Supporting Information

2,2'-Bipyridine derived doubly $B \leftarrow N$ fused bisphosphinechalcogenides, $[C_5H_3N(BF_2)\{NCH_2P(E)Ph_2\}]_2$ (E = O, S, Se): tuning of structural features and photophysical studies

Dipanjan Mondal,^a Gopa Sardar,^b Dinesh Kabra^b and Maravanji S. Balakrishna^{*a}

^aPhosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

^bDepartment of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India.

*Author to whom correspondence should be addressed. E-mail: krishna@chem.iitb.ac.in, msb_krishna@iitb.ac.in (M. S. Balakrishna); Fax: +91-22-5172-3480/2576-7152.

Table of content

Crystal structure determination of compounds 1-7	S 2
Crystallographic information for compounds 1-7	S3-S4
Intermolecular interactions and dihedral angles of compound 1-7	S5-S14
Intramolecular FH interaction	S15-S17
UV-vis and emission spectra of compound 1-7	S17-S19
Molecular orbitals and TD-DFT calculations	S20-S23
Selected bond length and bond angles of 5-7 obtained from X-ray	S24
diffraction analysis and DFT calculation	
OLED fabrication and characterization	S25
Spectral data for isolated compounds	S26
Optimized cartesian coordinates of compound 5-7	S42
References	S56

Crystal Structure Determination of Compounds 1-7.

Single crystals of all compounds were mounted on a Cryoloop with a drop of Paratone oil and positioned in the cold nitrogen stream on a Rigaku Saturn724+ (2x2 bin mode) diffractometer. The data collections were performed at 150 K using a graphite monochromated Mo-K α (λ = 0.71073) radiation source for compounds 1-7, and a Cu-K α ($\lambda = 1.54184$) radiation source was used for $6 \cdot CH_2Cl_2$ with the ω -scan technique. The data were reduced using CrysalisPro Red 171.41 64.93a software. The structures were solved using $Olex 2^1$ with the ShelXT² structure solution program using intrinsic phasing and refined with the SHELXL³ refinement package using least-squares minimization. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions and included as riding contributions with isotropic displacement parameters tied to those of the attached non-hydrogen atoms. In compound 5 the disordered solvent molecule could not be recognized or modelled to a known solvent; hence, it was SQUEEZED using PLATON.⁴ The results indicated 93 electrons and a volume of 316 $Å^3$ for 5. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s). The reflections with error/esd more than 10 were excluded in order to avoid problems related to better refinement of the data. The data completeness is more than 99.8% in most of the cases, which is enough to guarantee a very good refinement of data. The details of X-ray structural determinations are given in Tables S1 and S2. All types of interaction images are visualised by Mercury 2020.3.0 software and all dihedral angles are visualised by Diamond 3.2 software.

	1	2	3	4
Empirical formula	$C_{36}H_{32}N_4P_2$	$C_{36}H_{32}N_4O_2P_2 \\$	$C_{144}H_{128}N_{16}P_8S_8$	$C_{144}H_{128}N_{16}P_8Se_8$
Formula weight	582.59	614.59	2586.86	2962.06
Temperature (K)	150.00	150.00	150	150.00
Crystal system	triclinic	monoclinic	monoclinic	monoclinic
Space group	P-1	$P2_1/c$	P21	P21
a, Å	8.9408(5)	19.2473(6)	20.1925(8)	20.4030(6)
b, Å	9.5762(5)	14.8930(5)	18.0964(4)	18.0437(4)
c, Å	10.2682(6)	10.3914(4)	20.5065(7)	20.5579(5)
α, °	62.279(5)	90	90	90
β, °	74.450(5)	90.335(3)	118.817(5)	117.871(3)
γ, °	81.103(4)	90	90	90
V, Å ³	749.30(8)	2978.64(18)	6565.4(5)	6690.4(3)
Z	1	4	2	2
$\rho_{\text{calc,}}(\text{g cm}^{-3})$	1.291	1.371	1.309	1.470
M (Mo K _{α}), mm ⁻¹	0.178	0.188	0.292	2.338
F(000)	306.0	1288.0	2704.0	2992.0
Crystal size (mm ³)	$0.275 \times 0.129 \times 0.124$	$0.156\times0.089\times0.043$	$0.294 \times 0.152 \times 0.065$	$0.38 \times 0.161 \times 0.083$
2 heta range, °	4.598 to 49.998	4.232 to 53.998	3.22 to 50	3.238 to 50
Reflections collected	6241	15831	68679	68419
Independent reflections	2628 [$R_{int} = 0.0328$]	6484 [$R_{int} = 0.0397$]	22464 [$R_{int} = 0.0910$]	22821 [$R_{int} = 0.0608$]
Goodness-of-fit on F ²	1.105	1.030	1.048	1.052
R_1	0.0370	0.0494	0.0604	0.0434
wR_2	0.0938	0.1233	0.1305	0.0977

 Table S1 Crystallography details.

