Supporting Information

Symmetry Breaking of A₃M₂X₉-type Perovskites-Derivative Induced by Polar Quaternary Ammonium Cation: Achieving Efficient Nonlinear Optical Properties

Jiajing Wu*, Yue Guo, Wen-Dong Yao, Wenlong Liu and Sheng-Ping Guo*

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China.

E-mail: spguo@yzu.edu.cn, jiajingw@yzu.edu.cn

Contents

Experimental Section

Table S1. Fractional atomic coordinates ($\times 10^4$) and equivalent isotropic displacement Parameters (Å² ×10³) for (BTA)₃Bi₂Cl₉.

Table S2. Bond lengths for (BTA)₃Bi₂Cl₉

Table S3. Bond angles for (BTA)₃Bi₂Cl₉.

Table S4. Hydrogen bond lengths (Å) for (BTA)₃Bi₂Cl₉.

Table S5. Infrared vibrations (cm⁻¹) of (BTA)₃Bi₂Cl₉.

Table S6. Comparison of structural features and NLO properties for low-toxic lead-free hybrid

 metal halides.

Table S7. The x/y/z-projections of local dipole moment (D) of $[BiCl_6]^{3-}$ octahedrons and BTA⁺ groups in one-unit cell of $(BTA)_3Bi_2Cl_9$.

Figure S1. The crystal structures of (CH₃NH₃)₃Bi₂Cl₉ and (CH₃)₄N)₃Bi₂Cl₉.

Figure S2. The powder X-ray diffraction patterns of (BTA)₃Bi₂Cl₉, including simulated and experimental ones (Blue: after exposed in air for 40 days and dried at 120 °C).

Figure S3. Structure showing the hydrogen bonds between the hydrogen atoms in BTA⁺ cations and the chlorine atoms in $[Bi_2Cl_9]^{3-}$.

Figure S4. Uniformly arranged organic cations viewed along the *b*-axis.

Figure S5. Dipole moments of [Bi₂Cl₉]³⁻ and BTA⁺ groups in one-unit cell.

Figure S6. Partial density of states of C, N, and H atoms in (BTA)₃Bi₂Cl₉.

Figure S7. The calculated real and imaginary parts of the dielectric function polarized along three directions for (BTA)₃Bi₂Cl₉.

Atom	x	y	z	$U_{ m eq}$
Bi (1)	8325.2(2)	5772.0(2)	10057.2(2)	39.5 (7)
Bi (2)	5678.1(2)	6591.7(2)	9977.9(2)	38.8 (7)
Cl (1)	10105.3(15)	6232.7(9)	10474.2(12)	60.3(5)
Cl (2)	8741(2)	4880.6(10)	10896.4(16)	86.3(8)
Cl (3)	9027.2(18)	5308.9(10)	8829.8(13)	69.6(6)
Cl (4)	7199.2(15)	6390.8(8)	11242.0(10)	50.6(5)
Cl (5)	6227.5(15)	5371.1(8)	9693.1(10)	50.7(4)
Cl (6)	4072.1(16)	6266.3(9)	10724.6(12)	64.0(5)
Cl (7)	4578.1(17)	6763.1(10)	8708.0(11)	63.5(5)
Cl (8)	5548.9(16)	7660.9(8)	10395.3(12)	55.9(5)
Cl (9)	7558.6(16)	6803.2(9)	9167.7(11)	56.3(5)
N (1)	5562(4)	5408(2)	7126(3)	39.3(1)
C (14)	3541(7)	6125(4)	6215(5)	65(2)
C (15)	2963(8)	6626(5)	6078(6)	81(3)
C (16)	3429(10)	7138(5)	5943(6)	86(3)
C (17)	4482(10)	7168(4)	5925(6)	85(3)
C (18)	5086(7)	6674(4)	6079(5)	62(2)
C (19)	4616(6)	6142(3)	6222(4)	47.5(2)
C (20)	5248(6)	5590(3)	6300(4)	47.3(2)
C (21)	6212(6)	5883(3)	7542(4)	46.2(2)
C (22)	7247(6)	6020(4)	7198(5)	62(2)
C (23)	6176(7)	4846(3)	7048(4)	55(2)
C (24)	6565(8)	4579(4)	7812(5)	69(3)
C (25)	4640(6)	5322(3)	7615(4)	50.2(2)
C (26)	3927(9)	4819(4)	7353(6)	84(3)
N (2)	846(4)	7076(3)	8174(3)	43.7(1)
C (27)	2120(7)	7485(4)	9886(4)	60(2)
C (28)	2814(7)	7842(5)	10267(5)	73(3)
C (29)	2787(8)	8427(5)	10126(6)	81(3)
C (30)	2058(9)	8666(4)	9626(5)	77(3)
C (31)	1334(8)	8302(4)	9251(5)	65(2)
C (32)	1352(6)	7699(3)	9372(4)	47.1(2)
C (33)	567(6)	7299(3)	8979(4)	49.1(2)
C (34)	963(6)	7570(4)	7610(4)	50.1(2)
C (35)	-5(8)	7916(4)	7427(5)	79(3)
C (36)	-19(6)	6665(4)	7917(5)	64(2)

