Electronic Supplementary Information (ESI)

Revisiting Mg solubility in CuO nanorods : limit probed by neutron diffraction and effect on the particle toxicity towards bacteria in water

Batiste CLAVIER¹, Antonii ZHADAN¹, Téo BAPTISTE¹, Fabien BOUCHER², Amandine GUIET¹, Florence PORCHER³, Vlasta BREZOVÁ⁴, Christine ROQUES^{5,6} and Gwenaël CORBEL¹*

¹ Institut des Molécules et Matériaux du Mans (IMMM), UMR-6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France

² Institut Universitaire de Technologie du Mans, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France

³ Laboratoire Léon Brillouin, CEA-CNRS, 91191 Gif-sur-Yvette Cedex, France

⁴ Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia

⁵ Laboratoire de Génie Chimique, UMR-5503 CNRS, Faculté de Pharmacie, Université Paul Sabatier
- Toulouse III, 35, chemin des maraîchers, 31 062 Toulouse Cedex 4, France

⁶ Centre Hospitalier Universitaire (CHU) de Toulouse, Institut Fédératif de Biologie (IFB), Laboratoire de Bactériologie et Hygiène, 330 Avenue de Grande Bretagne, 31059 Toulouse Cedex 9, France

* To whom correspondence should be addressed Institut des Molécules et Matériaux du Mans (IMMM) UMR-6283 CNRS, Le Mans Université Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France Tel.: +33 (0)2 43 83 26 48 FAX : +33 (0)2 43 83 35 06 E-mail: gwenael.corbel@univ-lemans.fr ORCID: 0000-0003-2605-7702

S1. Crystallographic data of Cu_{1-x}Mg_xO samples from X-Ray Powder Diffraction

Table S1. Results of Le Bail refinement for Cu_{1-x}Mg_xO nanorods (monoclinic space group C 2/c (No.15)) from X-Ray Powder Diffraction (XRPD) Data. For each magnesium content x, the monoclinic cell parameters *a*, *b*, c and β are listed.

Magnesium content x	a (Å)	b (Å)	c (Å)	β (°)
0	4.6971(2)	3.4312(2)	5.1349(2)	99.486(3)
0.05	4.7110(3)	3.4110(2)	5.1314(3)	99.789(3)
0.10	4.7626(7)	3.3907(5)	5.1278(7)	100.134(4)
0.15	4.7639(9)	3.3939(9)	5.1275(9)	100.242(7)
0.20	4.7735(9)	3.3880(8)	5.115(1)	100.22(1)

S2. Le Bail fits of the neutron powder diffraction patterns of CuO (x = 0), Cu_{0.9}Mg_{0.1}O (x = 0.1)and Cu_{0.8}Mg_{0.2}O (x = 0.2) samples

Fig. S1. Comparison of the observed NPD patterns (red dots) with the patterns calculated by the Le Bail method (black line) for raw powder samples of " $Cu_{0.8}Mg_{0.2}O$ " (x = 0.2) (a), $Cu_{0.9}Mg_{0.1}O$ (x = 0.1) (b) and CuO (x = 0) (c). The blue curve corresponds to the difference between observed and calculated patterns. Vertical markers give Bragg peak positions for MgO and the CuO-type phase (space groups F m-3m (No.225) and C2/c (No.15), respectively).

Table S2. Results of Le Bail refinement for Cu_{1-x}Mg_xO nanorods (monoclinic space group C 2/c (No.15)) from Neutron Powder Diffraction (NPD) Data. For each magnesium content x, the monoclinic cell parameters a, b, c and β are listed.