	5	6	6-CH ₂ Cl ₂	7
Empirical formula	$C_{36}H_{30}B_2F_4N_4O_2P_2$	$C_{36}H_{30}B_2F_4N_4P_2S_2$	$C_{37}H_{32}B_2Cl_2F_4N_4P_2S_2$	$C_{36}H_{30}B_2F_4N_4P_2Se_2$
Formula weight	710.20	742.32	827.24	836.12
Temperature (K)	150.00	150.00	150.00	150.00
Crystal system	triclinic	triclinic	triclinic	orthorhombic
Space group	P-1	P-1	P-1	Pca2 ₁
a, Å	12.2600(5)	8.8004(3)	9.3602(7)	25.0141(6)
b, Å	12.3283(5)	13.4350(5)	13.5014(9)	16.0868(3)
c, Å	14.7477(6)	15.5523(4)	16.0901(16)	17.0784(4)
α, °	113.820(4)	108.367(3)	108.010(7)	90
β, °	90.964(3)	96.762(3)	103.978(7)	90
γ, °	112.284(4)	90.049(3)	92.449(6)	90
V, Å ³	1848.43(15)	1731.58(10)	1861.3(3)	6872.3(3)
Z	2	2	2	8
$\rho_{\text{calc,}}$ (g cm ⁻³)	1.276	1.424	1.476	1.616
M (Mo K _{α}), mm ⁻¹	0.175	0.302	3.900	2.301
F(000)	732.0	764.0	848.0	3344.0
Crystal size (mm ³)	$0.245 \times 0.085 \times 0.061$	$0.165 \times 0.113 \times 0.098$	$0.103 \times 0.098 \times 0.02$	$0.295 \times 0.28 \times 0.175$
2θ range, °	4.486 to 50	4.664 to 49.998	5.996 to 137.992	4.766 to 49.998
Reflections collected	29048	24915	23924	79486
Independent	$6502 [R_{int} = 0.0840]$	$6106 [R_{int} = 0.0652]$	$6771 [R_{int} = 0.1264]$	12071 [$R_{int} = 0.0823$]
reflections				
Goodness-of-fit on F ²	1.024	1.047	1.017	1.039
R_1	0.0585	0.0460	0.1064	0.0419
wR_2	0.1544	0.1086	0.3294	0.0990

Table S2 Crystallography details.

Selected bond distances (Å)					
	1		2 (E = O)	$3 (\mathbf{E} = \mathbf{S})^a$	$4 (E = Se)^a$
C1–C1′	1.486(3)	C1–C6	1.490(3)	1.475(8)	1.489(8)
C6-N2	1.449(2)	C11-N3	1.452(3)	1.438(8)	1.440(8)
		C24-N4	1.444(2)	1.438(8)	1.454(8)
P1-C6	1.8502(17)	P1-C11	1.821(2)	1.824(6)	1.824(6)
		P2-C24	1.808(2)	1.832(6)	1.820(6)
		P1-E1	1.4842(15)	1.951(2)	2.1039(19)
		Р2-Е2	1.4876(15)	1.950(2)	2.0995(18)
N2-H2…N1′	1.967	N3-H3N2	1.960	2.068	2.033
		N4-H4N1	1.983	2.104	2.033
		Selected bo	nd angles (deg.)		
N2-C6-P1	111.03(11)	N3-C11-P1	107.85(15)	109.5(4)	108.7(4)
		N4-C24-P2	109.86(14)	107.6(4)	109.7(4)
		E1-P1-C11	112.78(10)	111.2(2)	110.4(2)
		E2-P2-C24	113.22(9)	110.6(2)	112.6(2)
N2-H2…N1′	132.2	N3-H3N2	132.2	127.6	127.9
		N4-H4N1	133.1	125.8	128.5
$\Delta^{\!$			13.41	26.21	22.35

Table S3 Important bond lengths and bond angles of compounds 1-4

^{*a*} For compounds **3** and **4** only one molecule is considered from the asymmetric unit cell. ^{*b*} dihedral angle measured between the two mean planes: *plane 1* contains N1-C1-C2-N3 and *plane 2* contains N2-C6-C7-N4 atoms, respectively.

Fig. S1 Stair case stacking of bisphosphine ligand 1.

Fig. S2 Intermolecular C–H··· π interactions occur in crystal packing of ligand **1** and are depicted by dashed line; *green lines*: H10···C1 = 2.686 Å, C10–H10···C1 = 173°; *light blue line*: H16··· centroid (C8–C9) = 2.697 Å, C16–H16···centroid = 150°; *yellow line*: H12···C18 = 2.894 Å, C12–H12···C18 = 129°.

Fig. S3 Dash line represents various intermolecular interactions occur in **2**; *yellow line*, H···H interactions: H20···H35 = 2.358 Å; *orange line*, O···H interactions: O2···H24A/H26/H32 2.336

to 2.633Å; *light blue lines*, C–H··· π interactions: H30···C26 = 2.850 Å, C30–H30···C26 = 161°, H24A···C36 = 2.873 Å, C24–H24A···C36 = 121°.

Fig. S4 Sandwich type π -stacking or π - π stacking occurs in crystal packing of compound **2**.

Fig. S5 Dihedral angle between two mean planes: N1-C1-C2-N3 (green) and N2-C6-C7-N4 (orange) in **2** (P: magenta, N: blue, O: red, C: grey, phenyl rings and H atoms are omitted for clarity).

Fig. S6 Asymmetric unit of compound **3** (P: magenta, N: blue, S: dark yellow, C: grey, H atoms are omitted for clarity).

Fig. S7 Dash line represents various intermolecular interactions occur in **3**: *green line*, N····H interactions: N1···H51 = 2.656 Å, N4···H137 = 2.637 Å, N2···H135 = 2.731 Å; *yellow lines*, S···H interactions: S1···H81 = 2.871 Å, S5···H9 = 2.876 Å, S7···H34 = 2.949 Å; *light blue lines*, C–H··· π interactions: distances = 2.730 to 2.899 Å, angles = 124° to 171°.

