solution (CH₂Cl₂, blue) of **7** and **8**.

Figure S11. Experimental (red line) and the TD-DFT calculated absorption (blue line) spectra for 7 and 8) in CH_2Cl_2 : excitation energies and oscillator strengths are shown by the vertical green bars; the spectrum is convoluted with a Lorenzian function having a full width at half-maximum of 0.35 cm⁻¹. Absorption spectra were calculated from fully optimized geometry in PBE0-D3BJ def2-ZORA-TZVP(–f) in solution and using the CPCM model.

Table S6. TD-DFT transition energies to the low-lying singlet states with significant oscillator
strengths f , the main configurations and the characters of the complexes 7, 8, 11, and 12.
Absorption spectra were calculated from fully optimized geometry in PBE0-D3BJ def2-ZORA-
TZVP(-f) in gas and using the CPCM model.

	7				8			
State	Energy, eV	λ, nm	f	Transitions	Energy, eV	λ, nm	f	Transitions
S1	3.06	393	0.038	$H \rightarrow L (91\%)$	2.93	410	0.031	$H \rightarrow L (92\%)$
				$H \rightarrow L+5 (2\%)$				$H \rightarrow L+1 (3\%)$
S2	3.45	348	0.156	$H-1 \rightarrow L (91\%)$	3.35	359	0.123	$H-1 \rightarrow L (94\%)$
				$H \rightarrow L+5 (2\%)$				$H \rightarrow L+1 (3\%)$
S 3	3.67	327	0.072	$H-1 \rightarrow L(3\%)$	3.61	332	0.036	$H-3 \rightarrow L(2\%)$
				$H \rightarrow L+1 (57\%)$				$H \rightarrow L (4\%)$
				$H \rightarrow L+2 (7\%)$				$\mathrm{H} \rightarrow \mathrm{L+1} \; (68\%)$
				$\mathrm{H} \rightarrow \mathrm{L+3}\;(15\%)$				$\mathrm{H} \rightarrow \mathrm{L+2} \; (21\%)$
				$H \rightarrow L+4 (8\%)$				
S 4	3.70	324	0.036	$H \rightarrow L (3\%)$	3.72	322	0.037	$H-3 \rightarrow L (90\%)$
				$\mathrm{H} \rightarrow \mathrm{L+2} \ (46\%)$				$H \rightarrow L (4\%)$
				$H \rightarrow L+3 (31\%)$				$\mathrm{H} \rightarrow \mathrm{L+1} \; (68\%)$
				$H \rightarrow L+4 (9\%)$				$\mathrm{H} \rightarrow \mathrm{L+2} \; (21\%)$
				$\mathrm{H}\rightarrow\mathrm{L+4}\;(8\%)$				
S5	3.89	308	0.020	$H-3 \rightarrow L (76\%)$	3.83	313	0.018	$H-7 \rightarrow L(2\%)$
				$H-2 \rightarrow L (8\%)$				$H-3 \rightarrow L (2\%)$
				$H \rightarrow L+3 (3\%)$				$H-2 \rightarrow L (88\%)$
				$\mathrm{H} \rightarrow \mathrm{L+4}~(9\%)$				$H-2 \rightarrow L+1 (3\%)$
				$\mathrm{H}\rightarrow\mathrm{L+4}\;(8\%)$				
S 6	3.92	306	0.035	$\text{H-12} \rightarrow \text{L+1} (3\%)$	3.92	306	0.031	$H-7 \rightarrow L (3\%)$
				$\text{H-12} \rightarrow \text{L+2} (2\%)$				$H-4 \rightarrow L (6\%)$
				$\text{H-1} \rightarrow \text{L+1} (38\%)$				$\mathrm{H} \rightarrow \mathrm{L+1} \ (5\%)$
				H−1 → L+2 (24%)				$\mathrm{H} \rightarrow \mathrm{L+2} \; (35\%)$
				$\mathrm{H} \rightarrow \mathrm{L+2}~(2\%)$				

				$\mathrm{H} \rightarrow \mathrm{L+3} \; (3\%)$				$\mathrm{H} \rightarrow \mathrm{L+3} \; (26\%)$
				$\mathrm{H} \rightarrow \mathrm{L+4} \ (7\%)$				$\mathrm{H} \rightarrow \mathrm{L+4}\;(18\%)$
S 7	3.96	303	0.016	$H-1 \rightarrow L+1 (5\%)$	3.93	306	0.021	$H – 4 \rightarrow L (87\%)$
				$H-1 \rightarrow L+2 (4\%)$				$H \rightarrow L+2 (3\%)$
				$H \rightarrow L+1 (30\%)$				$H \rightarrow L+1 (5\%)$
				$H \rightarrow L+3 (34\%)$				$\mathrm{H} \rightarrow \mathrm{L+2} \; (35\%)$
				$H \rightarrow L+4 (11\%)$				$\mathrm{H} \rightarrow \mathrm{L+3} \; (26\%)$
				$H \rightarrow L+5 (3\%)$				$H \rightarrow L+4 (18\%)$
				$\mathrm{H}\rightarrow\mathrm{L+4}\;(7\%)$				

	11				12			
State	Energy, eV	λ, nm	f	Transitions	Energy, eV	λ, nm	f	Transitions
S 1	2.81	427	0.031	$H \rightarrow L (93\%)$	2.60	462	0.030	$H \rightarrow L (95\%)$
				$H \rightarrow L+1 (3\%)$				$\mathrm{H} \rightarrow \mathrm{L+1} \; (3\%);$
S2	3.33	360	0.123	$H-2 \rightarrow L (20\%)$	3.15	381	0.120	$H-3 \rightarrow L (33\%)$
				H−1 → L (75%);				H−1 → L (58%);
S 3	3.51	342	0.017	$H-2 \rightarrow L (13\%)$	3.30	364	0.017	$H–3 \rightarrow L (51\%)$
				$H-1 \rightarrow L(7\%)$				$H-2 \rightarrow L(5\%)$
				$H \rightarrow L (3\%)$				H−1 → L (37%);
				$H \rightarrow L+1 (64\%)$				
				$\mathrm{H}\rightarrow\mathrm{L+2}\;(9\%);$				
S 4	3.56	337	0.064	$H-2 \rightarrow L (61\%)$	3.41	352	0.028	$H \rightarrow L (3\%)$
				H−1 → L (15%)				$\mathrm{H} \rightarrow \mathrm{L{+}1} \; (86\%)$
				$\mathrm{H} \rightarrow \mathrm{L+1} \; (16\%)$				$H \rightarrow L+3 (4\%)$
				$\mathrm{H} \rightarrow \mathrm{L+2} \; (3\%)$				$\mathrm{H} \rightarrow \mathrm{L+4} \; (3\%);$
				$\mathrm{H}\rightarrow\mathrm{L+2}\;(9\%);$				
S5	3.81	315	0.019	$H-3 \rightarrow L (90\%)$	3.54	339	0.015	$H-7 \rightarrow L (2\%)$
				$H-3 \rightarrow L+1 (3\%)$				$H-3 \rightarrow L (7\%)$
				$\mathrm{H} \rightarrow \mathrm{L+1} \; (16\%)$				$H-2 \rightarrow L (85\%)$
				$\mathrm{H} \rightarrow \mathrm{L+2} \; (3\%)$				$\mathrm{H} \rightarrow \mathrm{L+4} \ (3\%);$
				$\mathrm{H} \rightarrow \mathrm{L+2} \ (9\%);$				
S 6	3.84	313	0.065	$\mathrm{H} \rightarrow \mathrm{L+2} \ (26\%)$	3.64	330	0.013	$H-7 \rightarrow L (6\%)$
				$\mathrm{H} \rightarrow \mathrm{L+3} \; (33\%)$				$H-5 \rightarrow L (81\%)$
				$\mathrm{H} \rightarrow \mathrm{L+4} \ (34\%)$				$H - 4 \rightarrow L (7\%)$
				$\mathrm{H} \rightarrow \mathrm{L+2} \; (3\%)$				$\mathrm{H} \rightarrow \mathrm{L+4} \ (3\%);$
				$\mathrm{H} \rightarrow \mathrm{L+2} \ (9\%);$				
S 7	3.89	308	0.015	$H-5 \rightarrow L (92\%)$	3.68	326	0.015	$H-11 \rightarrow L (2\%)$
				$H \rightarrow L+3 (33\%)$				$H-7 \rightarrow L (46\%)$
				$H \rightarrow L+4 (34\%)$				$H-6 \rightarrow L (8\%)$
				$H \rightarrow L+2 (3\%)$				$H-5 \rightarrow L (15\%)$
				$H \rightarrow L+2 (9\%);$				$H-4 \rightarrow L (15\%)$
								$H-2 \rightarrow L (5\%);$

Table S7. TD-DFT transition energies to the low-lying singlet states with significant oscillator strengths f, the main configurations and the characters of the complexes **7** and **8**. Absorption spectra were calculated from fully optimized geometry in PBE0-D3BJ def2-ZORA-TZVP(-f) in solution and using the CPCM model.