Table S1. Fractional atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² $\times 10^3$) for (BTA)₃Bi₂Cl₉.

Atom	x	У	Z	$U_{ m eq}$
C (37)	107(7)	6375(4)	7130(5)	75(3)
C (38)	1881(6)	6757(3)	8228(5)	53.7(19)
C (39)	1908(7)	6194(4)	8678(5)	75(3)
N (3)	750(6)	3590(3)	7937(5)	71.4(18)
C (1)	2166(13)	4900(6)	9817(8)	125(4)
C (2)	3136(12)	4840(6)	9647(7)	113(4)
C (3)	3563(12)	4363(7)	9337(7)	120(4)
C (4)	2898(10)	3924(6)	9055(6)	101(3)
C (5)	1851(8)	3981(4)	9112(5)	72(2)
C (6)	1455(11)	4423(6)	9526(7)	114(3)
C (7)	1154(9)	3505(4)	8768(6)	83(3)
C (8)	1602(9)	3519(5)	7364(7)	103(3)
C (9)	1983(10)	2843(6)	7326(8)	129(5)
C (10)	-105(9)	3145(5)	7707(7)	105(3)
C (11)	-1115(9)	3245(6)	8120(8)	122(4)
C (12)	216(11)	4186(5)	7746(9)	120(4)
C (13)	967(12)	4653(6)	7471(8)	138(5)

Table S1. Fractional atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å× 10³) for (BTA)₃Bi₂Cl₉.

 $U_{\rm eq}$ is defined as 1/3 of the trace of the orthogonalised $U_{\rm ij}$ tensor.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Bi (1)	Cl (1)	2.596(2)	N (2)	C (34)	1.501(9)
Bi (1)	Cl (2)	2.541(2)	N (2)	C (36)	1.509(9)
Bi (1)	Cl (3)	2.561(2)	N (2)	C (38)	1.520(9)
Bi (1)	Cl (4)	2.918(2)	C (27)	C (28)	1.358(12)
Bi (1)	Cl (5)	2.896 (2)	C (27)	C (32)	1.385(10)
Bi (1)	Cl (9)	2.957(2)	C (28)	C (29)	1.362(13)
Bi (2)	Cl (4)	2.895(2)	C (29)	C (30)	1.359(13)
Bi (2)	Cl (5)	2.929(2)	C (30)	C (31)	1.387(13)
Bi (2)	Cl (6)	2.592(2)	C (31)	C (32)	1.397(11)
Bi (2)	Cl (7)	2.577(2)	C (32)	C (33)	1.502(10)
Bi (2)	Cl (8)	2.557(2)	C (34)	C (35)	1.500(12)
Bi (2)	Cl (9)	2.889(2)	C (36)	C (37)	1.521(12)
N (1)	C (20)	1.516(8)	C (38)	C (39)	1.502(11)
N (1)	C (21)	1.529(9)	N (3)	C (7)	1.510(12)
N (1)	C (23)	1.520(9)	N (3)	C (8)	1.515(13)
N (1)	C (25)	1.499(9)	N (3)	C (10)	1.537(13)
C (14)	C (15)	1.382(12)	N (3)	C (12)	1.557(14)
C (14)	C (19)	1.384(11)	C (1)	C (2)	1.303(18)
C (15)	C (16)	1.342(14)	C (1)	C (6)	1.496(18)
C (16)	C (17)	1.360(15)	C (2)	C (3)	1.343(17)
C (17)	C (18)	1.390(12)	C (3)	C (4)	1.393(17)
C (18)	C (19)	1.387(11)	C (4)	C (5)	1.363(14)
C (19)	C (20)	1.507(10)	C (5)	C (6)	1.350(15)
C (21)	C (22)	1.517(11)	C (5)	C (7)	1.516(13)
C (23)	C (24)	1.512(10)	C (8)	C (9)	1.625(15)
C (25)	C (26)	1.529(11)	C (10)	C (11)	1.527(15)
N (2)	C (33)	1.532(9)	C (12)	C (13)	1.529(17)

Table S2. Bond lengths for $(BTA)_3Bi_2Cl_9$.

