Supporting Information Dalton Transactions

A rare example of double metamagnetic transition leading to 2D and 3D long-range order in the two-dimensional pyrazine- and azido-bridged cobalt(II) compound $[Co(pyz)(N_3)_2]$

Zouaoui Setifi, Fatima Setifi, Samia Benmansou, Xiangyu Liu, Joel T. Mague, Carlos J. Gómez-García, Piotr Konieczny, Jan Reedijk

Table of contents:

Comments X-ray powder Diffraction

Figure S1. Experimental and simulated X-ray powder diffractogram for 1.

Figure S2. Hysteresis cycle of the isothermal magnetization at 2 K for 1.

Figure S3. Thermal variation of the in phase (χ'_{m} , left scale) and out-of-phase (χ''_{m} , right scale) susceptibilities of **1** at different frequencies with no DC field applied.

Figure S4. Thermal variation of the in phase ($\chi'_{m\nu}$ left scale) and out-of-phase ($\chi''_{m\nu}$ right scale) susceptibilities of **1** at different frequencies with a DC field of 300 mT.

Figure S5. Thermal variation of the in phase ($\chi'_{m\nu}$ left scale) and out-of-phase ($\chi''_{m\nu}$, right scale) susceptibilities of **1** at different frequencies with a DC field of 350 mT.

Figure S6. Thermal variation of the in phase ($\chi'_{m\nu}$ left scale) and out-of-phase ($\chi''_{m\nu}$ right scale) susceptibilities of **1** at 1000 Hz with a DC field of 400 mT.

Figure S7. Thermal variation of the in-phase susceptibility (χ''_m) for **1** at 1000 Hz with different DC fields.

X-ray powder diffraction

The crystalline sample was checked for phase purity with XRPD. This measurement confirm that the sample correspond to the simulated from the single crystal X-ray structure (**Figure S1**).

Figure S1. Experimental and simulated X-ray powder diffractogram for 1.

Figure S2. Hysteresis cycle of the isothermal magnetization at 2 K for 1.

Figure S3. Thermal variation of the in phase ($\chi'_{m'}$ left scale) and out-of-phase ($\chi''_{m'}$ right scale) susceptibilities of **1** at different frequencies with no DC field applied.

Figure S4. Thermal variation of the in phase (χ'_{m} , left scale) and out-of-phase (χ''_{m} , right scale) susceptibilities of **1** at different frequencies with a DC field of 300 mT.

Figure S5. Thermal variation of the in phase (χ'_{m} , left scale) and out-of-phase (χ''_{m} , right scale) susceptibilities of **1** at different frequencies with a DC field of 350 mT.

Figure S6. Thermal variation of the in phase ($\chi'_{m\nu}$ left scale) and out-of-phase ($\chi''_{m\nu}$ right scale) susceptibilities of **1** at 1000 Hz with a DC field of 400 mT.

Figure S7. Thermal variation of the in-phase susceptibility (χ''_m) for **1** at 1000 Hz with different DC fields.