7						
State	Energy, eV	λ , nm	f	Transitions		
S1	3.08	390	0.038	$H \rightarrow L (91\%);$		
S2	3.42	351	0.162	H−1 → L (92%);		
S 3	3.68	326	0.056	$H-1 \rightarrow L+1 (2\%);$		
				$H \rightarrow L+1 (54\%);$		
				$H \rightarrow L+2$ (21%);		

				$H \rightarrow L+3 (5\%);$
				$H \rightarrow L+5 (8\%);$
S4	3.73	321	0.037	$H-1 \rightarrow L+1$ (2%);
				$H \rightarrow L(3\%)$
				$H \longrightarrow I + 2 (4\%);$
				$H \rightarrow I + 2 (170),$ $H \rightarrow I + 2 (720/2).$
				$\Pi \rightarrow L + 5 (7370),$ $\Pi \rightarrow L + 5 (897).$
95	2.07	210	0.040	$H \rightarrow L+3 (8\%);$
85	3.87	310	0.048	$H-12 \rightarrow L+1 (2\%);$
				$H-1 \rightarrow L+1$ (45%);
				$H-1 \rightarrow L+2 (17\%);$
				$H-1 \rightarrow L+3 (8\%);$
				$H \rightarrow L+2 (3\%);$
				$H \rightarrow L+5$ (4%);
S6	3.89	308	0.008	$H-8 \rightarrow L (3\%)$:
				$H=3 \rightarrow L_{(71\%)}$
				$H_2 \rightarrow L (11\%);$
				$H = 2 \rightarrow L (1170),$ $H = 1 \rightarrow L + 2 (80\%).$
				$H^{-1} \rightarrow L^{+3} (870),$
				$H \rightarrow L+2 (3\%);$
				$H \rightarrow L+5 (4\%);$
S 7	3.94	305	0.021	$H-3 \rightarrow L (4\%);$
				$H \rightarrow L+1 (35\%);$
				$\mathrm{H} \rightarrow \mathrm{L+2} \ (21\%);$
				$H \rightarrow L+3 (13\%);$
				$H \rightarrow L+5 (17\%);$
				$H \rightarrow L+5$ (4%);
		8		
<u>S1</u>	2.94	8 408	0.030	$H \rightarrow L (92\%)$:
S1	2.94	8 408	0.030	$H \rightarrow L (92\%);$ $H \rightarrow L + 1 (2\%);$
S1	2.94	8 408 360	0.030	$H \rightarrow L (92\%);$ $H \rightarrow L+1 (2\%);$ $H \rightarrow L \rightarrow L (95\%);$
S1 S2	2.94 3.33	8 408 360	0.030 0.127	H → L (92%); H → L+1 (2%); H-1 → L (95%); H → L+1 (2%);
S1 S2	2.94 3.33	8 408 360	0.030	$\begin{array}{l} H \to L \ (92\%); \\ H \to L+1 \ (2\%); \\ H-1 \to L \ (95\%); \\ H \to L+1 \ (2\%); \\ \end{array}$
S1 S2 S3	2.94 3.33 3.63	8 408 360 331	0.030 0.127 0.036	$\begin{split} H &\to L \ (92\%); \\ H &\to L+1 \ (2\%); \\ H-1 &\to L \ (95\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (2\%); \\ H &\to L \ (4\%); \\ \end{split}$
S1 S2 S3	2.94 3.33 3.63	8 408 360 331	0.030 0.127 0.036	$\begin{split} H &\to L (92\%); \\ H &\to L+1 (2\%); \\ H-1 &\to L (95\%); \\ H &\to L+1 (2\%); \\ H &\to L (4\%); \\ H &\to L+1 (48\%); \\ \end{split}$
S1 S2 S3	2.94 3.33 3.63	8 408 360 331	0.030 0.127 0.036	$\begin{split} H &\to L \ (92\%); \\ H &\to L+1 \ (2\%); \\ H-1 &\to L \ (95\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (2\%); \\ H &\to L \ (4\%); \\ H &\to L+1 \ (48\%); \\ H &\to L+2 \ (43\%); \end{split}$
S1 S2 S3 S4	2.94 3.33 3.63 3.74	8 408 360 331 321	0.030 0.127 0.036 0.033	$\begin{split} H &\to L \ (92\%); \\ H &\to L+1 \ (2\%); \\ H-1 &\to L \ (95\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (2\%); \\ H &\to L \ (4\%); \\ H &\to L+1 \ (48\%); \\ H &\to L+2 \ (43\%); \\ H-3 &\to L \ (91\%); \end{split}$
S1 S2 S3 S4	2.94 3.33 3.63 3.74	8 408 360 331 321	0.030 0.127 0.036 0.033	$\begin{split} H &\to L \ (92\%); \\ H &\to L+1 \ (2\%); \\ H-1 &\to L \ (95\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (2\%); \\ H &\to L \ (4\%); \\ H &\to L+1 \ (48\%); \\ H &\to L+2 \ (43\%); \\ H-3 &\to L \ (91\%); \\ H-2 &\to L \ (2\%); \end{split}$
S1 S2 S3 S4	2.94 3.33 3.63 3.74	8 408 360 331 321	0.030 0.127 0.036 0.033	$\begin{split} H &\to L \ (92\%); \\ H &\to L+1 \ (2\%); \\ H-1 &\to L \ (95\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (2\%); \\ H &\to L \ (4\%); \\ H &\to L+1 \ (48\%); \\ H-3 &\to L \ (91\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+2 \ (43\%); \end{split}$
S1 S2 S3 S4 S5	2.94 3.33 3.63 3.74 3.84	8 408 360 331 321 313	0.030 0.127 0.036 0.033 0.020	$\begin{split} H &\to L \ (92\%); \\ H &\to L+1 \ (2\%); \\ H-1 &\to L \ (95\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (2\%); \\ H &\to L \ (4\%); \\ H &\to L+1 \ (48\%); \\ H &\to L+2 \ (43\%); \\ H-3 &\to L \ (91\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+2 \ (43\%); \\ H-7 &\to L \ (3\%); \end{split}$
S1 S2 S3 S4 S5	2.94 3.33 3.63 3.74 3.84	8 408 360 331 321 313	0.030 0.127 0.036 0.033 0.020	$\begin{split} H &\to L \ (92\%); \\ H &\to L+1 \ (2\%); \\ H-1 &\to L \ (95\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (4\%); \\ H &\to L+1 \ (48\%); \\ H &\to L+2 \ (43\%); \\ H-3 &\to L \ (91\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+2 \ (43\%); \\ H-7 &\to L \ (3\%); \\ H-5 &\to L \ (4\%); \end{split}$
S1 S2 S3 S4 S5	2.94 3.33 3.63 3.74 3.84	8 408 360 331 321 313	0.030 0.127 0.036 0.033 0.020	$\begin{split} H &\to L (92\%); \\ H &\to L+1 (2\%); \\ H-1 &\to L (95\%); \\ H &\to L+1 (2\%); \\ H &\to L (4\%); \\ H &\to L+1 (48\%); \\ H &\to L+2 (43\%); \\ H-3 &\to L (91\%); \\ H-2 &\to L (2\%); \\ H &\to L+2 (43\%); \\ H-7 &\to L (3\%); \\ H-5 &\to L (4\%); \\ H-3 &\to L (2\%); \end{split}$
S1 S2 S3 S4 S5	2.94 3.33 3.63 3.74 3.84	8 408 360 331 321 313	0.030 0.127 0.036 0.033 0.020	$\begin{split} H &\to L \ (92\%); \\ H &\to L+1 \ (2\%); \\ H-1 &\to L \ (95\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (4\%); \\ H &\to L+2 \ (43\%); \\ H-3 &\to L \ (91\%); \\ H-2 &\to L \ (2\%); \\ H-7 &\to L \ (2\%); \\ H-5 &\to L \ (4\%); \\ H-3 &\to L \ (2\%); \\ H-3 &\to L \ (2\%); \\ H-2 &\to L \ (83\%); \\ \end{split}$
S1 S2 S3 S4 S5 S6	2.94 3.33 3.63 3.74 3.84	8 408 360 331 321 313 308	0.030 0.127 0.036 0.033 0.020	$\begin{split} H &\to L \ (92\%); \\ H &\to L+1 \ (2\%); \\ H-1 &\to L \ (95\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+2 \ (4\%); \\ H &\to L+2 \ (43\%); \\ H-3 &\to L \ (91\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+2 \ (43\%); \\ H-7 &\to L \ (3\%); \\ H-5 &\to L \ (4\%); \\ H-3 &\to L \ (2\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+2 \ (2\%); \\ H &\to L+2 \ (2\%); \\ H &\to L \ (2\%); \\ H \to L \ (2\%)$
S1 S2 S3 S4 S5 S6	2.94 3.33 3.63 3.74 3.84 3.90	8 408 360 331 321 313 308	0.030 0.127 0.036 0.033 0.020 0.032	$\begin{split} H &\to L \ (92\%); \\ H &\to L+1 \ (2\%); \\ H-1 &\to L \ (95\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (4\%); \\ H &\to L+2 \ (43\%); \\ H-3 &\to L \ (91\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+2 \ (43\%); \\ H-7 &\to L \ (3\%); \\ H-5 &\to L \ (4\%); \\ H-3 &\to L \ (2\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+2 \ (43\%); \\ H-3 &\to L \ (2\%); \\ H &\to L+2 \ (43\%); \\ H &\to L+2 \ (4\%); \\ H &\to L \ (2\%); \\ H &\to L+1 \ (13\%); \\ \end{split}$
S1 S2 S3 S4 S5 S6	2.94 3.33 3.63 3.74 3.84 3.90	8 408 360 331 321 313 308	0.030 0.127 0.036 0.033 0.020 0.032	$\begin{split} H &\to L \ (92\%); \\ H &\to L+1 \ (2\%); \\ H-1 &\to L \ (95\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (2\%); \\ H &\to L \ (4\%); \\ H &\to L+2 \ (43\%); \\ H-3 &\to L \ (91\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+2 \ (43\%); \\ H-7 &\to L \ (2\%); \\ H-5 &\to L \ (4\%); \\ H-3 &\to L \ (2\%); \\ H-2 &\to L \ (2\%); \\ H-4 &\to L \ (2\%); \\ H &\to L+1 \ (13\%); \\ H &\to L+2 \ (2\%); \\ H &\to L+1 \ (13\%); \\ \end{split}$
S1 S2 S3 S4 S5 S6	2.94 3.33 3.63 3.74 3.84 3.90	8 408 360 331 321 313 308	0.030 0.127 0.036 0.033 0.020 0.032	$\begin{split} H &\to L \ (92\%); \\ H &\to L+1 \ (2\%); \\ H-1 &\to L \ (95\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (2\%); \\ H &\to L \ (4\%); \\ H &\to L+2 \ (43\%); \\ H-3 &\to L \ (91\%); \\ H-3 &\to L \ (91\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+2 \ (43\%); \\ H-7 &\to L \ (2\%); \\ H-5 &\to L \ (4\%); \\ H-3 &\to L \ (2\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+1 \ (13\%); \\ H &\to L+2 \ (26\%); \\ H &\to L+2 \ (26\%); \\ \end{split}$
S1 S2 S3 S4 S5 S6	2.94 3.33 3.63 3.74 3.84 3.90	8 408 360 331 321 313 308	0.030 0.127 0.036 0.033 0.020 0.032	$\begin{split} H &\to L \ (92\%); \\ H &\to L+1 \ (2\%); \\ H-1 &\to L \ (95\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (4\%); \\ H &\to L+2 \ (43\%); \\ H-3 &\to L \ (91\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+2 \ (43\%); \\ H-7 &\to L \ (2\%); \\ H-5 &\to L \ (4\%); \\ H-3 &\to L \ (2\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+1 \ (13\%); \\ H &\to L+2 \ (26\%); \\ H &\to L+3 \ (32\%); \\ \end{split}$
S1 S2 S3 S4 S5 S6	2.94 3.33 3.63 3.74 3.84 3.90	8 408 360 331 321 313 308	0.030 0.127 0.036 0.033 0.020 0.032	$\begin{split} H &\to L \ (92\%); \\ H &\to L+1 \ (2\%); \\ H-1 &\to L \ (95\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (4\%); \\ H &\to L+2 \ (43\%); \\ H-3 &\to L \ (91\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+2 \ (43\%); \\ H-7 &\to L \ (3\%); \\ H-5 &\to L \ (4\%); \\ H-3 &\to L \ (2\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+1 \ (13\%); \\ H &\to L+2 \ (26\%); \\ H &\to L+3 \ (32\%); \\ H &\to L+4 \ (18\%); \end{split}$
S1 S2 S3 S4 S5 S6 S7	2.94 3.33 3.63 3.74 3.84 3.90	8 408 360 331 321 313 308	0.030 0.127 0.036 0.033 0.020 0.032 0.036	$\begin{split} H &\to L \ (92\%); \\ H &\to L+1 \ (2\%); \\ H-1 &\to L \ (95\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (4\%); \\ H &\to L+2 \ (43\%); \\ H-3 &\to L \ (91\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+2 \ (43\%); \\ H-7 &\to L \ (3\%); \\ H-5 &\to L \ (4\%); \\ H-3 &\to L \ (2\%); \\ H-2 &\to L \ (83\%); \\ H-2 &\to L \ (83\%); \\ H &\to L+1 \ (13\%); \\ H &\to L+2 \ (26\%); \\ H &\to L+3 \ (32\%); \\ H &\to L+4 \ (18\%); \\ H-7 &\to L \ (7\%); \end{split}$
S1 S2 S3 S4 S5 S6 S7	2.94 3.33 3.63 3.74 3.84 3.90 3.93	8 408 360 331 321 313 308 305	0.030 0.127 0.036 0.033 0.020 0.032 0.036	$\begin{split} H &\to L \ (92\%); \\ H &\to L+1 \ (2\%); \\ H-1 &\to L \ (95\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (4\%); \\ H &\to L+2 \ (43\%); \\ H-3 &\to L \ (91\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+2 \ (43\%); \\ H-7 &\to L \ (3\%); \\ H-5 &\to L \ (4\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+2 \ (83\%); \\ H &\to L+1 \ (13\%); \\ H &\to L+2 \ (26\%); \\ H &\to L+2 \ (26\%); \\ H &\to L+4 \ (18\%); \\ H-7 &\to L \ (7\%); \\ H-5 &\to L \ (10\%); \\ \end{split}$
S1 S2 S3 S4 S5 S6 S7	2.94 3.33 3.63 3.74 3.84 3.90 3.93	8 408 360 331 321 313 308 305	0.030 0.127 0.036 0.033 0.020 0.032 0.032	$\begin{split} H &\to L \ (92\%); \\ H &\to L+1 \ (2\%); \\ H-1 &\to L \ (95\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (2\%); \\ H &\to L+1 \ (4\%); \\ H &\to L+2 \ (43\%); \\ H-3 &\to L \ (91\%); \\ H-2 &\to L \ (2\%); \\ H &\to L+2 \ (43\%); \\ H-7 &\to L \ (3\%); \\ H-5 &\to L \ (4\%); \\ H-3 &\to L \ (2\%); \\ H-2 &\to L \ (83\%); \\ H-2 &\to L \ (83\%); \\ H &\to L+1 \ (13\%); \\ H &\to L+2 \ (26\%); \\ H &\to L+2 \ (26\%); \\ H &\to L+4 \ (18\%); \\ H-7 &\to L \ (7\%); \\ H-5 &\to L \ (10\%); \\ H-4 &\to L \ (72\%); \\ \end{split}$
S1 S2 S3 S4 S5 S6 S7	2.94 3.33 3.63 3.74 3.84 3.90 3.93	8 408 360 331 321 313 308 305	0.030 0.127 0.036 0.033 0.020 0.032 0.032	$\begin{split} H &\rightarrow L (92\%); \\ H &\rightarrow L+1 (2\%); \\ H-1 &\rightarrow L (95\%); \\ H &\rightarrow L+1 (2\%); \\ H &\rightarrow L+1 (2\%); \\ H &\rightarrow L (4\%); \\ H &\rightarrow L+2 (43\%); \\ H-3 &\rightarrow L (91\%); \\ H-2 &\rightarrow L (2\%); \\ H &\rightarrow L+2 (43\%); \\ H-7 &\rightarrow L (2\%); \\ H-5 &\rightarrow L (4\%); \\ H-3 &\rightarrow L (2\%); \\ H-2 &\rightarrow L (83\%); \\ H &\rightarrow L+1 (13\%); \\ H &\rightarrow L+2 (26\%); \\ H &\rightarrow L+2 (26\%); \\ H &\rightarrow L+3 (32\%); \\ H-5 &\rightarrow L (10\%); \\ H-5 &\rightarrow L (10\%); \\ H-4 &\rightarrow L (72\%); \\ H &\rightarrow L+3 (32\%); \\ \end{split}$
S1 S2 S3 S4 S5 S6 S7	2.94 3.33 3.63 3.74 3.84 3.90 3.93	8 408 360 331 321 313 308 305	0.030 0.127 0.036 0.033 0.020 0.032 0.032	$\begin{split} H &\rightarrow L (92\%); \\ H &\rightarrow L+1 (2\%); \\ H-1 &\rightarrow L (95\%); \\ H &\rightarrow L+1 (2\%); \\ H &\rightarrow L+1 (2\%); \\ H &\rightarrow L (4\%); \\ H &\rightarrow L+2 (43\%); \\ H-3 &\rightarrow L (91\%); \\ H-2 &\rightarrow L (2\%); \\ H &\rightarrow L+2 (43\%); \\ H-7 &\rightarrow L (2\%); \\ H-5 &\rightarrow L (4\%); \\ H-3 &\rightarrow L (2\%); \\ H-2 &\rightarrow L (83\%); \\ H-2 &\rightarrow L (83\%); \\ H &\rightarrow L+1 (13\%); \\ H &\rightarrow L+2 (26\%); \\ H &\rightarrow L+3 (32\%); \\ H &\rightarrow L+4 (18\%): \\ \end{split}$