Fig. S8 Dihedral angle between two mean planes: N1-C1-C2-N3 (green) and N2-C6-C7-N4 (orange) in **3** (P: magenta, N: blue, O: red, C: grey, phenyl rings and H atoms are omitted for clarity).

Fig. S9 Asymmetric unit of compound **4** (P: magenta, N: blue, Se: dark brown, C: grey, H atoms are omitted for clarity).

Fig. S10 Dash line represents various intermolecular interactions occur in **4**: *green line*, N····H interactions: N1···H16A = 2.610 Å, N5···H100 = 2.647 Å, N7···H14A = 2.749 Å; *yellow lines*, Se···H interactions: distances = 2.957 to 3.089 Å; *light blue lines*, C–H··· π interactions: distances = 2.757 to 2.891 Å, angles = 124° to 164°.

Fig. S11 Dihedral angle between two mean planes: N1-C1-C2-N3 (green) and N2-C6-C7-N4 (orange) in **4** (P: magenta, N: blue, Se: dark brown, C: grey, phenyl rings and H atoms are omitted for clarity).

Fig. S12 Dash line represents various intermolecular interactions occur in **5**: *light green line*, F···H interactions: F4···H35 = 2.527 Å; *orange lines*, O···H interactions: O1···H11A = 2.570 Å; *light blue line*, C–H··· π interactions: H35···C2 = 2.774 Å, C35–H35···C2 = 144°, H4··· centroid(C13–C14) = 2.737 Å, C4–H4···centroid(C13–C14) = 153°.

Fig. S13 Dash line represents various intermolecular interactions occur in **6**: *yellow line*, S…H interactions: S2…H10 = 2.834 Å; *light green line*, F…H interactions: F2…H8 = 2.405 Å, F2…H24B = 2.548 Å, F3…H4 = 2.516 Å; *orange lines*, B…H interactions: B1…H8 = 2.971 Å.

Fig. S14 Dash line represents various intermolecular interactions occur in **6**: *green line*, F···H interactions: F2···H8 = 2.405 Å, F2···H24B = 2.548 Å, F2···H14 = 2.588 Å, F4···H11B = 2.499 Å; *orange lines*, B···H interactions: B1···H8 = 2.971 Å, B2···H3 = 3.171 Å, B2···H11B = 3.104 Å; *light blue line*, C–H··· π interactions: H11A···C3 = 2.778 Å, C11–H11A···C3 = 124°, H33··· C22 = 2.885 Å, C33–H33··· C22 = 164°.

Fig. S15 Dash line represents various intermolecular interactions occur in 7: *orange line*, Se…H interactions: Se1…H66 = 3.050 Å, Se4…H35 = 3.047 Å; pink lines, Se…C_{arene} interactions: Se4…C4 = 3.472 Å; *light green line*, F…H interactions: distances = 2.451 to 2.668 Å; *dark green line*, F…C_{arene} interactions: F4…centroid(C34–C35) = 3.035 Å; *light blue line*, C–H… π interactions: H52…C30 = 2.858 Å, C52–H52…C30 = 168°, H19…centroid(C26–C27) = 2.733

Å, C19–H19…centroid(C26–C27) = 140°; yellow line, π - π interaction: C29…centroid(C12-C17) = 3.278 Å.

Fig. S16 Sandwich type pi-stacking or π - π stacking occurs in crystal packing of compound **7**.

Fig. S17 Dihedral angled of 5 (top), 6 (middle) and 7 (bottom).

Fig. S18 Intramolecular F···H–C interaction of **5** (top), **6** (middle) and **7** (bottom); left-side images showing space filling models and right-side images showing thermal ellipsoid models of respective compounds.

		5		6	6·C	H ₂ Cl ₂		7
	F…H	angle	F····H	angle	F…H	angle	F····H	angle
F1…H5	2.395	102	2.402	102	2.424	101	2.383	101
F1H24	2.399	104	2.386	105	2.384	103	2.434	102
F3…H10	2.389	102	2.415	102	2.420	102	2.412	102
F3…H11	2.360	105	2.373	105	2.460	100	2.420	102

Table S4 Bond distances (Å) and bond angles (°) of intramolecular F…H–C interaction of compounds **5-7**.

Fig. S19 Images of solid compounds 6 and 6·CH₂Cl₂ under UV light (at 365 nm).

Fig. S20 Dihedral angled and S…H–C interactions of compound 6·CH₂Cl₂.

Fig. S21 Intramolecular F···H–C interaction of compound 6·CH₂Cl₂.

Fig. S22 (a) UV–vis absorption and (b) emission spectra of 1-4 recorded in chloroform (1 x 10^{-5} M) at room temperature.

Fig. S23 (a) UV–vis absorption and (b) emission spectra of 1-4 recorded in acetonitrile (1 x 10^{-5} M) at room temperature.

Fig. S24 (a) UV–vis absorption and (b) emission spectra of 5-7 recorded in chloroform (1 x 10^{-6} M) at room temperature.

Fig. S25 (a) UV–vis absorption and (b) emission spectra of 5-7 recorded in acetonitrile (1 x 10^{-6} M) at room temperature.

Fig. S26 UV-vis absorption (a) and fluorescence (b) spectra of Coumarin 30 in 90% ethanol at room temperature.

Fig. S27 Images of compounds **5-7** in CH₂Cl₂ taken under visible light (left) and UV light at 365 nm (right).