Atom Atom Atom	Angle/°	Atom Atom Atom	Angle/°
Cl (1) Bi (1) Cl (4)	94.10(6)	C (14) C (19) C (18)	117.9(7)
Cl (1) Bil(1) Cl (5)	173.14(6)	C (14) C (19) C (20)	120.9(8)
Cl (1) Bi (1) Cl (9)	95.10(6)	C (18) C (19) C (20)	120.9(7)
Cl (2) Bi (1) Cl (1)	90.49(8)	C (19) C (20) N (1)	115.7(6)
Cl (2) Bi (1) Cl (3)	93.51(8)	C (22) C (21) N (1)	115.9(6)
Cl (2) Bi (1) Cl (4)	95.33(8)	C (24) C (23) N (1)	114.7(6)
Cl (2) Bi (1) Cl (5)	92.23(7)	N (1) C (25) C (26)	114.5(6)
Cl (2) Bi (1) Cl (9)	172.24(7)	C (34) N (2) C (33)	111.4(6)
Cl (3) Bi (1) Cl (1)	93.14(7)	C (34) N (2) C (36)	112.1(6)
Cl (3) Bi (1) Cl (4)	168.52(7)	C (34) N (2) C (38)	106.7(5)
Cl (3) Bi (1) Cl (5)	92.98(7)	C (36) N (2) C (33)	105.7(5)
Cl (3) Bi (1) Cl (9)	91.56(7)	C (36) N (2) C (38)	110.7(6)
Cl (4) Bi (1) Cl (9)	78.93(5)	C (38) N (2) C (33)	110.2(5)
Cl (5) Bi (1) Cl (4)	79.39(5)	C (28) C (27) C (32)	122.0(8)
Cl (5) Bi (1) Cl (9)	81.63(5)	C (27) C (28) C (29)	119.7(9)
Cl (4) Bi (2) Cl (5)	79.23(5)	C (30) C (29) C (28)	121.3(9)
Cl (6) Bi (2) Cl (4)	96.43(6)	C (29) C (30) C (31)	118.9(9)
Cl (6) Bi (2) Cl (5)	90.74(6)	C (30) C (31) C (32)	121.2(8)
Cl (6) Bi (2) Cl (9)	172.72(7)	C (27) C (32) C (31)	116.8(8)
Cl (7) Bi (2) Cl (4)	170.65(6)	C (27) C (32) C (33)	121.2(7)
Cl (7) Bi (2) Cl (5)	97.57(6)	C (31) C (32) C (33)	121.9(7)
Cl (7) Bi (2) Cl (6)	92.38(7)	C (32) C (33) N (2)	115.4(6)
Cl (7) Bi (2) Cl (9)	90.47(7)	C (35) C (34) N (2)	115.2(7)
Cl (8) Bi (2) Cl (4)	89.55(6)	N (2) C (36) C (37)	115.1(7)
Cl (8) Bi (2) Cl (5)	168.20(6)	C (39) C (38) N (2)	116.3(6)
Cl (8) Bi (2) Cl (6)	94.17(7)	C (7) N (3) C (8)	111.8(8)
Cl (8) Bi (2) Cl (7)	92.94(7)	C (7) N (3) C (10)	111.7(8)
Cl (8) Bi (2) Cl (9)	92.37(6)	C (7) N (3) C (12)	116.2(9)
Cl (9) Bi (2) Cl (4)	80.42(5)	C (8) N (3) C (10)	107.1(8)
Cl (9) Bi (2) Cl (5)	82.24(6)	C (8) N (3) C (12)	106.5(8)
Bi (2) Cl (4) Bi (1)	83.99(5)	C (10) N (3) C (12)	102.8(9)
Bi (1) Cl (5) Bi (2)	83.80(5)	C (2) C (1) C (6)	115.4(14)
Bi (2) Cl (9) Bi (1)	83.42(5)	C (1) C (2) C (3)	126.0(16)
C (20) N (1) C (21)	111.1(5)	C (2) C (3) C (4)	117.8(15)
C (20) N (1) C (23)	105.5(5)	C (5) C (4) C (3)	120.1(13)
C (23) N (1) C (21)	111.5(6)	C (4) C (5) C (7)	118.4(10)
C (25) N (1) C (20)	112.0(6)	C (6) C (5) C (4)	120.5(12)

Table S3. Bond angles for (BTA)₃Bi₂Cl₉.