S3.3. FMO analysis

FMO	M, %	Cl, %	CNR, %	Carbene moieties, %	Azaheterocycle fragments, %
			7		
HOMO-1	7	2	3	33	55
HOMO	5	2	10	81	2
LUMO	12	2	11	34	40
LUMO+1	24	3	55	14	8
			8		
HOMO-1	11	4	5	30	50
HOMO	4	2	11	82	1
LUMO	16	3	12	31	38
LUMO+1	10	2	70	13	5
			11		
HOMO-1	7	1	22	43	27
HOMO	3	1	13	82	1
LUMO	16	3	11	30	40
LUMO+1	11	1	64	16	7
			12		
HOMO-1	13	4	8	33	42
HOMO	4	2	11	82	1
LUMO	14	2	8	22	54
LUMO+1	12	2	40	24	22

Table S8. MO contributions of atoms and ligands to FMOs for 7, 8, 11 and 12.

Figure S12. Plots of the spin density calculated for $[7]^+$ and $[11]^+$.

S3.5. QTAIM and MBO analysis

Table S9. Mayer bond orders and Topological Analysis of Bond Critical Points of complexes 7 and 8, where $G(\mathbf{r})$ – lagrangian kinetic energy, $\nabla^2 \rho(\mathbf{r})$ – laplacian of electron density, ELF – electron localization function, MBO – Mayer bond order.

