Effect of Ring Size of TMC Ligands in Controlling C-H Bond Reactivity

by Metal-Superoxo Species

Monika and Azaj Ansari*

Department of Chemistry, Central University of Haryana, Mahendergarh 123031, India. Email: <u>ajaz.alam2@gmail.com</u>

Fig. S1 B3LYP-D2 optimized structures of a) Isomer A and b) Isomer B.

Enin stata	12 TMC	14 TM	
Spin state	$\frac{13-1 \text{ MC}}{(13/14)}$		
4T A	([v(13)])	$\frac{41}{41}$	515
$1A_{a-hs}$	43.0	A_{b-hs}	51.5
IA _{a-hs}	0	IA _{b-hs}	0
$^{2}\mathbf{B}_{a-hs}$	62.1	$^{2}\mathbf{B}_{b-hs}$	67.1
-IB _{a-hs}	10.6	-IB _{b-hs}	14./
5	([Cr(13/14	$-\text{TMC}(O_2\text{CI}), \Pi)$	
JIIA _{a-hs}	13.1	${}^{3}\Pi A_{b-hs}$	16.5
$^{3}\Pi A_{a-hs}$	0	$^{3}\Pi A_{b-hs}$	0
⁵ IIA _{a-ls}	3.9	⁵ IIA _{b-ls}	4.1
¹ IIA _{a-ls}	274.1	¹ IIA _{b-ls}	264.4
⁵ IIB _{a-hs}	28.9	⁵ IIB _{b-hs}	24.9
³ IIB _{a-hs}	6.6	³ IIB _{b-hs}	5.5
$^{3}IIB_{a-ls}$	13.7	³ IIB _{b-ls}	7.8
¹ IIB _{a-ls}	273.4	¹ IIB _{b-ls}	265.5
	([Mn(13/14	$-TMC)O_2Cl]^+, III)$	
⁶ IIIA _{a-hs}	0	⁶ IIIA _{b-hs}	26.4
4 IIIA _{a-hs}	17.2	4 IIIA _{b-hs}	0
⁴ IIIA _{a-is}	26.5	4 IIIA _{b-is}	86.0
² IIIA _{a-is}	35.3	2 IIIA _{b-is}	60.9
² IIIA _{a-ls}	35.2	2 IIIA _{b-ls}	63.1
⁶ IIIB _{a-hs}	15.6	$^{6}\mathrm{IIIB}_{\mathrm{b-hs}}$	28.6
4IIIB _{a-hs}	30.9	4IIIB _{b-hs}	3.5
⁴ IIIB _{a-is}	61.8	4IIIB _{b-is}	93.9
² IIIB _{a-is}	40.4	2 IIIB _{b-is}	65.1
² IIIB _{a-ls}	142.5	2 IIIB _{b-ls}	65.0
	([Fe(13/14	$-TMCOO_2Cl]^+, IVO$	
⁷ IVA _{a-hs}	0	⁷ IVA _{b-hs}	0
⁵ IVA _{a-hs}	20.2	⁵ IVA _{b-hs}	6.8
⁵ IVA _{a-is}	37.5	⁵ IVA _{b-is}	38.8
³ IVA _{a-is}	96.4	³ IVA _{b-is}	71.7
$^{3}IVA_{a-ls}$	54.4	³ IVA _{b-ls}	43.9
1 IVA _{a-ls}	145.6	1 IVA _{b-ls}	135.1
⁷ IVB _{a-hs}	27.6	⁷ IVB _{b-hs}	8.2
⁵ IVB _{a-hs}	27.6	⁵ IVB _{b-hs}	18.8
⁵ IVB _{a-is}	40.7	${}^{5}IVB_{h-is}$	75.4
$^{3}IVB_{a-is}$	62.7	${}^{3}IVB_{h-is}$	56.7
³ IVB _{a-ls}	48.9	3 IVB _{b-ls}	131.9
1 IVB _{a-ls}	136.2	1 IVB _{b-ls}	132.0

Table S1. B3LYP-D2 computed relative energy (ΔG in kJ mol⁻¹) for species I to IV with both the isomers A and B.