Table S3. Bond angles for (BTA)₃Bi₂Cl₉.

Atom Atom Atom	Angle/°	Atom Atom Atom	Angle/°
C (25) N (1) C (21)	105.2(5)	C (6) C (5) C (7)	120.8(11)
C (25) N (1) C (23)	111.5(6)	C (5) C (6) C (1)	118.8(13)
C (15) C (14) C (19)	120.6(9)	N (3) C (7) C (5)	116.6(8)
C (16) C (15) C (14)	120.8(10)	N (3) C (8) C (9)	110.9(9)
C (15) C (16) C (17)	120.2(9)	C (11) C (10) N (3)	113.4(10)
C (16) C (17) C (18)	120.3(10)	C (13) C (12) N (3)	113.4(11)
C (19) C (18) C (17)	120.1(9)		

Table S4. Hydrogen bond lengths (Å) for (BTA)₃Bi₂Cl₉.

D-H	d(D-H)	d(HA)	d(DA)	∠(D-	А
				HA)(°)	
C(7)-H(7B)	0.970	2.896	3.513	122.46	Cl (8) #1
C(8)-H(8B)	0.970	2.809	3.744	162.12	Cl (1) #2
C(10)-H(10B)	0.970	2.843	3.633	139.18	Cl(7)#1
C(12)-H(12B)	0.970	2.744	3.560	142.15	Cl(3)#3
C(21)-H(21A)	0.970	2.865	3.588	132.14	C(17)
C(21)-H(21B)	0.970	2.922	3.874	167.19	Cl (5)
C(22)-H(22B)	0.960	2.987	3.652	127.56	Cl(2)#4
C(24)-H(24A)	0.960	2.925	3.615	129.68	Cl(4)#4
C(24)-H(24C)	0.960	2.988	3.926	165.88	Cl (3)
C(33)-H(33B)	0.970	2.659	3.610	166.93	Cl(1)#3
C(35)-H(35A)	0.960	2.906	3.627	132.74	Cl(6)#5
C(36)-H(36B)	0.970	2.837	3.710	150.27	Cl(3) ^{#3}
C(37)-H(37A)	0.960	2.867	3.770	157.17	Cl(8)#5
C(38)-H(38B)	0.970	2.883	3.535	125.46	Cl (7)

Symmetry transformations used to generate equivalent atoms: #1 x-1/2, y-1/2, z; #2 x-1, -y+1, z-1/2; #3 x-1, y,

z; #4 *x*, -*y*+1, *z*-1/2; #5 *x*-1/2, -*y*+3/2, *z*-1/2.

Wavenumber (cm ⁻¹)	Assignment
3057	ν(CH)
2991	$v_{as}(CH_3)$
2939	v _{as} (CH ₂)
1585	ν (C=C)+ δ (CH)
1470	δ _s (CH ₃)
1384	$\omega(CH_2)+\delta_{as}(CH_3)$
1153	δ(CH)
1007	δ (C-N-C) + v(C-C)
796	v ₃ (NC ₄)
753	γ(CH)
705	v(CH ₂ -N)

Table S5. Infrared vibration peaks (cm⁻¹) of (BTA)₃Bi₂Cl₉.