Bond	Optimized bond lengths, Å	MBO	ρ_b	G(r)	$V(\mathbf{r})$	$H(\mathbf{r})$	$\nabla^2 \rho(\mathbf{r})$)	ELF	$ V(\boldsymbol{r}) /G(\boldsymbol{r})$
Pd1–C1	1.9912	0.5512	0.139	0.120	-0.175	-0.056	0.255	0.446	1.47
Pd2–C7	1.9785	0.5491	0.144	0.115	-0.176	-0.061	0.213	0.497	1.54
Pd1–C8	1.9157	0.2675	0.148	0.162	-0.224	-0.061	0.403	0.348	1.38
Pd2-C33	1.9169	0.2753	0.147	0.162	-0.223	-0.061	0.406	0.345	1.38
Pd1–N1	2.0327	0.4195	0.112	0.136	-0.162	-0.026	0.439	0.231	1.19
Pd2–N2	2.0836	0.4360	0.098	0.117	-0.137	-0.020	0.390	0.205	1.17
Pd1–Cl1	2.3430	0.5478	0.079	0.078	-0.097	-0.019	0.234	0.228	1.25
Pd2–Cl2	2.3980	0.6267	0.070	0.069	-0.084	-0.015	0.214	0.198	1.22
N4-C7	1.2663	1.6752	0.392	0.424	-1.117	-0.693	-1.075	0.668	2.63
N3–C7	1.4341	0.9989	0.275	0.132	-0.446	-0.314	-0.731	0.865	3.39
N2-C1	1.3352	1.2570	0.347	0.225	-0.742	-0.517	-1.166	0.827	3.30
N3-C1	1.3446	1.2892	0.335	0.244	-0.761	-0.517	-1.090	0.783	3.12
N2-C2	1.3799	1.0799	0.318	0.151	-0.555	-0.405	-1.015	0.889	3.68
Pt1–C1	1.9764	0.9907	0.161	0.138	-0.225	-0.087	0.204	0.496	1.63
Pt2–C7	1.9710	1.0678	0.165	0.131	-0.223	-0.092	0.156	0.541	1.70
Pt1–C8	1.8884	0.9029	0.176	0.194	-0.295	-0.101	0.373	0.402	1.52
Pt2-C33	1.8802	0.9058	0.179	0.198	-0.302	-0.104	0.379	0.405	1.52
Pt1–N1	2.0402	0.9907	0.125	0.147	-0.193	-0.046	0.407	0.269	1.31
Pt2–N2	2.0772	0.6507	0.113	0.131	-0.169	-0.038	0.371	0.250	1.29
Pt1–Cl1	2.3487	0.6945	0.091	0.083	-0.116	-0.033	0.202	0.286	1.39
Pt2–Cl2	2.3989	0.7788	0.081	0.074	-0.101	-0.027	0.189	0.256	1.36
N4–C7	1.3396	1.6346	0.390	0.402	-1.087	-0.685	-1.135	0.690	2.71
N3–C7	1.3674	0.9715	0.272	0.129	-0.437	-0.308	-0.714	0.865	3.38
N2C1	1.3689	1.3101	0.337	0.198	-0.673	-0.475	-1.111	0.849	3.41
N3-C1	1.3683	1.2935	0.337	0.244	-0.765	-0.521	-1.109	0.788	3.14
N2-C2	1.3775	1.1067	0.320	0.155	-0.566	-0.411	-1.022	0.884	3.65

S3.6. ETS-NOCV calculations

Figure S13. Fragmentation scheme of 8 used for ETS-NOCV analysis.

S4. Theoretical studies of thiocyanate complexes

S4.1. DFT studies of M–N coordination bonding in structures of 16 and 18

To establish whether the coordination geometries of the studied compounds, and in particular the bent structure of the fragment M–N=C, are influenced by the crystal packing, quantum chemical calculations were undertaken. We carried out the full geometry optimization procedure for the isolated model species **16** and **18**. If these crystal-packing effects are significant, the structures should change appreciably on going from the solid state to the gas phase, otherwise the geometries are expected to be preserved in the isolated form. We found that both fragments M–N–C in the optimized equilibrium geometries of isolated model species **16** and **18** have a bent structure (**Figure S14**).

Optimized equilibrium model structures

Figure S14. Views of experimentally determined and theoretically calculated structures of 16 and 18.

Inspection of the data presented in **Table S10** reveals that the geometry optimization procedure affects only marginally the N8(9)–C45(46) and C45(46)–S1(2) bond lengths and the C46–N9–M2 angles, and significantly the M1–N8 bond lengths and the C45–N8–M1 angles.

	16		18	
	X-ray data	theoretical geometry optimization	X-ray data	theoretical geometry optimization
Bond lengths, Å				
M1-N8	2.031(3)	2.057	2.028(4)	2.063
N8-C45	1.151(4)	1.189	1.154(5)	1.189
C45–S1	1.619(3)	1.612	1.620(4)	1.608
M2-N9	2.096(3)	2.094	2.092(4)	2.094
N9–C46	1.158(5)	1.185	1.161(6)	1.186
C46–S2	1.612(4)	1.618	1.614(5)	1.615
Angles, °				
C45–N8–M1	175.7(3)	142.1	175.6(3)	144.7
C46-N9-M2	147.1(3)	146.5	147.0(4)	148.1

 Table S10. Selected bond lengths and angles for 16, 18.

To further rationalize the nature of coordination bonds M–N in **16** and **18**, the QTAIM analysis for the optimized equilibrium geometries of isolated model species was performed (**Table S11**). The values of electron density (0.085-0.106 a.u.), Laplacian of electron density (0.416-0.469 a.u.) and energy density ((-0.026)-(-0.011) a.u.) in the bond critical points (3, -1) corresponding to coordination bonds M–N in the optimized equilibrium geometries of isolated model species **16** and **18** are typical for such closed-shell interactions in similar coordination compounds.¹ The ellipticity of these coordination bonds M–N is low (0.094-0.125) confirming the formal "single" character of these bonds and is well consistent with small values of Wiberg bond indices² (0.52-0.42) and Fuzzy bond orders ca. $1^3 (1.03-1.10)$ for appropriate interatomic contacts.

Table S11. Results of the topological analysis of the electron density distribution and values of the Wiberg bond indices and Fuzzy bond orders corresponding to coordination bonds M–N in the optimized equilibrium geometries of isolated model species **16** and **18**.

	$\rho({\bf r}), [e/E^3]$	$ abla^2 ho(\mathbf{r}), $ [e/E ³]	H _b , [Hartree/E ³]	3	WI	FBO
	16					
Pd1–N8	0.093	0.441	-0.016	0.125	0.47	1.10
Pd2–N9	0.085	0.416	-0.011	0.115	0.42	1.06
	18					
Pt1–N8	0.106	0.469	-0.026	0.131	0.52	1.08
Pt2–N9	0.097	0.445	-0.021	0.122	0.47	1.03

* $\rho(\mathbf{r})$ – density of all electrons, $\nabla^2 \rho(\mathbf{r})$ – Laplacian of electron density, H_b –energy density, ε – ellipticity of electron density, WI – Wiberg bond indices, FBO – Fuzzy bond orders. The Poincare-Hopf relationship (criterion that shows that all critical points were determined) was satisfied in all cases.

The natural bond orbitals (NBO) analysis⁴ does not indicate the presence of any σ - or π type Pd–N and Pt–N bond orbitals for the M–N coordination bonds in the optimized equilibrium model structures **16** and **18**, respectively. This observation may reveal that all Pd–N and Pt–N bond orbitals in the studied systems are totally polarized toward the N atom, and these coordination bonds are almost purely electrostatic. The results of charge decomposition analyses (CDA)⁵ calculations reveal that the [M]←L σ -donation totally prevails over the [M]→L π -back-donation for M–N coordination bonds in the optimized equilibrium model structure **16** and **18** (**Table S12**).

Coordination bond	d	b	r	Ν	$E_{\rm v}$	
16						
Pd1-N8 2.057 Å	0.244	0.006	-0.219	0.423	136	
Pd2–N9 2.094 Å	0.244	0.004	-0.264	0.383	118	
18						
Pt1-N8 2.063 Å	0.245	0.005	-0.257	0.421	144	
Pt2-N9 2.094 Å	0.247	0.002	-0.307	0.392	125	

Table S12. Results of the charge decomposition analysis (CDA) for M–N coordination bonds in the optimized equilibrium model structures **16** and **18**.

* $d - [M] \leftarrow L \sigma$ -donation, $b - [M] \rightarrow L \pi$ -back-donation, r – repulsive part, N – net electron transfer between the donor and acceptor fragments, E_v , kcal/mol – vertical total energies for M–N coordination bonds cleavage.

The overlap population between the occupied fragment orbitals (FOs) of the two fragments in corresponding complex orbital (term r) is negative in both cases. It implies that in this complex orbital, the electrons of occupied FOs are depleted (mainly due to the Pauli repulsion) from the overlap region between the two fragments. The negative values of r reveals that repulsive effect dominates the overall interaction between occupied FOs, which results in corresponding electrons moved away toward non-overlapping regions from overlap regions. The amount of net electron transfer between the donor and acceptor fragments was estimated using extended charge decomposition analysis (ECDA) formalism⁶: in both cases the net electron transfer between the donor and acceptor fragments is very similar and quite logical trend is observed – the shorter coordination bond led to higher net electron transfer between the donor and acceptor fragments (**Table S12**). The calculated vertical total energies for M–N coordination bonds cleavage in the optimized equilibrium model structure **16** and **18** are presented in **Table S12**: these contacts in platinum complex are expectedly stronger that those in palladium complex.

Table S13. Characteristic parameters of noncovalent contacts in the **16** and **18** structures, where values of the density of all electrons – $\rho(\mathbf{r})$, Laplacian of electron density – $\nabla^2 \rho(\mathbf{r})$ and appropriate λ_2 eigenvalues, energy density – H_b, potential energy density – V(\mathbf{r}), and Lagrangian kinetic energy – G(\mathbf{r}) (a.u.) at the bond critical points (3, –1).

