Supporting information

A metal-organic framework with rich accessible nitrogen sites for rapid dye adsorption and high-efficient dehydrogenation of formic

acid

Run-Dong Ding,^{a,b} Dan-Dan Li,^{a,b} Feng Leng,^{a,b} Jie-Hui Yu,^{a,b*} Ming-Jun Jia^{a*} and Ji-Qing Xu^{a,b}

^a College of Chemistry, Jilin University, Changchun, Jilin, 130012, China

^b State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012, China *E-mail: jhyu@jlu.edu.cn; jiamj@jlu.edu.cn

Materials and physical measurements

All chemicals were of reagent grade quality and obtained from commercial sources without further purification. Cadmium chloride (CdCl₂ ·1.5H₂O), N,N-dimethylacetamide (C₄H₉NO, DMA, \geq 99%), hydrochloric acid (HCl, 37%), formic acid (HCOOH, \geq 89%), acetonitrile and sodium borohydride (NaBH₄, 96%) were obtained from Aladdin Chemistry Co., Ltd. Palladium nitrate (Pd(NO₃)₂, AR), chloroauric acid (HAuCl₄·4H₂O, AR), methylene blue, bromocresol purple and methyl orange were bought from Beijing Chemical Works. H₃L (2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine) was purchased from Jinan Heng Hua technology Co., Ltd.

Powder X-ray diffraction (XRD) data were collected on a Rigaku/max-2550 diffractometer with Cu-K α radiation (λ = 1.5418 Å) at 298 K. Elemental analysis for C, H and N was performed on a Perkin-Elmer 2400LS II elemental analyzer. Elemental analysis for Pd and Au was obtained using a PLASMA-SPEC(I) inductively coupled plasma (ICP) atomic emission spectrometer. Infrared (IR) spectrum was recorded on a Perkin Elmer Spectrum 1 spectrophotometer in 4000-450 cm⁻¹ region using a powdered sample on a KBr plate at 298 K. Thermogravimetric analysis (TGA) was collected on a NETZSCH STA 459F3 analyzer with a ramp rate of 10 °C per minute from 30 °C to 800 °C under air flow. Via transmission electron microscope (TEM, FEI Talos F200S), the size and morphology of metal NPs were detected. Through X-ray photoelectron spectroscopy (XPS, ESCALABMKLL) using Al K α X-rays, the surface elements and chemical states of 1 and Pd_{0.8}Au_{0.2}/1' were analyzed. Through automatic volumetric adsorption equipment (Micromeritics ASAP 2020), the nitrogen sorption isotherms of 1 and Pd_{0.8}Au_{0.2}/1' were measured. H₂, CO₂ and CO were analyzed by Shimadzu GC-8A gas chromatograph equipped with a thermal conductivity detector (TCD) and flame ionization detector (FID) methanator. Ultraviolet-Visible (UV-Vis) spectra were measured on a Shimadzu UV-1601PC spectrophotometer at room temperature.

 $\label{eq:Fig.S1} Fig. S1 \ Coordination \ environment \ around \ Cd1 \ (a) \ and \ coordination \ mode \ of \ L^{3-} \ (b) \ in \ 1 \ (a: x+1, -y, z+1/2; \ b: x+2, -y+1, z+1/2).$

Formula	$C_{32}H_{36.5}O_9N_{5.5}Cd$ 1
M	753.9
T (K)	293 (2)
crystal system	Monoclinic
space group	P2/c
<i>a</i> (Å)	15.7153 (5)
<i>b</i> (Å)	7.5751 (3)
<i>c</i> (Å)	31.3260 (8)
α (deg)	90.00
β (deg)	116.0710 (10)
γ (deg)	90.00
V (Å ³)	3349.76 (19)
$Z (mg \cdot m^3)$	4
$D_{c} (g \cdot cm^{-3})$	1.356
μ (mm ⁻¹)	0.701
reflections collected	42668
Independent reflections	8297
R _{int}	0.0297
GOF	1.079
$R_1, I > 2\sigma(I)$	0.0402
wR ₂ , all data	0.1140

Table S1. Crystal data of 1.

Fig. S2 Powder XRD patterns of simulated 1 (a), experimental 1 (b) and 1' (c).

Fig. S3 IR spectra of 1 (a) and 1' (b).

Fig. S4 TG curves of 1 and 1' measured in air atmosphere.

Scheme S1 Molecular structures of three organic dyes.

Fig. S5 $N_{\rm 2}$ adsorption-desorption isotherms and pore size distribution for 1'.