Molecular orbitals and TD-DFT calculations

All DFT calculations were performed with the Gaussian09 (Rev. D.01) suite of programs.⁵ The input files were generated from GaussView 6.0 program.⁶ Ground state geometries were optimized using the hybrid density functional B3LYP with split valence polarised (SVP) basis set. Frequency calculations were performed subsequently to confirm the presence of local minima (only positive frequencies). Vertical excitations (40 singlet excited states) were calculated by TD-DFT method at the B3LYP/TZVP level.^{7, 8} Solvent (Chloroform) effects were incorporated using polarizable continuum model (PCM) during both optimization and TD-DFT calculations. Molecular orbitals were visualised using Chemcraft software with countor value: 0.030.

Fig. S28 Optimized structures of compounds 5-7 (Gaussian 09; B3LYP/TZVP).

Fig. S29 Pictographic drawings of LUMO/HOMO and energy levels of **5** and **6** (Gaussian 09; B3LYP/TZVP).

Fig. S30 Pictographic drawings of LUMO/HOMO and energy levels of 6·CH₂Cl₂ and 7 (Gaussian 09; B3LYP/TZVP).

Fig. S31 Calculated absorption spectrum of 5-7 based on the TDDFT method at the B3LYP/TZVP level (aqua bars) overlaid on the UV/Vis absorption spectrum of 5-7 in chloroform.

Table S5 TD-DFT	data for com	pounds 5-7 (G	Saussian 09;	B3LYP/TZVP).
-----------------	--------------	----------------------	--------------	--------------

Comp	Transition	$E_{\mathrm{ex}}\left(\mathrm{eV}\right)$	λ (nm)	Oscillator	Assignment
				strength f	
5	$S_0 \to S_1$	2.7015	458.9	0.3195	$H \rightarrow L (0.70)$
6	$S_0 \to S_1$	2.7029	458.71	0.2911	$H \rightarrow L (0.70)$
7	$S_0 \to S_1$	2.4437	507.37	0.1875	$H \rightarrow L (0.70)$
	$S_0 \to S_5$	3.0375	408.18	0.1401	$\text{H-4} \rightarrow \text{L} (0.70)$

Selected bond distances (Å)								
	5 (E =	0)	6 (E =	S)	6.CH2Cl	$_2 (E=S)$	7 (E =	Se)
	X-ray	DFT	X-ray	DFT	X-ray	DFT	X-ray	DFT
P1-E1	1.491(2)	1.517	1.9418(10)	1.977	1.949(3)	1.978	2.1097(19)	2.145
Р2-Е2	1.4939(19)	1.517	1.9453(10)	1.977	1.958(3)	1.984	2.101(2)	2.148
B1-F1	1.373(4)	1.393	1.375(3)	1.382	1.381(8)	1.369	1.381(9)	1.384
B1-F2	1.400(4)	1.394	1.403(3)	1.395	1.372(10)	1.382	1.398(9)	1.395
B2-F3	1.378(3)	1.393	1.378(3)	1.379	1.383(9)	1.384	1.377(9)	1.391
B2-F4	1.403(4)	1.394	1.402(3)	1.396	1.388(10)	1.395	1.395(10)	1.393
C1–C6	1.447(4)	1.450	1.450(3)	1.452	1.445(9)	1.451	1.458(9)	1.451
B1-N1 _{coord} .	1.587(4)	1.597	1.582(4)	1.597	1.578(10)	1.595	1.566(10)	1.594
B1-N4 _{covalent}	1.511(4)	1.527	1.510(4)	1.529	1.548(10)	1.529	1.517(10)	1.530
B2-N2 coord.	1.590(4)	1.597	1.581(4)	1.599	1.566(10)	1.595	1.582(10)	1.594
B2-N3 _{covalent}	1.498(4)	1.527	1.505(3)	1.530	1.530(10)	1.529	1.513(10)	1.528
F1…H5	2.395	2.274	2.402	2.284	2.424	2.282	2.383	2.284
F1H24	2.399	2.260	2.386	2.264	2.384	2.263	2.434	2.311
F3…H10	2.389	2.274	2.415	2.290	2.420	2.281	2.412	2.278
F3…H11	2.360	2.260	2.373	2.297	2.460	2.337	2.420	2.309
			S	elected bon	d angles (deg.)			
N1-B1-N4	106.0(2)	107.4	107.3(2)	106.1	106.1(6)	106.6	108.5(6)	107.6
N2-B2-N3	107.5(2)	107.4	107.7(2)	106.6	107.3(6)	106.9	107.1(6)	106.6
F1-B1-F2	110.1(2)	110.02	110.5(2)	110.9	111.7(6)	110.8	109.8(6)	110.7
F3-B2-F4	108.9(2)	110.02	109.5(2)	110.9	109.7(6)	110.6	109.6(6)	110.4
Δ	21.97	18.39	22.73	22.86	25.13	21.21	19.11	18.83

 Table S6 Selected bond length and bond angles of 5-7 obtained from X-ray diffraction analysis and DFT calculation (B3LYP/TZVP).

