An effective strategy for improving charge separation efficiency and photocatalytic degradation performance by facilely synthesized oxidative TiO₂ catalyst

Yongqi Qin^{*a,b},‡ Liqiang Deng ^{a,b},‡ Shaodong Wei ^{a,b}, Hui Bai ^d, Wenqiang Gao ^{a,b,c},

Weizhou Jiao^{* c}, Tanlai Yu^{*a,b}

^a Lvliang Key Laboratory of Comprehensive Utilization of Organic Waste Resources, Department of Chemistry and Chemical Engineering, Lvliang University, Lvliang 033001, Shanxi, China

^b Lvliang Key Laboratory of Optical and Electronic Materials and Devices, Lvliang University, Lvliang 033001, Shanxi, China

^c Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China

^d Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China

* Corresponding authors: Yongqi Qin, E-mail: qinyq2003@163.com; Weizhou Jiao, Email: jwz0306@126.com; Tanlai Yu: E-mail: yutanlai1212@126.com/ tlyu@llu.edu.cn.

Materials

Anatase titanium dioxide (≥99%) was purchased from Shandong Pingju Biological Technology Co. LTD. Potassium permanganate (KMnO4) was obtained from Taihua Chemical and Agrochemical Factory. Benzoquinone and methyl orange were purchased from Tianjin Guangfu Technology Development Co. LTD. Tert-butanol, 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO), sodium oxalate, and hydrochloric acid were purchased from Aberdeen Technology Co. LTD.

				Pseudo-first order kinetic	
Photocatalysts	Light	Reaction	KMnO ₄	model equation: $In(A_0/A_t)$	
	source	temperature	adding	= kt	
				k (min ⁻¹)	\mathbb{R}^2
Oxidative TiO ₂	Xe lamp	80°C	0.5% wt	0.0120	0.99731
(a)					
Oxidative TiO ₂	Xe lamp	80°C	1.0% wt	0.00912	0.99841
(b)					
Oxidative TiO ₂	Xe lamp	80°C	2.0% wt	0.01274	0.99839
(c)					
Oxidative TiO ₂	Xe lamp	80°C	2.5% wt	0.01222	0.99866
(d)					
Oxidative TiO ₂	Xe lamp	80°C	3.0% wt	0.01114	0.9984
(e)					
Oxidative TiO ₂	Xe lamp	80°C	3.5% wt	0.01352	0.99327
(f)					
Oxidative TiO ₂	Xe lamp	80°C	4.0% wt	0.01566	0.99829
(g)					
Oxidative TiO ₂	Xe lamp	25°C	4.0% wt	0.01431	0.99697
(h)					
Oxidative TiO ₂	Xe lamp	150°C	4.0% wt	0.01321	0.99468
(i)	-				
Oxidative TiO ₂	Xe lamp	200°C	4.0% wt	0.00967	0.98811
(j)	1				

Table S1 Kinetics study results of Methyl Orange (MO) degradation by oxidative TiO₂ samples.

^a where A_0 is the initial absorbance of MO solution; A_t is the absorbance of MO solution after time (t) of degradation; Parameters were fixed at: $A_0 = 1.084$, pH = 6.0 and [catalyst]_0 = 0.2g/L.

Sample	Crystallite Size D (nm)	dislocation density (δ) (line/m ²) (×10 ¹⁶)	microstrain (ϵ) (×10 ⁻²)
Pristine TiO ₂	5.40	3.42	6.38
Oxidative TiO ₂	5.67	3.12	6.04

Table S2 Structural Parameters of oxidative TiO_2 and pristine TiO_2 .

 $\frac{\text{Oxidative TiO}_2}{\text{a Scherrer Formular: where D} = (0.89 \times \lambda) / (\beta \times \text{Cos}\theta) \text{ where, } \lambda = 1.5406 \text{ nm.}$

^b Williamson and Smallman equation: $\delta = \frac{n}{D^2}$.

$$\varepsilon \varepsilon = \frac{\beta cos\theta}{4}.$$

Table S3 Interplanar spacing of oxidative TiO₂ and pristine TiO₂.

	Pristine TiO ₂		Oxidative TiO ₂		
(hkl)planes	Peak position	Interplanar	Peak position	Interplanar	
	(20)	Spacing (d) / Å	(20)	Spacing (d) / Å	
101	25.40	3.5033	25.32	3.5140	
103	37.08	2.4226	36.99	2.4280	
004	37.84	2.3757	37.83	2.3762	
112	38.56	2.3331	38.45	2.3392	
200	48.16	1.8879	48.08	1.8908	
105	53.99	1.6971	53.94	1.6985	
211	55.20	1.6627	55.11	1.6651	
116	68.84	1.3627	68.83	1.3630	
220	70.34	1.3373	70.36	1.3369	
215	75.10	1.2639	75.12	1.2639	
301	76.07	1.2502	76.11	1.2497	

^aBragg's equation was used to estimate the interplanar distances (d). $n\lambda = 2d\sin\theta$.

sample	a (Å)	c (Å)	Volume (Å ³)
Oxidative TiO ₂	3.7815	9.5121	136.02
Pristine TiO ₂	3.7759	9.3906	133.89

Table S4 Lattice parameters and cell volume of oxidative TiO₂ and pristine TiO₂.

Fig. S1 High-resolution XPS spectra of O 1s for oxidative TiO₂ synthesized at 200°C.

Fig. S2 High-resolution XPS spectra of O 1s for pristine TiO₂.

Fig. S4 SEM images of oxidative TiO_2 (a, b) and pristine TiO_2 (c,d). TEM images of oxidative TiO_2 (e) and pristine TiO_2 (f).

Fig. S5 UPS spectra of oxidative TiO_2 (a) and pristine TiO_2 (b).

Fig. S6 Calculated DOS of pristine TiO₂.

Fig. S7 N₂ adsorption-desorption isotherms(a) and BJH pore size distribution curves (b).

Fig. S8 Zeta potential of oxidative TiO₂ and pristine TiO₂.

Fig. S9 UV-vis spectra of MO solution at different time under simulated sunlight irradiation using (a) oxidative TiO_2 and (b) pristine TiO_2 . UV-vis spectra of MO solution at different time under UV light using (c) oxidative TiO_2 and (d) pristine TiO_2 .

Fig. S10 ESR spectra of pristine TiO_2 under Xe lamp irradiation and in the dark: (a) DMPO-•OH and (b) DMPO-• O_2^- .