Contact	d, Å	$d/\Sigma(R_{vdW})$ (Bondi)	$d/\Sigma(R_{vdW})$ (Alvarez)	$\rho(\mathbf{r})$	$ abla^2 ho(\mathbf{r})$	λ_2	H_{b}	V(r)	$G(\mathbf{r})$
Pd1•••C5	3.471(13)	1.04	0.89	0.005	0.015	-0.005	0.001	-0.002	0.003
Pt1•••C5	3.479(3)	1.04	0.86	0.008	0.021	-0.008	0.001	-0.004	0.005
16									
N8•••C5	3.392(5)	1.04	0.99	0.005	0.016	-0.005	0.001	-0.003	0.003
S1•••C2	3.618(4)	1.03	0.99	0.006	0.017	-0.006	0.001	-0.002	0.003
18									
S1•••C2	3.570(3)	1.02	0.98	0.006	0.018	-0.006	0.001	-0.003	0.004

Figure S15. Contour line diagram of the Laplacian of electron density distribution $\nabla^2 \rho(\mathbf{r})$, bond paths, and selected zero-flux surfaces (left panel), visualization of electron localization function (ELF, center panel) and reduced density gradient (RDG, right panel) analyses for Pd1•••C5 and N8•••C5 intermolecular contacts in **16**. Bond critical points (3, -1) are shown in blue, nuclear critical points (3, -3) – in pale brown, ring critical points (3, +1) – in orange, bond paths are shown as pale brown lines, length units – Å, and the color scale for the ELF and RDG maps are presented in a.u.

Figure S16. Contour line diagram of the Laplacian of electron density distribution $\nabla^2 \rho(\mathbf{r})$, bond paths, and selected zero-flux surfaces (left panel), visualization of electron localization function (ELF, center panel) and reduced density gradient (RDG, right panel) analyses for S1•••C2 intermolecular contacts in **16**. Bond critical points (3, -1) are shown in blue, nuclear critical points (3, -3) – in pale brown, ring critical points (3, +1) – in orange, bond paths are shown as pale brown lines, length units – Å, and the color scale for the ELF and RDG maps are presented in a.u.

Atom	Х	Y	Z						
16 (dimeric supr	16 (dimeric supramolecular associate based on the experimental X-ray geometry)								
Pd	14.496848	16.185450	11.586381						
Pd	17.053699	20.125209	12.290983						
S	11.455291	13.181078	9.446265						
S	16.506083	24.491072	10.680384						
Ν	14.584641	17.428510	9.999497						
Ν	16.624919	17.513855	13.286653						
Ν	15.923431	18.624570	11.453353						
Ν	18.539788	18.345963	14.208027						
Ν	13.180987	14.917961	10.681866						
Ν	18.756350	22.341382	13.598657						
С	17.594232	18.590865	13.428759						
С	15.808433	17.532408	12.225951						
С	15.305356	18.542317	10.231277						
Ν	13.843902	14.486601	14.069627						
Ν	14.766583	19.390196	8.066149						
С	17.423920	15.286550	13.924185						
С	12.461033	14.189441	10.193295						
С	19.618103	19.227237	14.451479						
С	19.742553	19.759713	15.744701						
С	16.672735	16.414581	14.218773						
Ν	16.409470	21.769945	11.148760						
С	15.984586	16.556822	15.431215						
С	21.795033	20.869500	15.074004						
С	14.227544	15.145856	13.210505						
С	15.391938	19.509554	9.233013						
Н	15.907510	20.267790	9.388570						

Table S14. Cartesian atomic coordinates for model structures.

С	20.834404	20 576078	16.018000
Ц	20.834404	20.370978	16.016909
С	17 3000/18	20.338350	1/ 8/7968
	17.333340	13.450252	14.647900
	17.800938	13.439232	13 220605
	12 272262	12 642124	15.220093
	13.373302	15.042124	0 00051
	13.943287	17.511007	8.829854
H	13.426961	16.556575	8.659530
C	16.699044	14.332301	16.046700
<u> </u>	20.567132	19.506153	13.468223
<u> </u>	16.012435	15.499912	16.326095
H	15.558628	15.577556	17.134229
С	12.579013	14.178619	16.093019
С	15.200528	17.808231	15.720615
Н	14.494882	17.900162	15.076042
Н	14.823306	17.752974	16.601841
Н	15.782289	18.569992	15.668887
С	21.648186	20.322182	13.810426
Н	22.292810	20.504466	13.166372
С	19.652148	23.364278	13.979027
С	13.287208	11.482848	16.046700
Н	13.526949	10.584350	16.045625
С	14.042363	18.286593	7.891805
Н	13.582837	18.179387	7.090192
С	12.473203	11.950387	17.054598
С	12.139058	13.299200	17.067567
Н	11.601954	13.622334	17.754754
С	13.762132	12.298258	15.035097
С	18.245214	15.193166	12.682099
Н	18.893712	15.900938	12.673243
Н	18.696007	14.345844	12.659662
Н	17.674409	15.272388	11.914411
С	12.189914	15.626691	16.117105
Н	11.930226	15.902577	15.234638
Н	11.454771	15.750874	16.720750
Н	12.937455	16.153755	16.409377
С	20.638503	23.694834	13.060061
С	18.695870	19.480488	16.784096
Н	18.550597	18.533659	16.844570
Н	18.992470	19.814228	17.633547
Н	17.876552	19.915219	16.537142
С	16.456179	22.906016	10.964597
С	11.966324	10.996755	18.110668
Н	12.632628	10.328069	18.285512
Н	11.781507	11.482198	18.918876
Н	11.161948	10.573836	17.801462
С	19.520343	23.928603	15.235194
С	20.444313	18.958526	12.068838
Н	19.631016	19.277176	11.670644
Н	21.193345	19.250305	11.544138

Н	20.430378	17,999020	12,100687
C	20.705404	23.067428	11.692729
H	19,911936	23,288551	11.200712
Н	21 475425	23.400179	11.226039
Н	20 772332	22.113951	11.220032
C	16 670915	13 179223	17.032365
Н	17 028584	13.469827	17.875034
Н	15 766002	12 883548	17.075091
Н	17 201657	12.005540	16 692922
С	14 644421	11.76/1855	13.936/11/
Ч	15 //70/8	12 280/17	13 888353
Н	1/ 870612	10.850711	1/ 123968
Н	14.070012	11.81/361	13 000330
	22 082360	21 7/8600	15 306383
Ц	22.762500	21.740007	15 512755
	23.702062	21.202312	13.312733
	23.127800	22.300923	14.077120
	18 /2006/91	22.233103	16 101215
	18 207155	23.331237	16 158440
	18 661508	22.379944	17.082502
П	17.604212	23.792701	17.062393
П	17.004212	25.908803	13.938010
	21.401070	23.230909	14.720128
	21.302030	24.030814	13.480030
П	22.247843	24.909107	12.900300
	20.408151	24.8/9/01	15.383304
П	20.419033	25.284992	10.42100/
	22.343143	20.208134	15.110018
П	22.133637	27.147171	15.004922
П	22.873080	20.008557	13.994625
<u>П</u> Ы	25.209950	20.239300	6.041157
Pu Dd	13.396733	14.730430	6.226554
ru S	13.041902	10.790091	0.230334
	12 590519	6 420828	9.061272
N N	15.509510	12 402200	9.529040
N N	13.310900	13.493390	5.326040
N N	13.470062	12 207220	7.07/19/
N N	14.1/21/0	12.277330	/.0/4104
N	16.014614	16.003030	4.319310
N	11 220251	8 580518	/.043071
	12 501260	12 221025	4.920001 5.008778
	14 297169	12.331033	5.098778
	14.207100	13.309492	0.301360 9.206261
	14.790243	12.3/7303	0.290201
	10.231099	10.433299	4.43/911
	13.329010	11.331704	10.401309
	12.0/1001	15.055550	4.003332
	1/.034308	10./32439	0.334242
	10.4//498	11.094003	4.0/0038
	10.555048	11.10218/	2.782830
<u> </u>	13.422866	14.50/319	4.308/64

N	12 (0(12)	0 151055	7 270777
N	13.686131	9.151955	1.3/8///
C	14.111015	14.365078	3.096322
C	8.300568	10.052400	3.453533
<u> </u>	15.868057	15.776044	5.31/033
<u> </u>	14.703663	11.412346	9.294524
Н	14.188091	10.654110	9.138967
С	9.261197	10.344922	2.508629
Н	9.175903	9.982950	1.655880
С	12.695653	16.681128	3.679569
Н	12.228643	17.462648	3.870903
С	11.949099	9.474779	5.306843
С	16.722239	17.279776	3.437043
С	16.152314	13.610893	9.697684
Н	16.668640	14.365325	9.868007
С	13.396557	16.589599	2.480837
С	9.528469	11.415747	5.059315
С	14.083166	15.421988	2.201442
Н	14.536973	15.344344	1.393308
С	17.516588	16.743281	2.434518
С	14.895073	13.113669	2.806922
Н	15.600719	13.021738	3.451495
Н	15.272295	13.168926	1.925697
Н	14.313312	12.351908	2.858651
С	8.447415	10.599718	4.717111
Н	7.802791	10.417434	5.361165
С	10.443453	7.557622	4.548510
С	16.808393	19.439052	2.480837
Н	16.568652	20.337550	2.481912
С	16.053238	12.635307	10.635733
Н	16.512765	12.742513	11.437345
С	17.622398	18.971513	1.472939
С	17.956543	17.622700	1.459970
Н	18.493647	17.299566	0.772784
С	16.333469	18.623642	3.492441
С	11.850387	15.728734	5.845438
Н	11.201889	15.020962	5.854294
Н	11.399594	16.576056	5.867875
Н	12.421192	15.649512	6.613127
С	17.905687	15.295209	2.410433
Н	18.165375	15.019323	3.292899
Н	18.640830	15.171026	1.806787
Н	17.158146	14.768145	2.118161
С	9.457098	7.227066	5.467476
С	11.399731	11.441412	1.743441
Н	11.545004	12.388241	1.682967
Н	11.103131	11.107672	0.893991
Н	12.219049	11.006681	1.990395
С	13.639422	8.015884	7.562941
С	18.129277	19.925145	0.416870
Н	17.462973	20.593831	0.242025