OLED fabrication and characterization:

The ITO coated glass substrates were sequentially cleaned with soap solution, deionized water, acetone, and isopropanol for 10 minutes each and treated with oxygen plasma for 10 minutes. The devices were fabricated by first spincoating the hole-injection layer from PEDOT:PSS solution following annealing at 150 °C for 30 minutes. A thin layer of TFB was deposited by spincoating 2 mg/ml TFB solution on it, annealing at 180°C for 30 minutes, and then cooling the film rapidly. Solutions of compounds **5** and 6 were prepared from chlorobenzene and spin coated on the TFB coated substrates inside a nitrogen gas-filled glove box following annealing at 80 °C for 30 minutes. After that Ca (20 nm)/ Ag (100 nm) were deposited on the active layer as electron-injector in an evaporation chamber at ~3×10⁻⁶ mbar without exposing the samples to air. Finally, the OLEDs were encapsulated inside the glove box. The J-V-L characteristics of the diodes were measured using Keithley 2400 source meter, 2000 multimeter and a calibrated Si photodetector (from RS components).

Fig. S32 Typical OLED structure with energy levels at zero-bias condition.

Spectral Data for Isolated Compounds (1-7)

Fig. S33 ³¹P{¹H} NMR spectrum of compound 1 in CDCl₃.

Fig. S34 ¹H NMR spectrum of compound 1 in CDCl₃.

Fig. S37 ³¹P{¹H} NMR spectrum of compound 2 in CDCl₃.

Fig. S38 ¹H NMR spectrum of compound 2 in CDCl₃.

Fig. S40 Mass spectrum of compound 2.

Fig. S41 ³¹P{¹H} NMR spectrum of compound 3 in CDCl₃.

Fig. S42 ¹H NMR spectrum of compound 3 in CDCl₃.

Fig. S46 ¹H NMR spectrum of compound 4 in CDCl₃.

bh.m

Fig. S49 ³¹P{¹H} NMR spectrum of compound 5 in CDCl₃.

Fig. S50 ¹H NMR spectrum of compound 5 in CDCl₃.

Fig. S51 ¹³C{¹H} NMR spectrum of compound **5** in CDCl₃.

Fig. S52 ¹¹B{¹H} NMR spectrum of compound 5 in CDCl₃.

Fig. S53 ¹⁹F NMR spectrum of compound 5 in CDCl₃.

Fig. S54 Mass spectrum of compound 5.

Fig. S55 ³¹P{¹H} NMR spectrum of compound 6 in CDCl₃.

Fig. S56 ¹H NMR spectrum of compound 6 in CDCl₃.

Fig. S57 ¹³C{¹H} NMR spectrum of compound **6** in CDCl₃.

Fig. S58 ¹¹B{¹H} NMR spectrum of compound 6 in CDCl₃.

Fig. S59 ¹⁹F NMR spectrum of compound 6 in CDCl₃.

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

Fig. S60 Mass spectrum of compound 6.

Fig. S61 ³¹P{¹H} NMR spectrum of compound 7 in CDCl₃.

Fig. S62 ¹H NMR spectrum of compound 7 in CDCl₃.

Fig. S63 ¹³C{¹H} NMR spectrum of compound **7** in CDCl₃.

Fig. S64 ¹¹B{¹H} NMR spectrum of compound 7 in CDCl₃.

Fig. S65 ¹⁹F NMR spectrum of compound 7 in CDCl₃.

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

Fig. S6	6 Mass	spectrum	of com	pound 7.
---------	--------	----------	--------	----------

Optimized Cartesian Coordinates of compounds 5-7 (TD-DFT; Gaussian 09; B3LYP/TZVP).

			Compound 5
Р	-4.544809000	0.419912000	0.807700000
Р	4.544833000	0.419793000	-0.807791000
F	-2.237026000	-3.542330000	-1.201148000
F	-3.049017000	-1.720595000	-2.313527000
F	3.049178000	-1.720433000	2.313768000
F	2.236873000	-3.542193000	1.201649000

0	-4.368821000	0.709898000	2.285965000
0	4.368878000	0.709550000	-2.286100000
N	0.708851000	-1.742558000	1.670116000
N	-2.541070000	-1.474264000	0.030515000
N	2.541237000	-1.474361000	-0.030325000
N	-0.708687000	-1.742995000	-1.669853000
С	-1.607241000	-1.458925000	1.022224000
С	0.229137000	-1.670186000	-0.687885000
С	-0.228965000	-1.669980000	0.688121000
С	1.607422000	-1.459260000	-1.022046000
С	-1.908185000	-1.225885000	2.386570000
Η	-2.920110000	-0.947851000	2.681227000
С	-6.319774000	0.401985000	0.351928000
С	-0.400057000	-1.573406000	-2.965154000
Н	-1.224690000	-1.659751000	-3.670259000
С	-0.907422000	-1.291670000	3.345591000
Η	-1.137967000	-1.126701000	4.398982000
С	0.400235000	-1.572585000	2.965367000
Η	1.224870000	-1.658769000	3.670490000
С	1.908371000	-1.226579000	-2.386453000
Н	2.920301000	-0.948626000	-2.681172000
С	-3.953101000	-1.282445000	0.308281000
Н	-4.319478000	-1.938763000	1.120153000
Н	-4.509264000	-1.559160000	-0.595988000

