Supporting information:

1. Synthetic procedures

a. General procedures

All reactions were done under an inert atmosphere of argon using Schlenk and glovebox techniques with dry and deoxygenated solvents. Hexane and toluene were purified using an SPS Braun system. THF was dried by distillation over sodium/benzophenone under a nitrogen atmosphere and was stored over freshly cut sodium in a glovebox. ¹H and ³¹P NMR spectra were recorded using a Bruker AV400 spectrometer. Ph₃SiMe is used as internal references relative to -SiMe for ¹H (C_6D_6 ; δ) $= 0.72$ ppm) chemical shifts (ppm). All other reagents and chemicals were obtained commercially and used as received.

b. X-ray Crystallographic Studies.

Crystals for X-ray analysis were obtained as described in the preparations. The crystals were manipulated in a glovebox. Data collections were performed at -88.5 °C on a Bruker SMART APEX diffractometer with a CCD area detector, using graphitemonochromated Mo K α radiation (λ = 0.710 73 Å). The determination of crystal class and unit cell parameters was carried out by the SMART program package [1]. The raw frame data were processed using SAINT and SADABS to yield the reflection data file $[2]$. The structures were solved by using the SHELXTL program $[3]$. Refinement was performed on F ² anisotropically for all non-hydrogen atoms by the full-matrix leastsquares method. The hydrogen atoms were placed at calculated positions and were included in the structure calculations without the further refinement of the parameters. The terminal hydrogen atom in complex **2** has been refined anisotropically. Molecular structures were generated using the OLEX 2 program.

c. Synthesis of Zinc Hydride Complex LZnH (**2**).

To a solution of zinc benzyloxy complex **1** (0.52 g, 0.8 mmol) in THF was added PhSiH₃ (0.108 g, 1.0 mmol) or (EtO) ₃SiH (0.164 g, 1.0 mmol), and the mixture was stirred for 10 h at room temperature. The volatile was removed under reduced pressure, and hexane (5 mL) was added. The white precipitate was isolated by filtration and dried under vacuum (yield, 0.33 g, 76%). Anal. Calcd for $C_{29}H_{30}N_5PZn$: C, 63.92; H, 5.55; N, 12.85. Found: C, 63.88; H, 5.50; N, 12.83. ¹H NMR (500 MHz, C₆D₆): δ 7.73-7.69 (m, 4H; *o*-PPh₂), 7.53 (d, ³J_{H-H} = 8.1 Hz, 2H; *o*-NPh), 7.03-6.89 (m, 8H; PhH), 6.66 (t, ³J_{H-H} = 7.3 Hz, 1H; *p*-NPh), 5.39 (d, ³J_{P-H} = 2.4 Hz, 1H; Zn-H), 5.29 (s, 2H; Pz-H), 2.22 (s, 6H; Pz-CH3), 1.89 ppm (s, 6H; Pz-CH3). ³¹P NMR (162 MHz, C_6D_6): δ 20.8 ppm.

d. Synthesis of formate Complex LZnOCHO (**3**).

In a Schlenk tube, a solution of complex **2** (0.163 g, 0.3 mmol) of toluene (8 mL) was frozen in a liquid nitrogen bath under vacuum, and \sim 2 bar of CO₂ was added. The mixture was stirred for 3 h at room temperature and concentrated to about 1.0 mL;

then, several drops of hexane were added. White crystals were obtained at −30 °C 2 days later (yield, 0.081 g, 46%). Anal. Calcd for $C_{30}H_{30}N_5O_2PZn$: C, 61.18; H, 5.13; N, 11.89%. Found: C, 61.20; H, 5.11; N, 11.93%. ¹H NMR (500 MHz, C₆D₆): δ 9.13 (s, 1H; OCHO), 7.68-7.64 (m, 4H; *m*-PPh₂), 7.33 (d, ³J_{H-H} = 8.4 Hz, 2H; *o*-NPh), 7.06-6.86 (m, 8H; Ph-H), 6.65 (t, ³J_{H-H} = 7.4 Hz, 1H; *p*-NPh), 5.24 (s, 2H; Pz-H), 2.33 (s, 6H; Pz-CH₃), 1.83 ppm (s, 6H; Pz-CH₃). ³¹P NMR (162 MHz, C₆D₆): δ 22.71 ppm.