Materials	Space group	Structural feature	Band gap (eV)	SHG response	Ref.
(PBA) ₄ BiBr ₇ ·H ₂ O	<i>C</i> 2	0D [BiBr ₆] ³⁻ octahedra	3.52	0.4×KDP@1064 nm	1
(PBA) ₄ BiI ₇ ·H ₂ O	С2	0D [BiI ₆] ³⁻ octahedra	2.29	2.3×AGS@2090 nm	2
(PBA) ₄ InBr ₇ ·H ₂ O	<i>C</i> 2	0D [InBr ₆] ^{3–} octahedra	4.05	0.6×KDP@1064 nm	2
$(C_4H_{16}N_3)BiBr_6$	P2 ₁ 2 ₁ 2 ₁	0D [BiBr ₆] ³⁻ octahedron	2.72	0.6×KDP	3
[NH ₃ CH ₂ CH ₂ F] ₃ BiCl ₆	P21212	0D [BiCl ₆] ³⁻ octahedron	/	PM; 0.6×KDP@1064 nm	4
[(C ₂ H ₅) ₄ N]InCl ₄	P6 ₃ mc	0D [InCl4] ⁻ tetrahedron	4.3	PM; 0.5×KDP@1064 nm	5
[(C ₂ H ₅) ₄ N]InCl ₂ Br ₂	P6 ₃ mc	0D [InCl ₂ Br ₂] ⁻ tetrahedron	3.55	PM; 0.7×KDP@1064 nm	5
[(C ₂ H ₅) ₄ N]InBr ₄	P6 ₃ mc	0D [InBr ₄] ⁻ tetrahedron	2.85	PM; 0.8×KDP@1064 nm	5
(4-BrC ₆ H ₄ CH ₂ NH ₃) ₂ MnBr ₄	<i>P</i> 2 ₁ 2 ₁ 2 ₁	0D [MnBr ₄] ²⁻ tetrahedra	/	PM; 0.3×KDP@1064 nm	6
[(R)-3-hydroxy- pyrrolidinium]₅Sb4Br ₁₇	P2 ₁ 2 ₁ 2 ₁	0D [Sb ₄ Br ₁₆] ⁴⁻ tetranuclear clusters	3.0	0.79×KDP@1064 nm	6
[C ₅ H ₁₂ N]SnCl ₃	<i>P</i> 2 ₁ 2 ₁ 2 ₁	0D [SnClr ₆] ²⁻ octahedra	3.647	PM; 1.1×KDP@1064 nm	7
[NH ₂ (CH ₂ CH ₃) ₂] ₃ BiCl ₆	R3c	0D [BiCl ₆] ³⁻ octahedron	3.26	PM; 1.9× KDP@1064 nm	8

Table S6. Comparison of structural feature and NLO properties for low-toxic lead-free hybrid metal halides.

Table S6. Comparison of structural features and NLO properties for low-toxic lead-free hybrid metal halides.

Materials	Space group	Structural feature	Band gap (eV)	SHG response	Ref.
[NH ₂ (CH ₂ CH ₃) ₂] ₃ BiBr ₆	R3c	0D [BiBr ₆] ³⁻ octahedron	2.81	PM; 3.2×KDP@1064 nm	8
(R-MPEA) ₂ SnBr ₆	<i>P</i> 2 ₁	0D [SnBr ₆] ²⁻ octahedra	2.68	PM; 18×α- SiO ₂ @980 nm	9
$[((R)-C_8H_{12}N)_4][Bi_2Br_{10}]$	<i>P</i> 2 ₁	$0 D \\ edge-sharing \ [Bi_2 Br_{10}]^{4-} \ dimers.$	2.88	NPM; 20×α- SiO ₂ @1064 nm	10
(R-MBA)BiI ₄	<i>P</i> 2 ₁ 2 ₁ 2 ₁	$1D$ edge-sharing $[BiI_6]^{3-}$ octahedra	/	1.56×LiNbO ₃ @15 50 nm	11
(R-MBA) ₂ CuCl ₄	C2	2D [CuCl ₄] ²⁻ tetrahedra	2.93	28.75 pmV ⁻¹ @800 nm	12
N(CH ₃) ₄]ZnCl ₃	$Pmc2_1$	[ZnCl ₄] ²⁻ tetrahedra	3.4	NPM; 15×α- SiO ₂ @1064 nm	13
[(CH ₃) ₃ NH] ₃ Bi ₂ I ₉	R3c	face-sharing $[Bi_2I_9]^{3-}$ dimers	2.0	0.65×KDP	14
(BTA) ₃ Bi ₂ Cl ₉	Сс	$0D$ face-sharing $[Bi_2Cl_9]^3\mathchar`-dimers$ and BTA^+ cations	3.21	1.36×KDP	This work

D: dimensionality.

Ion	μ_{x}	$\mu_{ m y}$	μ _z
BTA^+	107.433	0	-115.774
BTA^+	-46.898	-0.006	-289.918
BTA^+	347.993	-0.011	87.909
[BiCl ₆] ³⁻	34.592	0.012	0.321
[BiCl ₆] ³⁻	-31.994	0.001	-1.428

Table S7. The x/y/z-projections of local dipole moment (D) of $[BiCl_6]^{3-}$ octahedrons andBTA⁺ groups in one-unit cell of $(BTA)_3Bi_2Cl_9$.