С	-6.781794000	0.228409000	-0.963669000
Н	-6.079079000	0.107899000	-1.791864000
С	0.907609000	-1.292628000	-3.345456000
Н	1.138151000	-1.127967000	-4.398895000
С	3.423257000	1.461761000	1.607235000
Н	3.675727000	0.524018000	2.105118000
С	3.953269000	-1.282511000	-0.308086000
Н	4.319717000	-1.938998000	-1.119790000
Н	4.509417000	-1.559007000	0.596263000
С	-3.696127000	1.650232000	-0.241775000
С	-7.243393000	0.567026000	1.395749000
Н	-6.871567000	0.705124000	2.413395000
С	-3.315531000	2.848320000	0.384820000
Η	-3.513536000	2.976052000	1.451337000
С	-8.615451000	0.557434000	1.126478000
Н	-9.330186000	0.687207000	1.943081000
С	-8.153404000	0.218607000	-1.228232000
Η	-8.507314000	0.084384000	-2.253319000
С	2.791518000	2.473169000	2.336839000
Η	2.577447000	2.321594000	3.397712000
С	3.695958000	1.650172000	0.241448000
С	2.425546000	3.670195000	1.711678000
Η	1.930658000	4.457116000	2.286568000
С	-9.070969000	0.382553000	-0.183699000

Η	-10.143530000	0.374965000	-0.393791000
С	3.315174000	2.848081000	-0.385370000
Н	3.513100000	2.975592000	-1.451928000
С	-2.685348000	3.855650000	-0.350670000
Н	-2.393257000	4.786425000	0.142059000
С	2.684903000	3.855481000	0.349949000
Н	2.392630000	4.786105000	-0.142959000
В	-2.201380000	-2.151646000	-1.295157000
С	-3.423337000	1.461583000	-1.607508000
Н	-3.675720000	0.523730000	-2.105218000
С	-2.425869000	3.670109000	-1.712342000
Н	-1.931034000	4.456964000	-2.287368000
В	2.201478000	-2.151486000	1.295476000
С	-2.791660000	2.472910000	-2.337277000
Н	-2.577484000	2.321134000	-3.398100000
С	6.319778000	0.402090000	-0.351914000
С	7.243458000	0.566834000	-1.395736000
Η	6.871699000	0.704636000	-2.413448000
С	6.781723000	0.228947000	0.963760000
Η	6.078952000	0.108701000	1.791946000
С	9.070941000	0.382894000	0.183886000
Η	10.143489000	0.375392000	0.394045000
С	8.153320000	0.219265000	1.228415000
Н	8.507166000	0.085386000	2.253568000

C	8.615497000	0.557353000	-1.126376000
Η	9.330280000	0.686884000	-1.942975000
			Compound 6
Р	-3.830326000	0.204224000	-0.638205000
S	-2.376802000	1.418092000	-1.206842000
Р	3.927399000	-0.141485000	-0.711361000
S	2.751490000	-1.505136000	-1.527530000
F	-2.097812000	0.589495000	4.060093000
F	3.022283000	-2.708428000	1.942555000
F	2.189304000	-1.613181000	3.768482000
F	-2.899108000	2.081626000	2.522811000
N	0.699779000	-1.985476000	1.921190000
N	-0.579570000	1.376582000	2.371798000
N	-2.460977000	-0.174896000	1.792607000
N	2.576008000	-0.340818000	1.747662000
С	-1.917640000	-2.504259000	1.223722000
Η	-2.940917000	-2.732192000	0.930071000
С	-3.779616000	-0.207935000	1.217934000
Η	-4.376952000	0.580034000	1.692159000
Η	-4.298431000	-1.167303000	1.377664000
С	-0.958700000	-3.506841000	1.179599000
Η	-1.224745000	-4.516738000	0.865046000
С	-1.576103000	-1.201912000	1.656266000
С	0.352515000	-3.225921000	1.551025000

Η	1.149057000	-3.967891000	1.552451000
С	-0.195546000	-0.965178000	1.958021000
С	-5.522021000	0.887017000	-0.886014000
С	-3.825146000	-1.412548000	-1.532046000
С	-0.228130000	2.669977000	2.352872000
Н	-1.024057000	3.386551000	2.547775000
С	0.315095000	0.381434000	2.139734000
С	3.889963000	-0.159800000	1.184891000
Н	4.507868000	-1.024529000	1.458925000
Н	4.395632000	0.746028000	1.556262000
С	1.086608000	3.037998000	2.085175000
Н	1.356573000	4.094482000	2.064175000
С	-2.729034000	-1.746002000	-2.340137000
Η	-1.906986000	-1.033672000	-2.442046000
С	1.695889000	0.688745000	1.908969000
С	3.498299000	1.576932000	-1.231504000
С	-5.721312000	1.806293000	-1.928427000
Η	-4.869955000	2.111975000	-2.541050000
С	2.211402000	1.832017000	-1.729727000
Н	1.500850000	1.007970000	-1.826475000
С	-4.891257000	-2.320185000	-1.401952000
Н	-5.766806000	-2.072424000	-0.797244000
С	2.042362000	2.058441000	1.856780000
Н	3.067766000	2.354012000	1.642857000

С	-6.990564000	2.338891000	-2.165486000
Η	-7.133701000	3.053843000	-2.979490000
С	-4.850374000	-3.549862000	-2.064817000
Η	-5.684207000	-4.248624000	-1.961054000
С	4.419565000	2.633183000	-1.122038000
Н	5.434226000	2.452974000	-0.760378000
С	1.844812000	3.129215000	-2.098661000
Η	0.838239000	3.316902000	-2.480119000
С	-6.611123000	0.517699000	-0.076756000
Η	-6.489772000	-0.185132000	0.750246000
С	-3.751014000	-3.880107000	-2.865626000
Η	-3.722920000	-4.840763000	-3.386014000
С	-8.071520000	1.965940000	-1.359713000
Η	-9.063039000	2.387590000	-1.542447000
С	-2.693576000	-2.975963000	-3.003996000
Η	-1.834943000	-3.226424000	-3.631861000
С	2.760932000	4.179109000	-1.980393000
Η	2.474570000	5.192412000	-2.273278000
С	-7.879109000	1.057870000	-0.314588000
Η	-8.717356000	0.768593000	0.323918000
С	4.049103000	3.928555000	-1.494622000
Η	4.773184000	4.743035000	-1.412477000
В	-2.087358000	0.981223000	2.720815000
В	2.203468000	-1.686267000	2.374812000