e. Synthesis of Magnesium Hydride Complex LMgH (**5**)

To a solution of *n*-butyl Magnesium complex **4** (0.384 g, 0.8 mmol) in toluene was added $PhSiH₃(0.108 g, 1 mmol)$. The mixture was reacted for 12h at room temperature. The white precipitate was isolated by filtration, washed by hexane and dried under vacuum (yield, 0.181 g, 45%). Anal. Calcd for $C_{29}H_{30}N_5O_2PMg$: C, 69.13; H, 6.00; N, 13.90%. Found: C, 69.20; H, 5.96; N, 13.93%.¹H NMR (500 MHz, C₆D₆): δ 7.90-7.86 (m, 4H; *o*-PPh2), 7.53 (d, ³ JH-H = 8.3 Hz, 2H; *o*-NPh), 7.02-6.85 (m, 8H; PhH), 6.50 (t, ³J_{H-H} = 7.3 Hz, 1H; *p*-NPh), 6.19 (s, 1H; Mg-H), 5.45 (s, 2H; Pz-H), 2.56 (s, 6H; Pz-CH₃), 1.96 ppm (s, 6H; Pz-CH₃). ³¹P NMR (162 MHz, C₆D₆): δ 17.82 ppm.

f. Catalytic Hydroboration Reaction of CO² with Zinc Hydride Complex **2**.

0.01 mmol of the base catalyst was dissolved in C_6D_6 (\sim 1 ml) in a Schlenk tube. The required amount of BH₃·SMe₂ was then added. The Schlenk tube was frozen in a liquid nitrogen bath under vacuum, and \sim 2 bar of CO₂ was added. The reaction was followed by NMR spectroscopy. The yields reported by ¹H NMR were according to the integration of both $B(OMe)$ ₃ at 3.44 ppm and $(OBOMe)$ ₃ at 3.34 ppm and compared to the -SiMe of the $Ph₃SiMe$ at 0.70 ppm^[4, 5].

2. X-ray crystallography

Table S1 Crystal data and structure refinement details for complexes **3**.

3. NMR spectra of complexes 2, 3 and 5

Fig. S1¹H NMR spectrum of zinc hydride LZnH (2) (C_6D_6)

 -20.80

Fig. S5¹³C NMR spectrum of zinc formate complex LZnOCH(O) (3) (C_6D_6)

 -22.71

4. ¹H NMR spectra of hydroboration of CO²

Fig. S8 Typical ¹H NMR spectrum of the carbon dioxide reduction using BH₃·SMe₂. Incomplete reaction at $1/100$ of $2/ BH_3$ ·SMe₂.

Fig. S9 Plots of BH₃·SMe₂ concentration versus yield (Table 1, run 2-run 5). (blue, $B(OMe)₃$; orange, $(OBOMe)₃$).

5. Kinetic study

Run ^a	Time (h)	Yield of 6 $(\frac{0}{0})^b$	Yield of 7 $(0/6)^b$	Total $(\%)$
	0.5		29	30
$\overline{2}$	1.5		45	46
3	3	2	65	67
$\overline{4}$	$\overline{4}$	3	81	84
5	8	4	81	85

Table S2. Hydroboration of CO₂ catalyzed by complex 2 at different time.

^a Reaction conditions: **2** (0.01mmol), $2/BH_3$: $SMeg = 1/50$, $T = 25^{\circ}C_2$, C_6D_6 (1 ml), under \sim 2 atm CO₂; ^b The yield was obtained by ¹H NMR using methyltriphenylsilane as an internal standard.

6. REFERENCES

[1] SMART, Version 5.054; Bruker AXS Inc.: Madison, WI, 2000.

[2] SAINT and SADABS, Version 6.22; Bruker AXS Inc.: Madison, WI, 2000.

[3] Sheldrick, G. M. SHELXTL NT, Version 6.12; Bruker AXS Inc.: Madison, WI, 2000.

[4] Chia C C, Teo Y C, Cham N, et al. Aluminum-Hydride-Catalyzed Hydroboration of Carbon Dioxide[J]. Inorg Chem, 2021, 60(7): 4569-4577.

[5] Leong B X, Lee J, Li Y, et al. A Versatile NHC-Parent Silyliumylidene Cation for Catalytic Chemo- and Regioselective Hydroboration[J]. J Am Chem Soc, 2019, 141(44): 17629-17636.