Formation energy(kJ/mol)									
Spin State	13-TMC	14-TMC							
${}^{2}I_{hs}$	-727.4	-725.5							
³ II _{hs}	-688.2	-670.7							
^{6/4} IIII _{hs}	-586.9	-646.0							
$^{7}\mathrm{IV}_{\mathrm{hs}}$	-652.9	-642.7							
$^{2}V_{ls}$	-686.1	-1515.1							

Table S2. B3LYP-D2 computed formation energies of species I to V with ground state.

Scheme S1. A model structure of vanadium-superoxo species with existence of quartet, and doublet spin states.

Fig. S2 B3LYP-D2 a) Optimized structure (bond lengths in Å), a') corresponding spin density plot of ${}^{2}I_{a-hs}$, b) optimized structure (bond lengths in Å), b') corresponding spin density plot of ${}^{2}I_{b-hs}$, and c) $d_{yz/xz}$ orbitals.

	Bond length (Å)										Bond angle (°)							
Spin State	M-	01-	M-Cl	M-N1	M-N2	M-N3	M-N4	M-	O2-H1	O2-	C-H	O2-	MO102	01-	O2-	O2-	N4-	N6-
	01	O2						N _{avg}		H2		C2		M-Cl	H1-	H2-	M-N5	M-N7
								_							C1	C2		
								[\	/(13-TMC)0	$O_2Cl]^+$								
${}^{4}I_{a-hs}$	1.939	1.369	2.378	2.178	2.145	2.149	2.150	2.155	-	-	-	-	141.1	174.9	-	-	167.9	162.1
${}^{2}I_{a-hs}$	1.740	1.347	2.369	2.168	2.146	2.156	2.165	2.159	-	-	-	-	176.4	176.3	-	-	167.9	164.4
4																		
${}^{4}I_{a-hs}$ -ts1	1.871	1.445	2.416	2.150	2.183	2.155	2.149	2.159	1.407	-	1.221	-	136.2	173.8	175.1	-	165.2	167.8
$^{2}I_{a-hs}$ -ts1	1.867	1.438	2.415	2.152	2.179	2.155	2.153	2.159	1.364	-	1.246	-	138.9	174.9	177.2	-	167.9	165.0
4																		
I_{a-hs} -Int	1.874	1.516	2.411	2.146	2.186	2.155	2.143	2.157	-	-	-	-	132.8	172.6	-	-	166.2	167.9
² I _{als} -Int	1.648	1.977	2.437	2.134	2.109	2.164	2.165	2.143	-	-	-	-	131.1	131.1	-	-	161.2	162.2
41	1 701	1.000	0.461	0 100	0 170	0 105	0 1 5 4	0 1 5 7		1 5 4 6		1 100	125.0	170 5		1757	165.0	1.00 5
T _{a-hs} -ts2	1./81	1.896	2.461	2.180	2.170	2.125	2.154	2.157	-	1.546	-	1.190	135.9	1/3.5	-	1/5./	165.9	169.5