н	18 31/09/	10/30702	-0.301330		
Н	18.034094	20 348064	0.726076		
С	10.555055	6 993297	3 2923/13		
	9 651288	11 963374	6 / 58699		
Н	10.464585				
 Ц	8 002256	11.044724	6.083300		
 Ц	0.502250	12 022880	6 426851		
	9.003223	7 954472	6.924900		
	9.390197	7.634472	0.034009		
П	10.165005 9.620176	7.033349	7.320820		
П	0.222260	9.907040	6 7 4 5 7 6 5		
H C	9.323209	8.807949	0./45/05		
	13.424080	17.742077	1.495172		
H	13.06/01/	17.452073	0.652505		
H	14.329599	18.038352	1.3/3446		
H	12.893944	18.467053	1.834615		
C	15.451180	19.157045	4.591124		
H	14.648553	18.632486	4.639184		
H	15.224989	20.0/1189	4.403569		
H	15.917186	19.107539	5.428198		
С	7.113241	9.173291	3.131154		
Н	6.332919	9.719588	3.014782		
Н	6.967735	8.554977	3.850411		
Н	7.286810	8.686797	2.321223		
С	11.675337	7.390643	2.336322		
Н	11.798446	8.341956	2.369098		
Н	11.434094	7.129199	1.444944		
Н	12.491390	6.953037	2.588927		
С	8.614523	5.684991	3.807409		
С	8.533565	6.265086	5.046901		
Н	7.847756	6.012733	5.620977		
С	9.627450	6.042139	2.942173		
Н	9.676546	5.636908	2.106470		
С	7.550458	4.653746	3.410920		
Н	7.939744	3.774729	3.413847		
Н	7.220521	4.853563	2.532714		
Н	6.825651	4.682534	4.040170		
18 (dimeric supr	amolecular associate bas	sed on the experimental	X-ray geometry)		
Pt	-1.833565	15.875061	11.629371		
Pt	0.717147	19.818671	12.312841		
S	-4.916942	13.047079	9.283423		
S	0.057769	24.150168	10.667987		
N	-1.714410	17.109548	10.019025		
N	-0.384502	18.311813	11.473531		
N	0.310963	17.196792	13.305578		
N	-3.168932	14.641790	10.730879		
N	-2.439213	14.175171	14.101846		
N	2.220691	18.033665	14.228188		
N	0.032794	21.418854	11.151833		
С	-0.517061	17.215031	12.261265		
C	1.275620	18.287798	13.439341		

NT	0.261064	00.000077	12 (15070
N	2.361264	22.038377	13.645272
N	-1.43/202	19.003685	8.035219
<u> </u>	-0.978648	18.213017	10.240911
C	-0.343461	16.269027	15.455984
С	-2.084705	14.819925	13.235265
С	-3.900837	13.970893	10.142584
С	3.401966	19.451152	15.775085
С	-2.493602	12.019302	15.142449
С	4.121508	18.716722	12.098004
Н	4.088601	17.757464	12.118022
Н	4.884620	18.999399	11.587387
Н	3.321354	19.055940	11.690371
С	-0.305245	15.217235	16.365050
Н	-0.757225	15.302929	17.173915
С	0.359119	16.110042	14.253790
С	1.106498	14.975870	13.977360
С	-1.132445	17.518105	15.717572
Н	-1.833713	17.596442	15.067275
Н	-0.553163	18.281171	15.658001
Н	-1.515645	17.475942	16.597604
С	4.233416	19.245658	13.502419
С	3.284342	18.936200	14.481984
С	-0.847090	19.145038	9.209399
Н	-0.320964	19.897920	9.354683
С	1.098007	13.946878	14.914255
Н	1.580988	13.171561	14.741068
С	0.385906	14.048105	16.103462
С	-2.879714	13.355929	15.157291
С	-2.187565	17.908119	7.866207
Н	-2.626601	17.792574	7.054058
С	-4.138155	13.048599	17.138684
Н	-4.686334	13.382528	17.811060
С	5.303648	20.078275	13.860480
Н	5.939909	20.290093	13.216879
С	-2.338722	16.953907	8.829075
Н	-2.864887	16.204156	8.668022
С	4.479099	20.284074	16.077489
Н	4.549296	20.639585	16.934701
С	5.448354	20.595659	15.133173
С	-2.955633	11.208876	16.166540
Н	-2.701630	10.314519	16.189768
С	1.939429	14.873731	12.721364
Н	1.389697	15.060865	11.957358
Н	2.298933	13.986913	12.648379
Н	2.657927	15.508636	12.762773
С	-3.695855	13.909183	16.146132
С	1.771843	21.155602	13.207436
С	-4.089871	15.359805	16.147988
Н	-3.341409	15.894364	16.423713
Н	-4.819868	15.492798	16.756172

Н	-4 358646	15 618709	15 263169
C	-3.791141	11.704069	17.160947
C	2 344260	19 150206	16 791755
Н	1 534546	19.608435	16 556233
Н	2 639359	19.444768	17.656333
Н	2.039339	18 204232	16.813962
C II	-1 589162	11 465136	14.058990
Н	-2 060997	11.454861	13 222705
Н	-2.000777	10 570992	1/ 288390
Н	-0.808880	12 018390	13 070106
C II	6 6105/11	21 / 83007	15.777536
<u>с</u> и	7 352032	20.9/3906	15 780335
Н	6 363820	20.945900	16 167746
Н	6 886871	22.077505	14 605003
C II	2 264065	21.075037	14.073832
C	4 311600	10 760020	18 232275
<u>с</u> и	-4.511000	11 281/68	18.233273
	-4.384772	10 157602	18 / 88722
	-3.017720	10.137092	10.400722
П	-3.002396	10.276455	17.092113
	0.300830	12.914341	17.101360
П	0.743024	13.209712	16.759270
П	0.808924	12.175551	17.240127
H C	-0.546240	12.038218	17.249127
	3.129349	23.303779	15.353801
	2.034030	23.104037	10.270433
H	1.191505	23.437394	15.899404
H	2.159821	23.383302	17.123433
H	2.040613	22.210433	10.379818
	0.053897	22.563969	10.964454
	5.194087	24.330127	13.000740
H	5.8/7296	24.600705	13.029853
	4.31/2/4	22.791046	11./93/45
H	4.405236	21.837868	11.866359
H	5.070673	23.146193	11.315830
H	3.509640	23.002043	11.318470
<u> </u>	4.263939	23.390811	13.153634
	4.102375	24.502488	15.726849
H	4.056245	24.887577	16.571408
<u> </u>	5.120820	24.8/2135	14.882/16
	6.202315	25.841850	15.352091
H	6.865227	25.363589	15.856159
H	5.806849	26.518948	15.907345
H	6.615448	26.254420	14.590608
Pt D	-0.736169	14.523539	6.923004
Pt	-3.286882	10.579929	6.239535
<u> </u>	2.347207	17.351521	9.268952
S	-2.627503	6.248432	7.884389
N	-0.855325	13.289052	8.533351
N	-2.185232	12.086787	7.078844
N	-2.880697	13.201808	5.246797

N	0.599197	15.756810	7.821496
N	-0.130521	16.223429	4.450529
N	-4.790425	12.364935	4.324188
N	-2.602529	8.979746	7.400543
С	-2.052674	13.183569	6.291111
C	-3.845354	12.110802	5.113035
N	-4.930998	8.360223	4.907103
N	-1.132532	11.394915	10.517156
С	-1.591087	12.185583	8.311464
C	-2.226273	14.129573	3.096391
C	-0.485030	15.578675	5.317111
C	1.331102	16.427707	8.409792
C	-5.971701	10.947448	2.777291
C	-0.076133	18.379298	3.409927
C	-6.691242	11.681878	6.454371
H	-6.658335	12.641136	6.434353
H	-7.454354	11.399201	6.964988
H	-5.891089	11.342660	6.862004
C	-2.264490	15.181365	2.187325
H	-1.812509	15.095671	1.378460
С	-2.928854	14.288558	4.298585
C	-3.676233	15.422730	4.575016
C	-1.437289	12.880495	2.834803
H	-0.736021	12.802158	3.485101
H	-2.016572	12.117429	2.894375
Н	-1.054090	12.922658	1.954771
С	-6.803150	11.152942	5.049957
С	-5.854077	11.462400	4.070391
С	-1.722644	11.253562	9.342976
Н	-2.248771	10.500680	9.197693
С	-3.667742	16.451722	3.638121
Н	-4.150722	17.227039	3.811307
С	-2.955640	16.350495	2.448914
С	0.309980	17.042671	3.395085
С	-0.382170	12.490481	10.686168
Н	0.056867	12.606026	11.498317
С	1.568421	17.350001	1.413691
Н	2.116599	17.016072	0.741316
С	-7.873382	10.320325	4.691896
Н	-8.509644	10.108507	5.335496
С	-0.231013	13.444693	9.723300
Н	0.295153	14.194444	9.884353
С	-7.048833	10.114526	2.474887
Н	-7.119030	9.759015	1.617674
С	-8.018089	9.802941	3.419203
C	0.385899	19.189724	2.385835
Н	0.131895	20.084081	2.362608
C	-4.509164	15.524869	5.831012
Н	-3.959432	15.337735	6.595017
Н	-4.868667	16.411687	5.903997