Magnesium content x	a (Å)	b (Å)	c (Å)	β (°)
0	4.66(5)	3.41(5)	5.11(6)	99.5(5)
0.10	4.75(3)	3.37(3)	5.10(3)	100.3(3)
0.20	4.76(6)	3.39(6)	5.12(5)	100.3(3)

S3. EPR spectra of the aerated water suspensions of CuO (x = 0) and Cu_{0.9}Mg_{0.1}O (x = 0.1) nanorods in the presence of DMPO spin trapping agent

Low-intensity EPR signals were measured for both aerated water suspensions of CuO (x = 0) and Cu_{0.9}Mg_{0.1}O (x = 0.1) nanorods containing only DMPO spin trapping agent (Fig. S2). Each experimental EPR spectrum can be satisfactorily fitted with three superimposed signals: i) 4-line signal of *DMPO-OH spin adduct ($a_N = 1.507\pm0.004$ mT, $a_H^{\beta} = 1.477\pm0.007$ mT, g = 2.0057)^{1, 2}, ii) 6-line signal with parameters typical for DMPO-adduct with carbon-centered radical ($a_N = 1.602\pm0.005$ mT, $a_H^{\beta} = 2.331\pm0.008$ mT, g = 2.0055) and iii) 6-line signal compatible with *DMPO-C(O)R spin adduct ($a_N = 1.493\pm0.004$ mT, $a_H^{\beta} = 1.843\pm0.004$ mT, g = 2.0059)³.

Fig. S2. Normalized experimental (black line) and simulated (red line) EPR spectra measured 22 min after the addition of DMPO spin trapping agent (c_0 (DMPO) = 0.04 M) to the aerated water suspensions of CuO (x = 0) and Cu_{0.9}Mg_{0.1}O (x = 0.1) nanorods (loading 1 mg.mL⁻¹).

As shown in Fig. S3 (see the next section S4), few carbonate groups are mono-coordinated to terminal divalent cations (Mg and Cu) at the surface of nanorods. Carbonate $CO_3^{\bullet-}$ radicals (oxygen-centered radical anions) could be produced from the reaction of HCO_3^- anions with hydroxyl radicals HO^{\bullet} ⁴. However, the rate constant for reaction of HO^{\bullet} with bicarbonate ions ($8.5 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$ ⁵) is lower than the rate constant for the trapping of HO^{\bullet} by DMPO ($3.4 \times 10^9 \text{ M}^{-1} \text{s}^{-1}$ ⁶). Most hydroxyl radicals are thus rapidly trapped by DMPO. For $CO_3^{\bullet-}$ radicals that could still be produced, their detection in our experimental conditions is unlikely. Indeed, Zhang *et al.*⁷ showed that $CO_3^{\bullet-}$ radicals promote the

oxidation of the spin trap DMPO to DMPO^{•+} cation radicals which in turn easily reacts with water molecules to form the [•]DMPO-OH spin adduct. Thereby, the production of low concentration of carbon-centered radicals (and its corresponding DMPO-adducts) may reflect a partial decomposition of DMPO in contact with Cu^{2+} ions.

S4. IR transmission spectra of CuO (x = 0) and Cu_{0.9}Mg_{0.1}O (x = 0.1) nanorods

Fig. S3. Selected portion of IR transmission spectra of CuO (x = 0) and Cu_{0.9}Mg_{0.1}O (x = 0.1) nanorods.

S5. References

- 1. M. Hricovíni, M. Mazúr, A. Sîrbu, O. Palamarciuc, V. B. Arion and V. Brezová, *Molecules*, 2018, **23**, 17.
- 2. D. Dvoranová, Z. Barbieriková, M. Mazúr, E. I. García-López, G. Marcì, K. Lušpai and V. Brezová, *Journal of Photochemistry and Photobiology A: Chemistry*, 2019, **375**, 100-113.
- 3. C. Rota, D. P. Barr, M. V. Martin, F. P. Guengerich, A. Tomasi and R. P. Mason, *Biochem J*, 1997, **328** (**Pt 2**), 565-571.
- 4. D. B. Medinas, G. Cerchiaro, D. F. Trindade and O. Augusto, *IUBMB Life*, 2007, **59**, 255-262.
- 5. G. V. Buxton and A. J. Elliot, *International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry*, 1986, **27**, 241-243.
- 6. E. Finkelstein, G. M. Rosen and E. J. Rauckman, *Archives of Biochemistry and Biophysics*, 1980, **200**, 1-16.
- H. Zhang, J. Joseph, C. Felix and B. Kalyanaraman, *Journal of Biological Chemistry*, 2000, 275, 14038-14045.