² L D	1 6 2 1		0 45 1	2 162	2 162	2 1 2 0	2 1 4 9	0 152						1757			1667	160 0
$I_a - P$ $P_a f^1$	1.021	-	2.431	2.102	2.102	2.139	2.148	2.155	-	-	-	-	-	1/3./	-	-	100.7	108.2
Kel	1.308	-	-	-	-	-	-	-	- (13 TMC)	- 0.Cll ⁺	-	-	-	-	-	-	-	-
⁵ II .	2 030	1 372	2 380	2 154	2 106	2 1 1 5	2 1 2 3	$\frac{1}{2124}$	1(1 5-1 1/1C)				133.0	171.8			168 7	163 /
3 II	2.037	1.372	2.386	2.134 2 155	2.100	2.115	2.125	2.124 2 127			_	_	135.5	171.5	_	_	168.6	164.4
3 II	1.975	1.305	2.366	2.155	2.112 2 112	2.110 2 114	2.127	2.127			_	_	130.8	171.5	_	_	168.5	164.4
l_{a-ls}	1.900	1.300	2.300	2.153	2.112 2 100	2.114 2 115	2.125	2.120	-	-	-	-	139.8	172.4	-	-	168.6	164.0
11 _{a-ls}	1.925	1.304	2.308	2.133	2.109	2.113	2.127	2.120	-	-	-	-	140.2	172.3	-	-	108.0	104.3
⁵ II. ho-ts1	1 951	1 4 5 2	2 404	2 1 2 2	2 1 5 5	2.110	2.112	2 1 2 5	1 343	-	1 252	-	1314	173 1	175.6	_	165 5	1693
$^{3}\text{H}_{a-hs}$ -ts1	1.946	1.447	2.407	2.130	2.155	2.110	2.111	2.127	1.298	-	1.289	_	132.0	171.0	173.8	_	166.0	168.8
$^{3}\text{IL}_{a-1a}$ -ts1	1.906	1.446	2.390	2.130	2.156	2.111	2.110	2.127	1.309	-	1.280	_	134.0	171.7	175.1	_	165.9	168.8
1 IL _{a la} -ts1	1.906	1.446	2.390	2.130	2.156	2.111	2.110	2.127	1.345	-	1.258	_	134.0	171.7	17011	_	165.9	168.8
	1000	11110	2.070	2.100	21100			,	110 10		1.200		10 110	1,11,			1000	10010
⁵ II _{a-hs} -Int	1.739	2.179	2.397	2.160	2.122	2.111	2.115	2.127	-	-	-	-	136.8	174.2	-	-	166.3	168.5
$^{3}\text{II}_{a-1s}$ -Int	1.918	1.518	2.384	2.109	2.113	2.154	2.119	2.124	-	-	-	-	129.7	173.1	-	-	168.6	166.5
⁵ II _{a-hs} -ts2	1.941	1.749	2.423	2.127	2.139	2.146	2.087	2.125	-	1.557	-	1.192	131.5	172.8	-	177.6	164.7	170.5
³ II _{a-ls} -ts2	1.851	1.668	2.414	2.151	2.152	2.086	2.122	2.128	-	1.766	-	1.144	131.5	169.9	-	1.766	166.2	170.1