Fig. S6 Desorption amount of $MB^+ vs$ sonicating number plots for 1'-1.

Fig. S7 SEM images of pure 1' and 1'-1(0.4 mg).

Fig. S8 UV-Vis spectra showing adsorption ability of 1' to mixed dyes (a: MB⁺/MO⁻; b: MB⁺/BP).

Fig. S9 UV-Vis spectra showing a release process of $\ensuremath{\mathsf{MB}^{\scriptscriptstyle+}}\xspace$ dye from 1'.

Fig. S10 MB⁺ desorption efficiency in pure CH₃CN solution (removal efficiency= $(c_0-c_t)/c_0$, c_0 represents the original concentration and c_t represents the instantaneous concentration at moment t).

Fig. S11 Powder XRD patterns of 1' (a), 1' after five times cycles of MB⁺ adsorption (b) and 1' after five times cycles of MB⁺ desorption (c).

Fig. S12 SEM image of 1'-2 and 1'-2 after five times sonicating.

Fig. S13 The photographs of 1' (a), 1'-2 and 1'-2 after five times sonicating (c).

Equation S1

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$
(S1)

where q_t represents adsorbed amount at moment t (mg·g⁻¹), q_e is adsorbed amount at equilibrium moment (mg·g⁻¹), t is adsorption time (min), and k_2 is adsorption rate constant (g·mg⁻¹·min⁻¹).

Equation S2

$$q_e = \frac{V(c_0 - c_e)}{m} \tag{S2}$$

In which q_e : equilibrium removal capacity (mg·g⁻¹), C_0 : initial concentration of dye solution (mg·L⁻¹), C_e : equilibrium concentration of dye solution (mg·L⁻¹), V: solution volume (L), and m: adsorbate mass (g).

Adsorbents	Adsorption capacity $(mg \cdot g^{-1})$	Reference
MOF-Fe	149.25	30
Ce (III)-doped UiO-66	145.3	31
Activated carbon	400	32
NH ₂ -UiO-66	96.45	32
Fe ₃ O ₄ @Ag/SiO ₂	128.5	33
HKUST-1	15.3	34
$[(CH_3)_2NH_2][In(L1)]\cdot 4H_2O\cdot 2DMF$	281	35
MIL-100(Fe)	736	36
[Ca(L2) ₂ (H ₂ O) ₂]·1.5DMF	552	37
$\{[(CH_3)_2NH_2]_3(In_3(L_3)_4)\}\cdot(solvent)_x$	724	37
$[Zn_2(L3)(L4)_2]$ ·3.5H ₂ O	140	38
Magnesium silicate	602	39
H ₃ PW ₁₂ O ₄₀ @ZIF-8	810	40
1'	900	This work

Table S2. A comparison of adsorption capacity of MB^+ for various materials.

H₄L1: 5-(3,5-dicarboxybenzamido)isophthalic acid;

HL2: 5,15-di(4-carboxyphenyl)porphyrin;

H₃L3: 5'-(5-carboxy-1H-benzo[d]imidazol-2-yl)-[1,1':3',1"-terphenyl]-4,4"-dicarboxylic acid;

H₂L4: tetrakis(4-pyridyloxymethylene)methane;

Table S3. Kinetic Parameters for MB^+ adsorption for various materials.	
--	--

Adsorbents	Pseudo-second-order kinetic model		Temperature/K	Reference	
	$C_0\!/g\!\cdot\!L^{1}$	$k_2/g \cdot mg^{-1} \cdot min^{-1}$	\mathbb{R}^2		
MOF-235	40	2.18×10^{-4}	0.998	298	42
MIL-100 (Fe)	400	0.936×10^{-5}	0.995	303	36
MIL-100 (Cr)	400	1.713×10^{-4}	0.997	303	36
POM@Cu ₃ (BTC) ₂	20	3.6×10^{-3}	0.991	298	43
NH ₂ -MIL-101 (Al)	40	$(2.6\pm1.3) \times 10^{-3}$	0.999	303	44
Fe ₃ O ₄ @MIL-100 (Fe)	60	1.667×10^{-5}	0.998	303	45
$\{[(CH_3)_2NH_2]_3(In_3(L3)_4)\} \cdot (solvent)_x$	15.72	1.709×10^{-3}	0.998	298	37
1'	10	0.7×10 ⁻²	0.998	298	This work

