Supporting information

Stereoisomeric coordination polymers based on facial and meridional six-

coordinate dysprosium(III)

Wei-Quan Lin,^a Dan-Ru Wang,^a Wei-Jian Long,^a Li-Shan Lin,^a Ze-Xian Tao,^a Jun-Liang Liu,^b Zhao-Qing Liu^a and Ji-Dong Leng^a*

^aSchool of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials, Guangzhou University No. 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006 (P. R. China), E-mail: <u>jidong.leng@gzhu.edu.cn</u>

^bKey Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.

Table S1.	Crystal d	lata and	structure refinement	parameters fo	or compl	exes 1	-3.
-----------	-----------	----------	----------------------	---------------	----------	--------	-----

Complex	1	2	3
Empirical formula	$C_{39}H_{36}Cl_3DyO_3P_3{\cdot}C_{1.75}H_7O_{1.75}$	$C_{39}H_{36}Cl_3DyO_3P_3$	$C_{156}H_{144}Cl_{12}Dy_4O_{12}P_{12}\\$
Formula weight	970.51	914.44	3657.74
Temperature / K	100.0(2)	100.0 (2)	100.0 (2)
Crystal system	Triclinic	Triclinic	Trigonal
Space group	<i>P</i> -1	<i>P</i> -1	<i>R</i> -3
<i>a</i> / Å	12.7559(5)	11.9254(1)	35.6799(2)
b / Å	13.5242(6)	12.0637(1)	35.6799(2)
<i>c</i> / Å	14.6360(4)	15.1295(1)	21.4215(1)
lpha / °	105.698(3)	96.832(1)	90
β / °	97.442(3)	98.582(1)	90
γ/ °	115.579(4)	115.438(1)	120
Volume / Å ³	2102.43(15)	1902.29(3)	23617.2(3)
Ζ	2	2	6
Density / g·cm ⁻³	1.533	1.596	1.543
μ / mm ⁻¹	2.123	13.931	13.465
<i>F</i> (000)	975.0	912.0	10944.0
Delletter	Mo K_{α}	$Cu K_{\alpha}$	Cu K _a
Radiation	$(\lambda = 0.71073 \text{ Å})$	$(\lambda = 1.54184 \text{ Å})$	$(\lambda = 1.54184 \text{ Å})$
2θ range for data	4.05 to 59.178	6.036 to 152.91	4.954 to 153.8
collection / °			
Reflections collected	37423	46309	28652
Independent	10482 [$R_{int} = 0.0664, R_{sigma} =$	7672 [$R_{int} = 0.0622, R_{sigma} =$	10478 [$R_{int} = 0.0211, R_{sigma} =$
reflections	0.0801]	0.0292]	0.0220]
Goodness-of-fit on F ²	1.057	1.062	1.050
Final R indexes [I>= 2σ	$R_1 = 0.0499$	$R_1 = 0.0313$	$R_1 = 0.0495$
(I)]	$wR_2 = 0.1090$	$wR_2 = 0.0843$	$wR_2 = 0.1190$

Final R indexes [all	$R_1 = 0.0674$	$R_1 = 0.0339$	$R_1 = 0.0510$
data]	$wR_2 = 0.1199$	$wR_2 = 0.0865$	$wR_2 = 0.1200$