11	16 (optimized equilib	rium model structure)	5.561767		
Н	_9 185182	<u>4 144180</u>	3 961767		
H	-8.376583	3,879652	2.645031		
H	-9.434961	5.035011	2.696217		
С	-8.772050	4.556750	3.200285		
С	-7.690554	5.526465	3.669660		
Н	-6.625980	5.511023	1.980967		
С	-6.672109	5.896112	2.825527		
С	-6.833673	7.007789	5.398741		
Н	-6.079374	7.396557	7.233905		
Н	-7.640407	7.252407	7.236540		
Н	-6.974970	8.560732	6.686016		
С	-6.887009	7.607554	6.758630		
Н	-8.447030	5.797895	5.522523		
C	-7.763821	6.068473	4.951629		
С	-2.623632	7.834631	7.587922		
Н	-4.610347	8.188167	2.172557		
Н	-4.729556	6.813238	1.428923		
Н	-3.761300	6.961006	2.652971		
С	-4.603765	7.234563	2.281942		
С	-5.699084	6.834821	3.196574		
Н	-2.023494	17.760382	1.303249		
Н	-3.438658	18.223049	1.793996		
Н	-3.314759	17.188888	0.622339		
С	-2.930584	17.484059	1.450796		
Н	2.492664	20.120165	0.660260		
Н	1.047994	20.240908	0.063653		
Н	2.015038	19.117132	-0.445814		
С	1.741865	19.628680	0.319101		
С	-5.833800	7.364365	4.478543		
Н	-9.456606	8.423543	3.857373		
Н	-8.933555	8.301037	2.384630		
Н	-9.921767	9.454694	2.772040		
С	-9.189275	8.914693	3.077839		
Н	-1.760854	18.380210	4.573179		
Н	-1.244061	19.827608	4.263985		
Н	-0.508738	18.943739	5.329671		
C	-0.980573	18.933464	4.493385		
Н	-4.751879	12.194368	1.738413		
Н	-5.209094	10.953832	0.896043		
Н	-4.104281	10.790165	1.996143		
C	-4.913995	11.248394	1.760620		
C	1.221406	18.694531	1.391428		
Н	1.788911	14.779891	3.289206		
Н	2.250134	14.905802	1.796204		
H	0.771675	14.504236	2.128662		
C	1.520136	15.038795	2.404388		
C	-4.341578	9.242998	5.344939		
C	1.126120	16 489417	2.406243		
Н	-5 227662	14 889964	5 789603		

Pd	-2.808334	1 979825	0.016994
Pd	1 928745	1 170837	-0 158452
S	-7 343744	2,730750	0.320977
S	5 668820	3 841493	-1 130402
N	-1 640252	3 651266	0.109265
N	-0 596194	-0.097435	0.211925
N	0.047608	2 061101	0.002426
N	1.061511	-1 558610	0 791475
N	-4 572557	3.036981	0.060304
N	4 705369	-0 161994	-0 524169
C	0.817148	-0 398025	0.353589
C	-0.964602	1 181671	0.065904
C	-0.321508	3 388958	0.047985
N	-4 777705	-0 380943	-0 358475
N	0.168271	5 721958	0.156138
C	-2 089349	-1 470501	1 577684
C	-5 747632	2.896365	0.170998
C	2 358114	-2.053311	0.992781
C	2.854647	-2.994544	0.080047
C	-1.531014	-1.181908	0.333167
N	3 094258	2.834888	-0 664496
C	-1 811998	-1 940895	-0.806381
C	4 930792	-3 109529	1 348583
C	-3 933253	0 397914	-0 196180
C	0 583100	4 468467	0.074067
H	1.648698	4.278951	0.013568
C	4.137030	-3.502035	0.272932
H	4.532082	-4.217117	-0.446565
C	-2.981648	-2.539669	1.657296
Н	-3.434268	-2.775962	2.617771
С	3.614691	0.203571	-0.361771
C	-5.778411	-1.328646	-0.508875
С	-2.068632	4.920480	0.187794
Н	-3.142613	5.061550	0.228466
С	-3.304257	-3.311197	0.543367
С	3.113953	-1.670820	2.113454
С	-2.702624	-3.001630	-0.678483
Н	-2.946951	-3.597135	-1.555880
С	-5.952108	-1.919991	-1.764951
С	-1.204329	-1.578283	-2.134748
Н	-1.575076	-0.606393	-2.484436
Н	-1.446246	-2.327564	-2.893404
Н	-0.114975	-1.499686	-2.067475
С	4.391138	-2.206873	2.264275
Н	4.988957	-1.899709	3.120733
С	6.026514	-0.578272	-0.580483
С	-7.534878	-2.623926	0.438129
Н	-8.154969	-2.895864	1.288660
С	-1.150591	5.950650	0.212871
Н	-1.476046	6.983363	0.280573

С	-7 740714	-3 254968	-0 788997
C	-6 942227	-2.890849	-1 875417
Н	-7 099659	-3 370621	-2.838305
C	-6.558310	-1.647143	0.608648
C	-1.766748	-0.630045	2.782302
H	-0.685490	-0.509528	2.899657
H	-2.164138	-1.084655	3.693496
Н	-2.201310	0.373550	2.689419
C	-5.107037	-1.502116	-2.935724
H	-5.253833	-0.440183	-3.163099
H	-5.363478	-2.079149	-3.827451
H	-4.042064	-1.646530	-2.725557
C	6.900387	-0.115619	0.411027
C	2.028373	-3.390819	-1.113920
H	0.990348	-3.589167	-0.826135
Н	2,438737	-4.281872	-1.598280
Н	2.004666	-2.585313	-1.859753
C	4.184819	3.253845	-0.863862
C	-8.825229	-4.288802	-0.950008
H	-9.031607	-4.800395	-0.005535
H	-8.550873	-5.041607	-1.694829
Н	-9.758349	-3.819634	-1.283049
C	6.416969	-1.443323	-1.607264
C	2.566020	-0.689127	3.115546
H	2.439073	0.307796	2.676576
Н	3.236449	-0.595649	3.974633
Н	1.583110	-1.007660	3.480950
С	6.422823	0.834469	1.471642
Н	6.150968	1.799525	1.026219
Н	7.202731	1.009143	2.216928
Н	5.536988	0.439471	1.981697
С	-4.284565	-4.450761	0.638956
Н	-3.775582	-5.415905	0.535311
Н	-5.036154	-4.384554	-0.154932
Н	-4.808688	-4.447168	1.598627
С	-6.340856	-0.947561	1.919738
Н	-5.304337	-1.061648	2.257481
Н	-7.002655	-1.350527	2.689983
Н	-6.543496	0.125902	1.820037
С	6.327370	-3.647238	1.524035
Н	6.356325	-4.445783	2.275006
Н	7.012971	-2.858386	1.849834
Н	6.715501	-4.053444	0.585231
С	5.432670	-1.881905	-2.654812
Н	4.566095	-2.369317	-2.195710
Н	5.893617	-2.583458	-3.354606
Н	5.061477	-1.023486	-3.226129
С	8.652573	-1.441717	-0.642037
С	8.214828	-0.569341	0.354903
Н	8.917889	-0.226938	1.110310

С	7.741785	-1.867456	-1.610145		
Н	8.072899	-2.545162	-2.393442		
С	10.090515	-1.889856	-0.691529		
Н	10.694716	-1.186553	-1.276660		
Н	10.186569	-2.874089	-1.159711		
Н	10.527256	-1.944410	0.310118		
	18 (optimized equilib	rium model structure)			
Pt	-2.773820	1.743133	0.022805		
Pt	1.969938	1.001800	-0.148366		
S	-7.321558	2.621524	0.355972		
<u> </u>	5.562971	3.884706	-1.153724		
Ň	-1.624651	3.436976	0.127454		
N	-0.543290	-0.292008	0.246735		
N	0.082718	1 872596	0.032406		
N	1 123337	-1 742200	0.812041		
N	-4 547526	2 795831	0.044001		
N	4 739600	-0 272864	-0.530023		
C III	0.878386	-0.272004	0.379260		
	-0.932567	0.976646	0.092466		
	-0.932307	3 103/28	0.092400		
N N	4 701230	0.622371	0.007011		
N N	-4.701239	-0.022371	0.349360		
	0.149000	1 721529	1 57/269		
	-2.01/0//	-1.721330	0.177022		
	-3.723012	2.709117	0.177022		
	2.431820	-2.214495	0.999402		
	2.943178	-3.128994	0.008420		
	-1.400400	-1.392418	0.340137		
N C	3.009400	2.700075	-0.080034		
	-1./24439	-2.123929	-0.820639		
	5.021575	-3.239026	1.333287		
<u> </u>	-3.8/495/	0.1/556/	-0.180411		
	0.585222	4.289407	0.150947		
H	1.654399	4.119287	0.116545		
<u> </u>	4.232324	-3.623488	0.251935		
H	4.635831	-4.321616	-0.479490		
C	-2.889779	-2.809066	1.622322		
H	-3.341368	-3.078952	2.574409		
	3.653152	0.102903	-0.354957		
	-5.688732	-1.581602	-0.501713		
	-2.0/4852	4.701490	0.211701		
H Ĩ	-3.151028	4.826815	0.233974		
<u> </u>	-3.191652	-3.558855	0.487817		
C	3.184882	-1.840196	2.124931		
C	-2.592864	-3.205936	-0.723746		
Н	-2.821155	-3.784210	-1.616820		
С	-5.862360	-2.166527	-1.760766		
С	-1.123579	-1.706183	-2.135849		
Н	-1.524394	-0.736808	-2.458754		
Н	-1.339035	-2.441168	-2.916190		
Н	-0.037541	-1.593743	-2.061600		