Table S3. B3LYP-D2 computed selective structural parameters of metal-superoxo species, intermediates, transition states and product with 13-TMC ligand.

³ II _{a-hs} -P	1.720	-	2.419	2.137	2.134	2.118	2.123	2.128	-	-	-	-	-	177.0	-	-	165.1	168.8
¹ II _{a-ls} -P	1.584	-	2.392	2.151	2.151	2.105	2.117	2.131	-	-	-	-	-	176.1	-	-	168.0	170.4
								[M 1	n(13-TMC)O ₂ O	Cl] ⁺								
⁶ III _{a-hs}	2.284	1.379	2.482	2.137	2.075	2.114	2.096	2.105	-	-	-	-	133.7	175.2	-	-	168.9	159.6
⁴ III _{a-hs}	2.078	1.323	2.352	2.231	2.202	2.237	2.161	2.208	-	-	-	-	133.8	170.7	-	-	163.7	158.6
⁴ III _{a-is}	1.967	1.365	2.336	2.136	2.073	2.082	2.102	2.098	-	-	-	-	135.2	170.9	-	-	169.9	163.8
² III _{a-is}	1.910	1.359	2.327	2.135	2.074	2.085	2.103	2.099	-	-	-	-	138.9	173.3	-	-	170.7	164.8
² III _{a-ls}	1.909	1.359	2.326	2.135	2.074	2.085	2.103	2.099	-	-	-	-	138.9	173.3	-	-	170.7	164.8
${}^{6}\text{III}_{a-hs}$ -ts1	1.931	1.434	2.344	2.238	2.146	2.241	2.183	2.202	1.358	-	1.251	-	131.6	170.5	172.8	-	165.1	162.5
${}^{4}\text{III}_{a-hs}$ -ts1	1.938	1.426	2.348	2.193	2.232	2.167	2.230	2.205	1.305	-	1.296	-	131.9	169.1	168.5	-	162.3	165.0
${}^{4}\text{III}_{a-is}$ -ts1	1.901	1.449	2.353	2.095	2.139	2.075	2.079	2.097	1.360	-	1.244	-	132.0	173.3	175.7	-	166.1	171.1
$^{2}\text{III}_{a-is}$ -ts1	1.897	1.443	2.357	2.106	2.140	2.075	2.078	2.099	1.315	-	1.279	-	132.5	171.3	173.3	-	166.9	170.5
$^{2}\text{III}_{a-1s}$ -ts1	1.886	1.446	2.358	2.105	2.142	2.075	2.078	2.100	1.330	-	1.266	-	132.9	171.7	175.0	-	166.7	170.5
⁶ III _{a-hs} -Int	2.092	1.521	2.493	2.191	2.066	2.159	2.069	2.121	_	-	-	-	129.3	174.6	-	-	168.6	164.8
4III _{a-is} -Int	1.904	1.524	2.358	2.079	2.133	2.083	2.082	2.094	-	-	-	-	127.7	172.6	-	-	170.2	167.0
$^{2}\text{III}_{a-ls}$ -Int	2.256	1.320	2.482	2.137	2.075	2.113	2.096	2.105	-	-	-	-	141.1	170.8	-	-	168.9	159.5
u IS																		
⁴ III _{a-is} -ts2	1.811	1.747	2.399	2.088	2.126	2.130	2.051	2.099	-	1.728	-	1.150	130.2	169.2	-	172.3	166.7	170.9
$^{2}\text{III}_{a-ls}$ -ts2	1.839	1.653	2.371	2.090	2.133	2.137	2.050	2.102	-	1.765	-	1.145	132.1	170.5	-	173.5	166.8	171.9
u IS																		
⁴ III _{a-hs} -P	1.686	-	2.415	2.103	2.109	2.085	2.099	2.099	-	-	-	-	-	177.1	-	-	166.0	169.0
² III _{a-ls} -P	1.640	-	2.377	2.114	2.115	2.081	2.092	2.100	-	-	-	-	-	176.6	-	-	166.7	170.2
								[Fe	e(13-TMC)O ₂ C	[1] ⁺								
$^{7}IV_{a-hs}$	2.145	1.322	2.364	2.181	2.172	2.209	2.163	2.181	-	-	-	-	155.5	176.4	-	-	163.3	154.3
$^{5}IV_{a-hs}$	1.983	1.349	2.352	2.181	2.158	2.186	2.186	2.178	-	-	-	-	147.5	176.6	-	-	164.1	158.2
⁵ IV _{a-is}	2.283	1.359	2.443	2.111	2.046	2.078	2.085	2.080	-	-	-	-	134.8	175.3	-	-	158.5	170.3
$^{3}IV_{a-is}$	2.175	1.369	2.435	2.125	2.048	2.087	2.084	2.086	-	-	-	-	136.0	175.1	-	-	170.8	160.7
$^{3}IV_{a-ls}$	1.988	1.363	2.338	2.114	2.053	2.059	2.076	2.075	-	-	-	-	131.2	169.6	-	-	170.4	165.4
¹ IV _{a-ls}	1.956	1.356	2.345	2.061	2.053	2.112	2.073	2.075	-	-	-	-	131.8	171.7	-	-	166.1	171.1
$^{7}IV_{a-hs}$ -ts1	1.970	1.417	2.390	2.183	2.194	2.201	2.167	2.186	1.341	-	1.263	-	143.8	175.9	178.5	-	164.3	160.3
${}^{5}IV_{a-hs}$ -ts1	1.941	1.421	2.385	2.198	2.165	2.182	2.194	2.185	1.334	-	1.263	-	142.0	175.5	177.6	-	160.7	164.4
⁵ IV _{a-is} -ts1	1.950	1.426	2.349	2.145	2.188	2.150	2.209	2.173	1.358	-	1.251	-	129.3	169.2	170.9	-	163.0	165.5
$^{3}IV_{a-is}$ -ts1	1.966	1.417	2.364	2.154	2.184	2.157	2.204	2.175	1.295	-	1.305	-	130.3	168.7	169.2	-	165.6	163.0