_

1		2	
Dy1-Cl1	2.6584(12)	Dy1-Cl1	2.6176(8)
Dy1-Cl2	2.5978(15)	Dy1-Cl2	2.6484(7)
Dy1-Cl3	2.6697(12)	Dy1-Cl3	2.6234(9)
Dy1-O1	2.233(4)	Dy1-O1	2.243(2)
Dy1-O2	2.225(4)	Dy1-O2	2.276(2)
Dy1-O3	2.271(4)	Dy1-O3	2.272(2)
CI1-Dy1-CI2	94.06(4)	CI1-Dy1-CI2	94.41(2)
CI1-Dy1-O2	90.66(8)	CI1-Dy1-O2	174.85(6)
Cl2-Dy1-O1	92.37(11)	Cl2-Dy1-O1	86.55(6)
Cl3-Dy1-O1	90.65(8)	Cl3-Dy1-O1	175.95(6)
O1-Dy1-O2	177.71(11)	O1-Dy1-O2	87.51(8)
CI1-Dy1-CI3	172.59(5)	CI1-Dy1-CI3	96.06(3)
CI1-Dy1-O3	87.49(8)	CI1-Dy1-O3	92.28(5)
Cl2-Dy1-O2	87.14(11)	Cl2-Dy1-O2	87.63(5)
Cl3-Dy1-O2	91.61(8)	Cl3-Dy1-O2	88.51(6)
O1-Dy1-O3	93.84(14)	O1-Dy1-O3	86.99(8)
CI1-Dy1-O1	87.15(8)	CI1-Dy1-O1	87.89(6)
Cl2-Dy1-Cl3	93.10(4)	CI2-Dy1-CI3	94.03(2)
Cl2-Dy1-O3	173.67(10)	Cl2-Dy1-O3	170.52(6)
Cl3-Dy1-O3	85.60(8)	Cl3-Dy1-O3	91.94(6)
O2-Dy1-O3	86.71(14)	O2-Dy1-O3	85.17(7)
Dy1(<i>mer</i>) of 3		Dy2(<i>fac</i>) of 3	
Dy1-Cl1	2.6322(18)	Dy2-Cl4	2.6214(11)
Dy1-Cl2	2.6126(14)	Dy2-Cl4 ^{#2}	2.6214(13)
Dy1-Cl3	2.6508(17)	Dy2-Cl4 ^{#1}	2.6214(12)
Dy1-O1	2.252(3)	Dy2-O4	2.273(3)
Dy1-O2	2.233(4)	Dy2-O4 ^{#2}	2.273(4)
Dy1-O3	2.232(3)	Dy2-O4 ^{#1}	2.273(4)
Cl2-Dy1-O1	96.14(10)	Cl4#2-Dy2-Cl4#1	94.47(4)
Cl2-Dy1-O1	96.14(10)	Cl4#2-Dy2-O4#2	82.58(10)
Cl2-Dy1-O2	174.59(10)	Cl4 ^{#2} -Dy2-O4 ^{#1}	167.09(10)
Cl2-Dy1-O2	174.59(10)	Cl4 ^{#1} -Dy2-O4 ^{#1}	82.58(9)
Cl2-Dy1-O3	83.68(8)	Cl4-Dy2-Cl4 ^{#2}	94.47(4)
Cl2-Dy1-O3	83.68(8)	CI4-Dy2-CI4 ^{#1}	94.47(4)
Cl3-Dy1-O1	88.10(12)	Cl4-Dy2-O4	82.58(9)
Cl3-Dy1-O1	88.10(12)	Cl4-Dy2-O4#2	167.09(10)
Cl3-Dy1-O2	83.66(12)	Cl4-Dy2-O4 ^{#1}	98.28(10)
Cl3-Dy1-O2	83.66(12)	O4#2-Dy2-Cl4#1	98.28(10)
Cl3-Dy1-O3	90.90(10)	O4 ^{#2} -Dy2-O4 ^{#1}	85.40(14)

Table S2. Selected bond lengths (Å) and angles (°) for complexes 1-3.

O2-Dy1-O3	91.18(12)	O4-Dy2-O4 ^{#1}	85.40(13)
O1-Dy1-O3	178.96(15)	O4-Dy2-O4 ^{#2}	85.40(13)
O1-Dy1-O2	88.98(13)	O4-Dy2-Cl4 ^{#1}	167.09(10)
Cl3-Dy1-O3	90.90(10)	O4-Dy2-Cl4 ^{#2}	98.28(10)

Symmetry code, #1: -x + y, 1 – x, z; #2: 1 – y, 1 + x - y, z

 Table S3. Continuous Shape Measures Calculations¹ results for Dy ions of 1-3.

	Idea	structures	1 (mer)	2 (fac)	Dy1 (mer) of 3	Dy2 (fac) of 3
HP-6	D_{6h}	Hexagon	33.52001	32.65284	31.71937	34.41366
PPY-6	C_{5v}	Pentagonal pyramid	27.97370	28.27465	27.75832	24.88369
OC-6	O _h	Octahedron	0.94148	0.88748	0.99352	1.75440
TPR-6	D_{3h}	Trigonal prism	14.69981	16.38556	15.42735	11.30731
JPPY-5	C_{5v}	Johnson pentagonal	30.58340	32.19463	30.52598	29.32199
		pyramid (J2)				

Figure S1. O-H…Cl hydrogen bonds in complex 1 among MeOH molecules and the 2D-layers.

Figure S2. Experimental (red) and simulated (black) powder X-ray diffraction patterns of complexes 1(a), 2(b) and 3(c).

Figure S3. Frequency dependent in-phase (χ'_{M} , solid circles) and out-of-phase (χ''_{M} , open circles) ac magnetic susceptibility for complex **1** (a), **2** (b) and **3** (c) under various dc fields at indicated temperatures. The chromatic solid lines represent the fitting results using generalized Debye model. The obtained optimal dc fields are 1600 Oe for **1**, 600 Oe for **2**, and 2000 Oe for **3**, respectively.

Figure S4. Frequency dependent in-phase (χ'_{M} , solid circles) and out-of-phase (χ''_{M} , open circles) ac magnetic susceptibility plots under a dc field of 2000 Oe, and temperature dependent relaxation time, for complex **3**. The circles and lines represent the experimental data and the fitting results, respectively. Although no peak of χ''_{M} can be observed under an external 2 kOe dc field, the relaxation times was extracted by fitting high-frequency section by modified Debye model.

