## **Electronic Supplementary Information (ESI)**

Turn-on and blue-shift fluorescence sensor toward L-histidine based on stable Cd<sup>II</sup> metal-organic framework with tetranuclear cluster units

Jing Li,<sup>a</sup> Shu-Li Yao,<sup>a</sup> Teng-Fei Zheng,<sup>a</sup>\* Hui Xu,<sup>a</sup> Jin-Yan Li,<sup>b</sup> Yan Peng,<sup>a</sup> Jing-Lin Chen,<sup>a</sup> Sui-Jun Liu<sup>a</sup>\* and He-Rui Wen<sup>a</sup>

<sup>a</sup>School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
<sup>b</sup>School of Chemical and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, Guangdong Province, P.R. China.

\*Corresponding authors. E-mail: sjliu@jxust.edu.cn (S.-J. Liu), zhengtengfei0628@163.com (T.-F. Zheng). Tel: +86-797-8312204.

| Cd1—O1                                 | 2.4954(18) | Cd1—O2                  | 2.2766(19) |
|----------------------------------------|------------|-------------------------|------------|
| Cd1                                    | 2.2914(18) | Cd1—O4#2                | 2.4338(18) |
| Cd1—N7 <sup>#3</sup>                   | 2.389(2)   | Cd1—O7#4                | 2.5287(19) |
| Cd1—O8#4                               | 2.3209(19) | O1-Cd2#1                | 2.3097(19) |
| Cd2—O1#5                               | 2.3097(19) | Cd2—O5                  | 2.2645(19) |
| Cd2—O3                                 | 2.2664(18) | Cd2—O6                  | 2.471(2)   |
| Cd2—N6                                 | 2.356(2)   | Cd2—O7#6                | 2.3302(18) |
| O4—Cd1 <sup>#5</sup>                   | 2.2914(18) | O4—Cd1 <sup>#2</sup>    | 2.4338(17) |
| N7—Cd1 <sup>#3</sup>                   | 2.389(2)   | O7—Cd1 <sup>#7</sup>    | 2.5287(19) |
| O7—Cd2 <sup>#6</sup>                   | 2.3302(18) | O8—Cd1 <sup>#7</sup>    | 2.3209(19) |
| O1-Cd1-07 <sup>#4</sup>                | 165.02(6)  | O2-Cd1-O1               | 54.47(6)   |
| O2-Cd1-O4#1                            | 127.42(6)  | O2-Cd1-O4 <sup>#2</sup> | 81.52(7)   |
| O2-Cd1-N7 <sup>#3</sup>                | 102.77(8)  | O2—Cd1—O7 <sup>#4</sup> | 130.77(7)  |
| O2—Cd1—O8 <sup>#4</sup>                | 89.10(7)   | O4#1-Cd1-O1             | 78.08(6)   |
| O4#2_Cd1_O1                            | 85.57(6)   | O4#1Cd1O4#2             | 72.78(7)   |
| O4#1-Cd1-N7#3                          | 97.67(7)   | O4#2-Cd1-O7#4           | 81.87(6)   |
| O4#1-Cd1-O7#4                          | 90.37(6)   | O4#1-Cd1-O8#4           | 142.21(7)  |
| N7#3-Cd1-O1                            | 89.64(7)   | N7#3-Cd1-O4#2           | 170.02(7)  |
| N7 <sup>#3</sup> —Cd1—O7 <sup>#4</sup> | 101.45(7)  | O8#4—Cd1—O1             | 139.29(7)  |
| O8 <sup>#4</sup> —Cd1—O4 <sup>#2</sup> | 108.51(7)  | O8#4-Cd1-N7#3           | 80.74(8)   |
| O8 <sup>#4</sup> —Cd1—O7 <sup>#4</sup> | 53.73(7)   | Cd2#1-O1-Cd1            | 112.87(7)  |
| O1#5-Cd2O6                             | 155.91(7)  | O1#5-Cd2-N6             | 84.38(8)   |
| O1 <sup>#5</sup> —Cd2—O7 <sup>#6</sup> | 85.61(7)   | O1#5-Cd2-C21            | 129.20(8)  |
| O5—Cd2—O1 <sup>#5</sup>                | 102.65(7)  | O5—Cd2—O3               | 143.39(7)  |
| O5—Cd2—O6                              | 54.99(7)   | O5—Cd2—N6               | 86.72(8)   |
| O5—Cd2—O7 <sup>#6</sup>                | 95.23(7)   | O5—Cd2—C21              | 27.88(8)   |
| O3—Cd2—O1 <sup>#5</sup>                | 112.20(7)  | O3—Cd2—O6               | 91.64(7)   |
| O3—Cd2—N6                              | 85.87(8)   | O3—Cd2—O7 <sup>#6</sup> | 98.18(7)   |
| N6-Cd2-06                              | 101.43(8)  | O7#4—Cd2—O6             | 87.66(7)   |
| O7#6-Cd2-N6                            | 169.99(8)  | Cd1#5-04-Cd1#2          | 107.22(7)  |
| Cd2#6-07-Cd1#7                         | 108.24(7)  |                         |            |