Р	-4.146776000	0.066360000	-0.276260000
		Co	ompound 6·CH ₂ Cl ₂
Η	8.863787000	0.236760000	0.087375000
С	8.077621000	-0.104065000	-0.590693000
Η	6.506041000	0.571010000	0.706769000
С	6.735978000	0.083748000	-0.242814000
Η	9.459672000	-0.872889000	-2.065904000
С	8.410527000	-0.727135000	-1.796885000
Н	7.652287000	-1.664219000	-3.595098000
С	7.397828000	-1.169981000	-2.654253000
Н	5.261985000	-1.356154000	-2.962411000
С	6.056665000	-0.990800000	-2.307868000
С	5.713743000	-0.356523000	-1.102855000

S	-2.734832000	0.488609000	-1.595698000
Р	4.220740000	0.066279000	-0.553144000
S	2.999839000	0.668626000	-1.996621000
F	2.235269000	-3.497389000	2.250712000
F	-2.124379000	-4.478184000	0.306779000
F	-3.061159000	-3.364442000	-1.457080000
F	3.063324000	-1.410267000	2.674958000
N	-2.542513000	-2.104711000	0.530947000
Ν	-0.716302000	-2.990307000	-0.946537000
N	2.518964000	-1.963409000	0.394649000
Ν	0.713794000	-1.641564000	2.100952000

С	-1.609261000	-1.666529000	1.419097000
С	-3.901190000	-1.632845000	0.545427000
Н	-4.336764000	-1.598062000	1.557798000
Н	-4.503423000	-2.322071000	-0.057943000
С	-1.900710000	-0.905463000	2.574729000
Н	-2.922578000	-0.589645000	2.778223000
С	-3.335469000	2.325676000	1.195185000
Н	-2.534790000	2.396890000	0.456447000
С	-5.839546000	-0.030003000	-0.993763000
С	-0.893598000	-0.560462000	3.466730000
Н	-1.121008000	0.010252000	4.367971000
С	-0.228839000	-1.977101000	1.182512000
С	-4.437282000	3.159953000	3.186932000
Н	-4.500202000	3.887678000	3.999899000
С	1.585062000	-2.365043000	-0.515784000
С	-6.124859000	0.741337000	-2.131492000
Η	-5.333257000	1.346810000	-2.579002000
С	-4.280144000	1.295058000	1.095816000
С	-6.849089000	-0.833929000	-0.435570000
Н	-6.657430000	-1.456226000	0.441270000
С	1.861413000	-2.666028000	-1.871629000
Н	2.860544000	-2.512591000	-2.272985000
С	0.222744000	-2.500374000	-0.093158000
С	-0.428803000	-3.310684000	-2.214429000

Η	-1.253958000	-3.693158000	-2.812641000
С	3.889302000	-1.696677000	0.024327000
Н	4.254966000	-2.360315000	-0.774657000
Н	4.522955000	-1.861670000	0.905337000
С	0.862591000	-3.141746000	-2.706566000
Н	1.078890000	-3.388305000	-3.746787000
С	-5.383890000	2.133273000	3.091763000
Н	-6.188763000	2.058123000	3.827100000
С	0.414748000	-0.958661000	3.217537000
Н	1.247417000	-0.741367000	3.884028000
С	-7.402521000	0.718129000	-2.695687000
Н	-7.613247000	1.321787000	-3.581898000
С	-8.404810000	-0.079981000	-2.134399000
Η	-9.402508000	-0.101271000	-2.579802000
С	6.407026000	0.890504000	-2.086165000
Н	5.674923000	1.549893000	-2.558121000
С	3.059486000	1.984962000	1.130847000
Η	2.284512000	2.042362000	0.364979000
С	-3.416555000	3.255132000	2.236541000
Η	-2.676600000	4.056826000	2.298929000
С	5.061086000	1.855907000	3.079507000
Н	5.848066000	1.806649000	3.836076000
С	3.971404000	2.716754000	3.253112000
Н	3.905670000	3.341787000	4.147381000

С	2.972667000	2.780015000	2.277567000
Н	2.121548000	3.454304000	2.398940000
С	-5.309955000	1.205484000	2.049310000
Н	-6.070040000	0.423552000	1.981298000
С	4.147241000	1.119046000	0.954627000
В	-2.185555000	-3.270893000	-0.391553000
С	6.923723000	-0.855733000	-0.484593000
Н	6.632502000	-1.555603000	0.300968000
С	-8.125451000	-0.857186000	-1.006550000
Н	-8.901396000	-1.489505000	-0.568343000
С	5.151010000	1.059444000	1.935997000
Н	6.013550000	0.401049000	1.814474000
С	8.256096000	-0.846032000	-0.909900000
Н	8.972984000	-1.532035000	-0.452290000
С	5.988229000	0.017520000	-1.068829000
С	7.740205000	0.901464000	-2.502325000
Н	8.054213000	1.586895000	-3.293365000
В	2.207912000	-2.152963000	1.879581000
С	8.667091000	0.033684000	-1.915393000
Н	9.708890000	0.039071000	-2.245411000
Cl	-0.043075000	4.518434000	-3.115474000
Cl	-0.031308000	4.002129000	-0.178514000
С	-0.010574000	3.281770000	-1.827206000
Н	0.912417000	2.699349000	-1.923636000