$^{3}IV_{a-ls}$ -ts1	1.885	1.449	2.355	2.056	2.069	2.116	2.054	2.074	1.370	-	1.239	-	130.0	173.1	176.1	-	167.6	171.4
¹ IV _{a-ls} -ts1	1.886	1.448	2.357	2.052	2.075	2.118	2.051	2.074	1.337	-	1.262	-	129.8	171.9	174.8	-	171.4	168.0
⁷ IV _{a-hs} -Int	1.970	1.497	2.376	2.157	2.178	2.192	2.207	2.183	-	_	-	-	138.5	164.0	-	-	160.7	164.0
5IV _{a-is} -Int	2.079	1.518	2.463	2.076	2.129	2.050	2.086	2.085	-	-	-	-	130.1	175.4	-	-	164.5	171.3
³ IV _{a-ls} -Int	1.878	1.524	2.345	2.056	2.063	2.111	2.059	2.072	-	-	-	-	127.1	172.7	-	-	171.3	168.5
7 IV. he-ts?	1 967	1 732	2,408	2,202	2 177	2 185	2 151	2 179	_	1 599	-	1 181	133.6	172.7	-	176.8	161 1	167 5
${}^{5}IV_{a}$ is $-ts2$	1.929	1.639	2.437	2.176	2.210	2.179	2.186	2.187	-	1.592	_	1.183	139.6	172.6	_	175.1	161.9	166.9
$^{3}IV_{a-1s}$ -ts2	1.816	1.714	2.375	2.107	2.112	2.022	2.063	2.076	-	1.701	-	1.156	132.1	171.3	-	172.5	167.9	172.4
⁵ IV. hP	1 663	_	2 322	2 147	2 169	2 183	2 205	2 176	_	_	_	_	_	176 9	_	_	162.3	165.2
$^{3}IV_{a} = P$	1.663	-	2.364	2.093	2.099	2.053	2.203	2.079	-	-	-	-	-	177.3	-	_	171.0	167.1
${}^{1}IV_{a-ls}-P$	1.674	-	2.353	2.090	2.090	2.058	2.070	2.077	-	-	-	-	-	176.7	-	-	170.7	166.7
2 IV ₂ 1s	1.980	1.354	2.349	2.055	2.093	2.027	2.036	2.053	-	_	_	_	130.8	171.4	_	_	166.9	171.6
Exp. ²		1.34																
								[Co	$(13-TMC)O_2$	C1]+								
$^{2}V_{a-ls}$	1.980	1.354	2.349	2.055	2.093	2.026	2.036	2.052	-	-	-	-	130.8	171.4	-	-	166.9	171.6
$^{2}V_{a-ls}$ -ts1	1.953	1.443	2.365	2.026	2.059	2.100	2.024	2.052	1.285	-	1.301	-	128.6	170.3	172.5	-	171.6	168.1
⁴ V _{a-is} -Int	1.999	1.514	2.470	2.158	2.026	2.117	2.020	2.080	_	_	-	-	128.7	174.0	-	-	167.8	170.7
$^{2}V_{a-ls}$ -Int	1.958	1.528	2.340	2.041	2.091	2.023	2.029	2.046	-	-	-	-	124.5	173.1	-	-	168.1	172.4
⁶ V _{a-bs} -ts2	2.008	1.671	2.394	2.174	2.167	2.130	2.188	2.080	-	1.714		1.156	134.1	171.5	174.7	-	159.6	168.8
$^{2}V_{a-ls}$ -ts2	1.901	1.738	2.371	2.135	2.113	2.076	2.087	2.103	-	1.607	-	1.180	128.8	172.5	174.9	-	175.6	175.2
⁶ V _{a-hs} -P	1.921	-	2.334	2.207	2.179	2.183	2.158	2.182	-	-	-	-	175.5	-	-	-	165.4	153.5
${}^{4}V_{a-is}$ -P	1.657	-	2.286	2.132	2.193	2.132	2.189	2.161	-	-	-	-	177.1	-	-	-	164.6	168.2
V_{a-ls} -P	1.853	-	2.351	2.066	2.062	2.024	2.038	2.047	-	-	-	-	178.4	-	-	-	172.1	165.2
Exp. ³	1.72	-	-	-	-	-	-	2.02	-	-	-	-	-	-	-	-	-	-