Table S1. Selected bond lengths (Å) and angles (°) for JXUST-14.<sup>a</sup>

<sup>a</sup>Symmetry codes: #1: *x*, *y*, *z*-1; #2: -*x*+1, -*y*, -*z*; #3: -*x*+2, -*y*+1, -*z*; #4: *x*+1, *y*-1, *z*-2; #5: *x*, *y*, *z*+1; #6: -*x*, -*y*+1, -*z*+2; #7: *x*-1, *y*+1, *z*+2.

| Ions | Label   | Shape                                   | Symmetry          | Distortion(τ) |
|------|---------|-----------------------------------------|-------------------|---------------|
| Cd1  | HP-7    | Heptagon                                | $D_{7\mathrm{h}}$ | 29.730        |
|      | HPY-7   | Hexagonal pyramid                       | $C_{6\mathrm{v}}$ | 18.659        |
|      | PBPY-7  | Pentagonal bipyramid                    | $D_{5\mathrm{h}}$ | 4.213         |
|      | COC-7   | Capped octahedron                       | $C_{3\mathrm{v}}$ | 4.714         |
|      | CTPR-7  | Capped trigonal prism                   | $C_{2\mathrm{v}}$ | 4.067         |
|      | JPBPY-7 | Johnson pentagonal bipyramid J13        | $D_{5\mathrm{h}}$ | 8.205         |
|      | JETPY-7 | Johnson elongated triangular pyramid J7 | $C_{3\mathrm{v}}$ | 20.238        |
| Cd2  | HP-6    | Hexagon                                 | $D_{6\mathrm{h}}$ | 32.417        |
|      | PPY-6   | Pentagonal pyramid                      | $C_{5\mathrm{v}}$ | 17.674        |
|      | OC-6    | Octahedron                              | $O_{ m h}$        | 4.538         |
|      | TPR-6   | Trigonal prism                          | $D_{3\mathrm{h}}$ | 8.940         |
|      | JPPY-6  | Johnson pentagonal pyramid J2           | $C_{5\mathrm{v}}$ | 21.930        |

Table S2. SHAPE analysis of Cd<sup>II</sup> ions in JXUST-14.

**Table S3.** HOMO and LUMO energies for  $H_2BTDB$  and histidine.

|                     | НОМО         | LUMO         |
|---------------------|--------------|--------------|
| H <sub>2</sub> BTDB | -0.220081 ev | -0.175782 ev |
| histidine           | -0.180861 ev | -0.105947 ev |



Fig. S1 IR spectra of JXUST-14 and JXUST-14 after sensing His for 5 cycles at room temperature.



**Fig. S2** (a) View of the coordination modes of BTDB<sup>2-</sup> and 4,4-bpy in **JXUST-14**; (b) the two-fold interpenetrated structure of **JXUST-14**.



Fig. S3 The TGA curve for JXUST-14 under  $N_2$  atmosphere.



**Fig. S4** (a) The simulated and experimental PXRD patterns of **JXUST-14**; (b) The simulated and experimental PXRD patterns of **JXUST-14** after sensing histidine for 5 cycles; (c) The simulated and experimental PXRD patterns of **JXUST-14** after immersing in common organic solvents for 48 h; (d) The simulated and experimental PXRD patterns of **JXUST-14** immersed in aqueous solution with diverse pH for 48 h.



Fig. S5 Solid-state emission spectra of H<sub>2</sub>BTDB and JXUST-14.



Fig. S6 CIE chromaticity diagram displaying the color coordinate of JXUST-14.



Fig. S7 The emission spectra of JXUST-14 in some common solvents.



Fig. S8 The emission spectra of H<sub>2</sub>BTDB ligand and H<sub>2</sub>BTDB@His in EtOH solution.



Fig. S9 Competitive experiments of JXUST-14 in sensing histidine with the interference of other amino acids in EtOH solutions.



**Fig. S10** (a) Emission spectra of **JXUST-14** dispersed in EtOH suspension with various concentrations of histidine; (b) Linear relationship between fluorescence intensity and histidine concentration in a low concentration.



Fig. S11 Time-dependent emission spectra of JXUST-14 after adding His.



Fig. S12 (a) UV-vis absorption spectra of JXUST-14; (b) the optical band gap diagram of JXUST-14 calculated from the UV-vis absorption.



Fig. S13 The luminescence decay curves of JXUST-14 and JXUST-14@ histidine (1 mg JXUST-14 dispersed in 2 mL DMF solution including 5  $\mu$ L His with the concentration of 0.1 M).



Fig. S14 The UV-vis absorption spectra of H<sub>2</sub>BTDB ligand and histidine.