Figure S1. The crystal structures of $(CH_3NH_3)_3Bi_2Cl_9$ (a, orthorhombic *Pnma*) and $(CH_3)_4N)_3Bi_2Cl_9$ (b, hexagonal *P6*₃/*mmc*). Noted the C, N and H atoms were omitted for clarity.

Figure S2. The powder X-ray diffraction patterns of (BTA)₃Bi₂Cl₉, including simulated and experimental ones (Blue: after exposed in air for 40 days and dried at 120 °C).

Figure S3. Structure showing the hydrogen bonds between the hydrogen atoms in BTA^+ cations and the chlorine atoms in $[Bi_2Cl_9]^{3-}$ in the *bc*-plane.

Figure S4. Uniformly arranged organic cations viewed along the *b*-axis.

Figure S5. Dipole moments of $[Bi_2Cl_9]^{3-}$ and BTA^+ groups in one-unit cell. Blue: BTA^+ ; purple: $[BiCl_6]^{3-}$. The blue, purple and red arrows in the middle present the total dipole moments of the organic parts, the inorganic parts and the whole unite cell, respectively.

Figure S6. Partial density of states of C, N, and H atoms in (BTA)₃Bi₂Cl₉.

Figure S7. The calculated real and imaginary parts of the dielectric function polarized along the three directions for (BTA)₃Bi₂Cl₉.

References

[1] D. Chen, S. Q. Hao, L. B. Fan, Y. W. Guo, J. Y. Yao, C. Wolverton, M. Kanatzidis, J. Zhao and Q. Liu, *Chem. Mater.*, 2021, **33**, 8106–8111.

[2] Z. Y. Wu, X. T. Liu, C. M. Ji, L. N. Li, S. S. Wang, Z. H. Sun, W. C. Zhang, Y. Peng and
 J. H. Luo, *J. Mater. Chem. C*, 2018, 6, 9532–9536.

[3] L. L. Chu, T. Zhang, Y. F. Gao, W. Y. Zhang, P. P. Shi, Q. Ye and D. W. Fu, *Chem. Mater.*, 2020, **32**, 6968–6974.

[4] X. Liu, W. L. Xu, S. R. Xu, X. Yu, Y. Q. Deng, X. Wu, F. Liang and Q. Wu, *Inorg. Chem.*, 2020, **59**, 5721–5727.

[5] Y. Wang, T. Zhang, M. M. Lun, F. L. Zhou, D. W. Fu and Y. Zhang, *Inorg. Chem. Front.*, 2021, 8, 4230 – 4238.

[6] H. Y. Shen, L. He, P. P. Shi and Q. Ye, J. Mater. Chem. C, 2021, 9, 4338-4343.

[7] X. Liu, C. M. Ji, Z. Y. Wu, L. N. Li, S. G. Han, Y. Y. Wang, Z. H. Sun and J. H. Luo, *Chem. Eur. J.*, 2019, **25**, 2610 – 2615.

[8] X. X. Zheng, Y. Liu, G. F. Liu, J. Liu, X. Ye, Q. X. Han, C. Ge and X. T. Tao, *Chem. Mater.*, 2016, 28, 4421–4431.

[9] L. L. Zhao, X. Han, Y. S. Zheng, M. H. Yu and J. L. Xu, *Adv. Photonics Res.*, 2021, 2, 2100056.

[10] T. H. Moon, S. J. Oh and K. Ok, M. ACS Omega, 2018, 3, 17895–17903.

[11] L. Yao, Z. X. S. Zeng, C. K. Cai, P. Xu, H. G. Gu, L. Gao, J. B. Han, X. W. Zhang, X. Wang, X. Wang, A. L. Pan, J. Wang, W. X. Liang, S. Y. Liu, C. Chen and J. Tang, *J. Am. Chem. Soc.*, 2021, 143, 16095–16104.

[12] Z. H. Guo, J. Z. Li, C. S. Wang, R. L. Liu, J. C. Liang, Y. Gao, J. J. Cheng, W. J. Zhang,
X. Zhu, R. K. Pan and T. C. He, *Angew. Chem.*, 2021, 133, 8522 –8526.

[13] M. H. Choi, S. H. Kim, H. Y. Chang, P. S. Halasyamani and K. M. Ok, *Inorg. Chem.*, 2009, 48, 8376 –8382.

[14] J. Zhang, S. G. Han, C. M. Ji, W. C. Zhang, Y. Y. Wang, K. W. Tao, Z. H. Sun and J. H. Luo, *Chem. Eur. J.*, 2017, 23,17304–17310.