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S1. Crystallographic data of Cu1-xMgxO samples from X-Ray Powder Diffraction 

Table S1. Results of Le Bail refinement for Cu1-xMgxO nanorods (monoclinic space group C 2/c 

(No.15)) from X-Ray Powder Diffraction (XRPD) Data. For each magnesium content x, the 

monoclinic cell parameters a, b, c and  are listed. 

 

 

 

 

 

  

Magnesium 

content x 
a (Å) b (Å) c (Å)   (°) 

0 4.6971(2) 3.4312(2) 5.1349(2) 99.486(3) 
0.05 4.7110(3) 3.4110(2) 5.1314(3) 99.789(3) 

0.10 4.7626(7) 3.3907(5) 5.1278(7) 100.134(4) 
0.15 4.7639(9) 3.3939(9) 5.1275(9) 100.242(7) 

0.20 4.7735(9) 3.3880(8) 5.115(1) 100.22(1) 
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S2. Le Bail fits of the neutron powder diffraction patterns of CuO (x = 0), Cu0.9Mg0.1O (x = 0.1) 

and Cu0.8Mg0.2O (x = 0.2) samples 

 

 

 

Fig. S1. Comparison of the observed NPD patterns (red dots) with the patterns calculated by the 

Le Bail method (black line) for raw powder samples of "Cu0.8Mg0.2O" (x = 0.2) (a), Cu0.9Mg0. 1O 

(x = 0.1) (b) and CuO (x = 0) (c). The blue curve corresponds to the difference between observed 

and calculated patterns. Vertical markers give Bragg peak positions for MgO and the CuO-type 

phase (space groups F m-3m (No.225) and C2/c (No.15), respectively). 
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Table S2. Results of Le Bail refinement for Cu1-xMgxO nanorods (monoclinic space group C 2/c 

(No.15)) from Neutron Powder Diffraction (NPD) Data. For each magnesium content x, the 

monoclinic cell parameters a, b, c and  are listed. 

 

 

 

 

 

S3. EPR spectra of the aerated water suspensions of CuO (x = 0) and Cu0.9Mg0.1O (x = 0.1) 

nanorods in the presence of DMPO spin trapping agent 

Low-intensity EPR signals were measured for both aerated water suspensions of CuO (x = 0) and 

Cu0.9Mg0.1O (x = 0.1) nanorods containing only DMPO spin trapping agent (Fig. S2). Each 

experimental EPR spectrum can be satisfactorily fitted with three superimposed signals: i) 4-line 

signal of DMPO-OH spin adduct (aN = 1.5070.004 mT, aH
 = 1.4770.007 mT, g = 2.0057) 1, 2, ii) 

6-line signal with parameters typical for DMPO-adduct with carbon-centered radical 

(aN = 1.6020.005 mT, aH
 = 2.3310.008 mT, g = 2.0055) and iii) 6-line signal compatible with 

DMPO-C(O)R spin adduct (aN = 1.4930.004 mT, aH
 = 1.8430.004 mT, g = 2.0059) 3. 

 

Fig. S2. Normalized experimental (black line) and simulated (red line) EPR spectra measured 22 

min after the addition of DMPO spin trapping agent (c0(DMPO) = 0.04 M) to the aerated water 

suspensions of CuO (x = 0) and Cu0.9Mg0.1O (x = 0.1) nanorods (loading 1 mg.mL–1). 

As shown in Fig. S3 (see the next section S4), few carbonate groups are mono-coordinated to terminal 

divalent cations (Mg and Cu) at the surface of nanorods. Carbonate CO3
– radicals (oxygen-centered 

radical anions) could be produced from the reaction of HCO3
– anions with hydroxyl radicals HO 4. 

However, the rate constant for reaction of HO with bicarbonate ions (8.5×106 M–1s–1 5) is lower than 

the rate constant for the trapping of HO by DMPO (3.4×109 M–1s–1 6). Most hydroxyl radicals are 

thus rapidly trapped by DMPO. For CO3
– radicals that could still be produced, their detection in our 

experimental conditions is unlikely. Indeed, Zhang et al. 7 showed that CO3
– radicals promote the 

Magnesium 

content x 
a (Å) b (Å) c (Å)   (°) 

0 4.66(5) 3.41(5) 5.11(6) 99.5(5) 
0.10 4.75(3) 3.37(3) 5.10(3) 100.3(3) 

0.20 4.76(6) 3.39(6) 5.12(5) 100.3(3) 
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oxidation of the spin trap DMPO to DMPO+ cation radicals which in turn easily reacts with water 

molecules to form the DMPO-OH spin adduct. Thereby, the production of low concentration of 

carbon-centered radicals (and its corresponding DMPO-adducts) may reflect a partial decomposition 

of DMPO in contact with Cu2+ ions. 

 

S4. IR transmission spectra of CuO (x = 0) and Cu0.9Mg0.1O (x = 0.1) nanorods 

 

Fig. S3. Selected portion of IR transmission spectra of CuO (x = 0) and Cu0.9Mg0.1O (x = 0.1) 

nanorods. 
 

 

S5. References 

 

1. M. Hricovíni, M. Mazúr, A. Sîrbu, O. Palamarciuc, V. B. Arion and V. Brezová, Molecules, 

2018, 23, 17. 

2. D. Dvoranová, Z. Barbieriková, M. Mazúr, E. I. García-López, G. Marcì, K. Lušpai and V. 

Brezová, Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 100-113. 

3. C. Rota, D. P. Barr, M. V. Martin, F. P. Guengerich, A. Tomasi and R. P. Mason, Biochem J, 

1997, 328 ( Pt 2), 565-571. 

4. D. B. Medinas, G. Cerchiaro, D. F. Trindade and O. Augusto, IUBMB Life, 2007, 59, 255-

262. 

5. G. V. Buxton and A. J. Elliot, International Journal of Radiation Applications and 

Instrumentation. Part C. Radiation Physics and Chemistry, 1986, 27, 241-243. 

6. E. Finkelstein, G. M. Rosen and E. J. Rauckman, Archives of Biochemistry and Biophysics, 

1980, 200, 1-16. 

7. H. Zhang, J. Joseph, C. Felix and B. Kalyanaraman, Journal of Biological Chemistry, 2000, 

275, 14038-14045. 

 