Figure S5. Orientation of the g_z -tensors of the ground state KDs for the Dy(III) ions in a single molecule (a for 1 and b for 2) and in one unit cell (c for 1 and d for 2). The ligands are transparentized for clarity. The orientation of

the g_z -tensors for the Dy(III) ions in one unit cell is centrosymmetric because the nature the *P*-1 space group.

Spin-free State Energies (cm ⁻¹) for 1	Spin-free State Energies (cm ⁻¹) for 2
0	0
15.53664	10.81137
98.70651	32.86216
238.46053	237.04643
395.22636	266.26262
401.88892	296.64506
441.11442	379.41457
491.84062	436.1085
550.68513	442.71902
581.22303	504.99708
629.90638	515.26477
7635.1648	7600.43584
7682.3591	7629.05551
7738.54179	7635.98922
7850.28529	7790.26221
7866.00108	7794.36233
7887.38704	7806.28239
7998.34004	7925.82981
34915.63105	34960.48018
35076.72608	35051.00587
35307.04338	35089.96672

 Table S4. CASSCF computed spin-free state energies for complex 1 and 2.

-

Table S5. Calculated energy (cm⁻¹) and *g*-tensors of the lowest five Kramers doublets (KDs) for 1 and 2.

		1			2	
KD		g-tensors	energy	g	g-tensors	energy
	g_{x}	0.05064		$g_{\rm x}$	0.0099	
1	$g_{ m y}$	0.13143	0	$g_{ m y}$	1.1875	0
	$g_{\rm z}$	19.7715		$g_{\rm z}$	18.412	
	$g_{\rm x}$	0.8975		$g_{\rm x}$	0.3308	
2	$g_{ m y}$	0.9673	117.10	$g_{ m y}$	1.2980	45.866
	$g_{ m z}$	18.785		$g_{\rm z}$	17.298	
	g_{x}	1.5915		$g_{\rm x}$	0.6254	
3	$g_{ m y}$	2.7529	207.62	$g_{ m y}$	1.2452	88.150
	$g_{\rm z}$	13.632		$g_{\rm z}$	17.792	
	g_{x}	3.4672		$g_{\rm x}$	8.2308	
4	$g_{ m y}$	6.0692	269.42	$g_{ m y}$	7.6128	151.76
	$g_{\rm z}$	12.704		$g_{\rm z}$	5.9795	
	$g_{\rm x}$	2.8717		$g_{\rm x}$	3.1135	
5	$g_{ m y}$	4.0507	382.32	$g_{ m y}$	5.0209	283.62
	$g_{ m z}$	11.568		$g_{\rm z}$	7.3012	

	1		2
$1 + \rightarrow 1$ -	0.0303	$1 \rightarrow 1$ -	0.1996
$1 + \rightarrow 2 +$	0.8081	$1 + \rightarrow 2 +$	1.6294
$1 + \rightarrow 2$ -	0.3884	$1 + \rightarrow 2$ -	0.9323
$1 + \rightarrow 3 +$	1.5951	$1 + \rightarrow 3 +$	0.9856
$1 + \rightarrow 3$ -	0.0620	$1 + \rightarrow 3$ -	0.7514
$2+ \rightarrow 2-$	2.3146	$2 + \rightarrow 2 -$	0.5022
$2 + \rightarrow 3 +$	1.3688	$2 + \rightarrow 3 +$	0.5333
$2 + \rightarrow 3$ -	1.1911	$2+ \rightarrow 3-$	0.6324
$3 \rightarrow 3$ -	0.7251	$3+ \rightarrow 3-$	2.8876

Table S6. The transversal magnetic moment values of the lowest three KDs for 1 and 2.

Table S7. Wave functions with definite projection of the total moment $|m_J\rangle$ of the lowest three doublets for 1 and 2.

	KDs	Wave functions
	1	98.3% ±15/2>
1	2	$44.0\% \pm 1/2> + 25.6\% \pm 3/2> + 14.0\% \pm 5/2> + 5.5\% \pm 13/2>$
	3	$78.7\% \pm 13/2 > + 7.1\% \pm 5/2 > + 5.8\% \pm 1/2 > + 5.0\% \pm 3/2 >$
	1	88.8% ±15/2>+4.0 ±7/2>
2	2	$42.2\% \pm 1/2> + 23.5\% \pm 3/2> + 13.0\% \pm 5/2> + 6.4\% \pm 15/2>$
	3	36.8% ±1/2>+29.1% ±3/2>+15.3% ±5/2>+7.4% ±13/2>

 S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell and D. Avnir, Shape maps and polyhedral interconversion paths in transition metal chemistry, *Coord. Chem. Rev.*, 2005, 249, 1693-1708.