С	4.470751	-2.358218	2.263760
Н	5.065345	-2.056859	3.124687
С	6.066493	-0.668342	-0.567454
С	-7.428353	-2.900153	0.445163
Н	-8.042262	-3.183200	1.296576
С	-1.174437	5.742678	0.266554
Н	-1.516766	6.769394	0.338549
С	-7.632838	-3.525859	-0.785020
C	-6.843300	-3.146505	-1.872938
Н	-7.000417	-3.621956	-2.838052
С	-6.461358	-1.914115	0.616549
С	-1.711698	-0.905614	2.799697
Н	-0.632266	-0.775823	2.923460
Н	-2.107271	-1.385888	3.698421
Н	-2.157385	0.094500	2.726403
С	-5.025699	-1.731307	-2.931228
Н	-5.184494	-0.669427	-3.150843
Н	-5.278023	-2.304914	-3.826357
Н	-3.958738	-1.865028	-2.724280
С	6.919873	-0.182105	0.430554
С	2.122535	-3.510675	-1.134230
Н	1.086350	-3.725254	-0.851498
Н	2.542985	-4.387236	-1.636271
Н	2.090330	-2.690061	-1.863267
С	4.129750	3.191021	-0.886956
С	-8.707312	-4.569834	-0.948257
Н	-8.914029	-5.080396	-0.003339
Н	-8.422110	-5.322502	-1.689185
Н	-9.642813	-4.110323	-1.288060
С	6.487132	-1.529845	-1.584957
С	2.623011	-0.887633	3.147493
Н	2.487121	0.117307	2.730582
Н	3.288715	-0.808172	4.011762
Н	1.641960	-1.225343	3.500440
С	6.407521	0.764280	1.478571
Н	6.099228	1.713515	1.023109
Н	7.179548	0.977442	2.221871
Н	5.536294	0.343022	1.993198
С	-4.149140	-4.719894	0.550048
Н	-3.623701	-5.670797	0.405467
Н	-4.910051	-4.638275	-0.233584
Н	-4.663460	-4.762320	1.514080
<u> </u>	-6.245435	-1.215969	1.928947
H	-5.207275	-1.323852	2.263755
H	-6.902571	-1.624396	2.700276
H	-6.454391	-0.143377	1.833657
	6.425937	-3.759530	1.499214
H	6.474610	-4.541608	2.266294
H	7.108051	-2.956782	1.797864
Н	6.804563	-4.181259	0.563429

С	5.525381	-1.987574	-2.645190
Н	4.652914	-2.474329	-2.197333
Н	6.003862	-2.694282	-3.327868
Н	5.160337	-1.138023	-3.233606
С	8.710325	-1.479828	-0.592164
С	8.243862	-0.609002	0.393349
Н	8.931020	-0.247861	1.154701
С	7.819718	-1.928663	-1.568667
Н	8.173351	-2.604467	-2.343777
С	10.156849	-1.901544	-0.620970
Н	10.754620	-1.194318	-1.208014
Н	10.275834	-2.889336	-1.076255
Н	10.583647	-1.936360	0.385825

S5. CCDC search

This search was conducted using the ConQuest program (v 2.0.1) for crystal structures of Pd^{II} and Pt^{II} complexes with monodentate N-coordinated thiocyanates ligands with the following secondary search criteria: atomic coordinates error free after CSD checks; no disorder in the crystal structure; no powder studies, and a crystallographic R factor < 0.1. The processing of the CSD data revealed 52 structures with palladium (31 examples) and platinum (21 examples) metal centres. The coordination angle \angle M–N=C in obtained entries varies in the 155.747–180.0° range, while the values of M–N bond length slightly change in the range of 0,16 Å (from 1.969 to 2.13 Å and 1.958 to 2.113 Å for Pd–N and Pt–N bonds respectively), but generally one can notice the tendency of M–N distance's decreasing with M–N=C angle's growth (**Figure S17**). The average values of N–C and C–S bonds in isothiocyanate ligand are also vary in 3 σ range (1.141 ± 0.017 Å and 1.623 ± 0.014 Å for palladium complexes: 1.138 ± 0.020 Å and 1.623 ± 0.012 Å for platinum respectively) and are close to meanings for a triple C≡N bond⁷ and a double C=S bond⁷.

Thus, the large variety of $\angle M$ –N=C angle together with insignificant changes in the structure of the N=C=S fragment is most likely associated with packing effects that is in agreement with reports in previous works⁸.

Figure S17. The dependence $d(M-N)/\angle(M-N=C)$ (M = Pd (left), Pt (right)) according to the CSD search.

S6. Hirshfeld analysis

Table S15.	Results	of the	Hirshfeld	surface	analysis.
					2

X-ray structure	Contributions of different intermolecular contacts to the molecular Hirshfeld surface*
16	H–H 51.7%, C–H 8.9%, S–H 9.5%, N–H 4.9%, Pd–H 1.1%, C–C 1.0%, S–C 0.7%, C–N 0.6%, C–S 0.6%, N–S 0.4%, N–N 0.3%.
18	H–H 51.0%, C–H 9.2%, S–H 9.1%, N–H 5.1%, C–C 1.2%, Pt–H 1.1%, S–C 0.7%, C–N 0.6%, C–S 0.6%, N–S 0.4%, N–N 0.3%,C–Pt 0.1%.

*The contributions of all other intermolecular contacts do not exceed 0%.

Figure S18. Contributions of various intermolecular contacts to the molecular Hirshfeld surfaces of 16 and 18 complex molecules.

Figure S19. Hirshfeld surfaces for 16 and 18.

S7. NMR spectra for complexes 9–18

Figure S20. The ¹H NMR spectra of 9.

Figure S21. The ${}^{13}C{}^{1}H$ NMR spectra of **9**.

Figure S22. The 1 H NMR spectra of 10.

Figure S23. The ${}^{13}C{}^{1}H$ NMR spectra of 10.

Figure S24. The ¹H NMR spectra of 11.

Figure S25. The ${}^{13}C{}^{1}H$ NMR spectra of 11.

Figure S26. The 195 Pt{ 1 H} NMR spectra of 11.

Figure S27. The ¹H NMR spectra of 12.

Figure S28. The ${}^{13}C{}^{1}H$ NMR spectra of 12.

Figure S29. The 195 Pt{ 1 H} NMR spectra of 12.

Figure S30. The ¹³C CP/MAS NMR spectra of 13.

Figure S31. The ¹³C CP/MAS NMR spectra of 14.

Figure S32. The ¹³C CP/MAS NMR spectra of 15.

Figure S33. The ¹³C CP/MAS NMR spectra of 16.

Figure S34. The ¹³C CP/MAS NMR spectra of 17.

Figure S35. The ¹³C CP/MAS NMR spectra of 18.

Figure S37. The FTIR spectra of 10.

Figure S39. The FTIR spectra of 12.

Figure S40. The FTIR spectra of 13.

Figure S41. The FTIR spectra of 14.

Figure S43. The FTIR spectra of 16.

Figure S45. The FTIR spectra of 18.

S9 References

- (a) A. S. Novikov and M. L. Kuznetsov, Theoretical study of Re(IV) and Ru(II) bisisocyanide complexes and their reactivity in cycloaddition reactions with nitrones, *Inorganica Chim. Acta*, 2012, **380**, 78; (b) A. A. Melekhova, A. S. Novikov, T. L. Panikorovskii, N. A. Bokach and V. Y. Kukushkin, A novel family of homoleptic copper(i) complexes featuring disubstituted cyanamides: a combined synthetic, structural, and theoretical study, *New J. Chem.*, 2017, **41**, 14557.
- 2. E. D. Glendening, C. R. Landis and F. Weinhold, Natural bond orbital methods, *Wiley Interdiscip. Rev. Comput. Mol. Sci.*, 2012, **2**, 1.
- 3. I. Mayer and P. Salvador, Overlap populations, bond orders and valences for 'fuzzy' atoms, *Chem. Phys. Lett.*, 2004, **383**, 368.
- 4. A. E. Reed, L. A. Curtiss and F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, *Chem. Rev.*, 1988, **88**, 899.
- 5. S. Dapprich and G. Frenking, Investigation of Donor-Acceptor Interactions: A Charge Decomposition Analysis Using Fragment Molecular Orbitals, *J. Phys. Chem.*, 1995, **99**, 9352.
- 6. S. I. Gorelsky, S. Ghosh and E. I. Solomon, Mechanism of N2O Reduction by the μ4-S Tetranuclear CuZ Cluster of Nitrous Oxide Reductase, *J. Am. Chem. Soc.*, 2006, **128**, 278.
- 7. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds, *J. Chem. Soc.*, *Perkin Trans.* 2, 1987, **0**, S1.
- 8. (a) K. Ha, (2,2'-Bipyrimidine-κ²N¹,N1')bis(thiocyanato-κN)platinum(II), *Acta Crystallogr. E*, 2012, **68**, m676; (b) S. Paziresh, R. Babadi Aghakhanpour, S. Fuertes, V. Sicilia, F. Niroomand Hosseini and S. M. Nabavizadeh, A double rollover cycloplatinated(ii) skeleton: a versatile platform for tuning emission by chelating and non-chelating ancillary ligand systems, *Dalton Trans.*, 2019, **48**, 5713; (c) K. Ha, Crystal structure of (1,10-phenanthroline-κ2N,N')bis(thiocyanato-κN)platinum(II), C₁₄H₈N₄PtS₂, *Z. Kristallogr. NCS*, 2016, **231**, 329; (d) A. J. Paviglianiti, D. J. Minn, W. C. Fultz and J. L. Burmeister, The conjunctive response to steric hindrance in dithiocyanato[bis(diphenylphosphino)alkyl or aryl]palladium(II) complexes: a new look at a classic series, *Inorganica Chim. Acta*, 1989, **159**, 65; (e) A. D. Yeung, P. S. Ng and H. V. Huynh, Co-ligand effects in the catalytic activity of Pd(II)–NHC complexes, *J. Org. Chem.*, 2011, **696**, 112.