FA dehydrogenation catalytic tests

The FA dehydrogenation reaction was conducted in a two-necked round bottom flask with a condenser pipe. At a preset temperature (298 K, 313 K, 323 K and 333 K), 10 mg catalyst was firstly dispersed in 9.5 mL water and continuously stirred for 30 min. During the operation, 4M FA in 0.5 mL H₂O was added into the flask via one neck and the other neck was connected to a gas measuring equipment. The experimental data were collected by measuring the volume of the gas released from FA at certain time intervals. The molar ratio of noble metal/FA was kept to be 0.00125. We evaluated the activity of the catalyst by calculating the initial turnover frequency (TOF) value (Eq. S3.).⁴⁶

$$TOF = \frac{\frac{PV_{H_2}}{RT}}{n_{metal}t}$$
(S3)

In which *P* represents atmospheric pressure, V_{H_2} is the volume of generated H₂ when the gas conversation is 20 %, *R* is universal gas constant, *T* is the corresponding reaction temperature, n_{metal} is the mole numbers of (Pd+Au) in the **PdAu/1'** catalyst, and *t* is reaction time when the conversation is 20 %.

Fig. S14 Powder XRD patterns of Pd/1' (a), Pd_{0.66}Au_{0.33}/1' (b), Pd_{0.5}Au_{0.5}/1' (c), Pd_{0.33}Au_{0.66}/1' (d), Pd_{0.2}Au_{0.8}/1' (e) and Au/1' (f).

Fig. S15 XPS spectra of Pd_{0.8}Au_{0.2}/1' in Pd 3d and Au 4f.

Fig. S16 $\rm N_2$ adsorption-desorption isotherms of $Pd_{0.8}Au_{0.2}/1'$ and 1' (for comparison).

Fig. S17 EDX spectrum of fresh Pd_{0.8}Au_{0.2}/1'.

Fig. S18 GC spectrum using TCD detector for generated gas from FA solution over $Pd_{0.8}Au_{0.2}/1'$ catalyst at 333 K.

Fig. S19 GC spectra using FID-Methanator detector for commercial pure CO and generated gas from FA solution over Pd_{0.8}Au_{0.2}/1' catalyst at 333 K.

Fig. S20 Volume of generated gas mixture (mL) vs time (min) curves at different temperatures over fresh Pd_{0.8}Au_{0.2}/1' catalyst (a) and corresponding TOF value vs temperature as well as related Arrhenius plot (ln TOF vs 1/T) (b).

Fig. S21 Recyclability test for dehydrogenation of FA over $Pd_{0.8}Au_{0.2}/1$ ' catalyst at 333 K.

Fig. S22 TEM image of $Pd_{0.8}Au_{0.2}/1$ ' after four times catalytic cycles.

Equation S3.

$$TOF = \frac{PV_{H_2}}{n_{metal}t}$$
(S3)

In which *P* represents atmospheric pressure, V_{H2} is the volume of generated H₂ when the gas conversation is 20 %, *R* is universal gas constant, *T* is the corresponding reaction temperature, n_{metal} is the mole numbers of (Pd+Au) in the PdAu/UiO-66 catalyst, and *t* is reaction time when the conversation is 20 %.

Equation S4.

$$Ink = InA - \frac{E_{a}}{RT}$$
(S4)

Here, k is initial TOF, E_a is the activation energy (kJ·mol⁻¹), A is the pre-exponential factor, T is the absolute temperature and R is a constant (8.314 J·mol⁻¹·K⁻¹).

Samples	$\mathbf{S}_{\mathrm{BET}}$	V _{pore} (cm ³ ·g ⁻	ICP
	$(m^2 \cdot g^{-1})$	1)	$n_{(Pd+Au)}/n_{Cd}$
1'	527	0.42	-
Pd _{0.8} Au _{0.2} /1'	466	0.36	0.125

Table S4. BET surface areas, pore volumes and element analysis of 1' and $Pd_{0.8}Au_{0.2}/1$ '.

Table S5. Comparison of the catalytic performance of $Pd_{0,8}Au_{0,2}/1'$ presented in this work with the previously reportedheterogeneous catalysts for FA decomposition.

Catalyst	T (K)	TOF* (h ⁻¹)	Conversation (%)	Reference
Pd _{0.8} Au _{0.2} /1'	333	1854	92	This work
Ag_1Pd_4 (MH_2 -UiO-66	353	873	100	54
Au ₂ Pd ₈ /SBA-15-Amine	333	1786	98	55
PdAu/C-P	333	808.6	100	56
AuPd/n-CNS-Th-160	333	1896	98	57
Ag ₁₈ Pd ₈₂ @ZIF-8	353	580	100	58
Ag20Pd80@MIL-101	353	848	96	59
AuPd@ED-MIL-101	363	106	95	60