Н -0.901521000 2.651595000 -1.921552000

			Compound 7
Se	3.181565000	-1.647760000	-1.878588000
Se	-5.177366000	2.645467000	-0.498530000
Р	4.228995000	-0.360112000	-0.520688000
Р	-4.510689000	0.606941000	-0.385416000
F	3.044770000	1.797350000	2.293683000
F	2.088091000	0.456509000	3.877624000
F	-3.207433000	-2.546699000	1.573866000
F	-2.441899000	-1.690473000	3.550925000
N	0.680717000	1.264894000	2.106523000
N	-2.618040000	-0.217327000	1.631378000
N	-0.851466000	-2.007715000	1.770826000
N	2.449587000	-0.451021000	1.660443000
С	-0.857916000	3.035861000	1.769225000
Н	-1.047182000	4.107527000	1.694833000
С	-1.647505000	0.734887000	1.721811000
С	8.847587000	-0.843033000	-0.820685000
Н	9.930883000	-0.959063000	-0.905750000
С	0.427343000	2.581247000	2.042196000
Н	1.277212000	3.241246000	2.206393000
С	2.628676000	1.783122000	-1.358638000
Н	1.930065000	1.002403000	-1.667294000
С	3.217260000	4.126321000	-1.169109000

Η	2.968198000	5.180068000	-1.318011000
С	-1.452477000	0.830907000	-3.131401000
Н	-1.032984000	1.588754000	-3.797676000
С	6.061057000	-0.549595000	-0.599533000
С	8.022768000	-1.124346000	-1.914798000
Н	8.458355000	-1.461197000	-2.858646000
С	-0.287777000	0.329903000	1.920092000
С	4.773787000	2.424114000	-0.424636000
Н	5.742178000	2.164915000	0.007064000
С	4.450808000	3.770097000	-0.614359000
Н	5.168969000	4.542936000	-0.329673000
С	2.307214000	3.131196000	-1.539549000
Н	1.343939000	3.402546000	-1.978518000
С	0.717901000	-3.699008000	1.219679000
Η	0.918014000	-4.746078000	0.989200000
С	8.281859000	-0.418194000	0.384578000
Н	8.918811000	-0.201659000	1.245548000
С	-0.583083000	-3.293292000	1.499487000
Н	-1.432524000	-3.974009000	1.509485000
С	3.862014000	1.422391000	-0.795319000
С	0.122012000	-1.056825000	1.797438000
С	-1.892224000	2.123770000	1.605734000
Η	-2.893632000	2.488768000	1.371447000
С	-6.946977000	-0.689503000	0.080986000

Η	-6.975560000	-0.106955000	1.005389000
С	6.895925000	-0.268214000	0.497753000
Н	6.486151000	0.068188000	1.451410000
С	1.489696000	-1.416488000	1.559774000
С	-5.856633000	-0.575393000	-0.800608000
С	1.746355000	-2.769650000	1.235847000
Н	2.756313000	-3.089290000	0.989638000
С	-5.866010000	-1.299468000	-2.002950000
Н	-5.037144000	-1.212285000	-2.707323000
С	-0.898840000	-0.452190000	-3.089928000
Н	-0.038311000	-0.698872000	-3.716249000
С	-8.014830000	-1.534411000	-0.225511000
Н	-8.853448000	-1.620020000	0.469716000
С	-3.995783000	0.140356000	1.399696000
Η	-4.321200000	0.998314000	2.009245000
Η	-4.619629000	-0.721788000	1.662382000
С	6.637634000	-0.984233000	-1.804376000
Η	5.989620000	-1.225283000	-2.650420000
С	-2.544445000	1.150200000	-2.317989000
Η	-2.980762000	2.152134000	-2.336834000
С	-6.942575000	-2.138939000	-2.308687000
Н	-6.939805000	-2.697927000	-3.247683000
С	3.827735000	-0.682111000	1.295399000
Н	4.174783000	-1.703939000	1.514944000

Η	4.451146000	0.011325000	1.873122000
С	-8.014463000	-2.262064000	-1.421092000
Н	-8.852642000	-2.920713000	-1.661507000
С	-2.539827000	-1.112846000	-1.431719000
Н	-2.962501000	-1.879437000	-0.779610000
С	-1.444674000	-1.422543000	-2.241054000
Н	-1.011699000	-2.424932000	-2.206092000
С	-3.092761000	0.181315000	-1.466335000
В	-2.348640000	-1.624035000	2.162572000
В	2.139980000	0.775603000	2.520921000

References

- 1 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. *Appl. Cryst.*, 2009, **42**, 339-341.
- 2 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2015, 71, 3-8.
- 3 G. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8.
- 4 A. Spek, J. Appl. Crystallography., 2003, 36, 7-13.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J.

Cioslowski and D. J. Fox, *Gaussian 09*, revision D.01, Gaussian, Inc., Wallingford, CT, 2013.

- 6 R. Zhao, C. Dou, Z. Xie, J. Liu and L. Wang, *Angew. Chem. Int. Ed.*, 2016, **55**, 5313-5317.
- 7 A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829-5835.
- 8 A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571-2577.