Bond Length (Å) Bond Angel (°)																		
Spin State	M-01	01-	M-Cl	M-N1	M-N2	M-N3	M-N4	M-N _{avg}	O2-	O2-	H1-	H2-	MO102	01-	O2-	O2-	N1-	N3-M-
		O2						U	H1	H2	C1	C1		M-Cl	H1-	H2-	M-	N4
															C1	C2	N2	
								[V(14-TMC]	$\left(O_{2}Cl \right)^{+}$									
${}^{4}\mathbf{I}_{b-hs}$	1.911	1.370	2.382	2.207	2.188	2.197	2.215	2.202	-	-	-	-	140.0	174.3	-	-	173.1	172.7
${}^{2}\mathbf{I}_{b-hs}$	1.741	1.343	2.371	2.200	2.207	2.200	2.207	2.203	-	-	-	-	173.7	176.1	-	-	173.9	173.9
${}^{4}I_{b-hs}$ -ts1	1.858	1.445	2.419	2.193	2.225	2.213	2.184	2.196	1.407	-	1.216	-	135.3	173.4	176.2	-	174.4	174.6
$^{2}I_{b-hs}$ -ts1	1.856	1.439	2.418	2.225	2.209	2.186	2.196	2.204	1.364	-	1.239	-	137.5	174.6	178.1	-	174.4	174.5
⁴ I _{b-hs} -Int	1.859	1.515	2.412	2.180	2.217	2.223	2.192	2.203	-	-	-	-	132.3	172.3	-	-	175.4	175.0
${}^{2}I_{b-ls}$ -Int	1.655	1.912	2.443	2.132	2.216	2.219	2.156	2.181	-	-	-	-	129.7	169.1	-	-	176.6	174.4
4I _b -hs-ts2	1.733	2.074	2.464	2.221	2.196	2.204	2.222	2.211	-	1.550	-	1.211	148.6	178.2	-	173.3	176.2	175.7
2 I _{b-hs} -P	1.616	-	2.451	2.193	2.204	2.192	2.205	2.198		-	-	-	-	176.7	-	-	176.2	176.2
								[Cr(14-T]	MC)O ₂ Cl]	+								
⁵ II _{b-hs}	2.021	1.371	2.382	2.179	2.167	2.152	2.177	2.169	-	-	-	-	132.4	172.3	-	-	173.3	172.9
³ II _{b-hs}	1.958	1.363	2.388	2.183	2.167	2.154	2.182	2.171	-	-	-	-	134.7	172.4	-	-	173.8	173.6
$^{3}\text{II}_{b-ls}$	1.889	1.365	2.368	2.180	2.167	2.154	2.183	2.171	-	-	-	-	139.2	173.2	-	-	174.2	174.0
$^{1}\text{II}_{b-ls}$	1.909	1.363	2.368	2.180	2.155	2.165	2.177	2.169	-	-	-	-	139.7	173.4	-	-	174.0	173.8
Exp. ^{.4}	1.876	1.231	2.316	-	-	-	-	-		-	-	-	146.3	174.5	-	-	-	-
-																		
⁵ II _{b-hs} -ts1	1.937	1.451	2.406	2.186	2.151	2.161	2.189	2.172	1.343	-	1.250	-	130.7	172.3	172.7	-	174.2	174.3
³ II _{b-hs} -ts1	1.930	1.447	2.409	2.189	2.157	2.168	2.181	2.174	1.298	-	1.286	-	131.9	170.9	170.0	-	174.8	174.7
$^{3}\text{II}_{\text{b-ls}}$ -ts1	1.914	1.449	2.390	2.150	2.159	2.187	2.181	2.169	1.309	-	1.247	-	133.1	173.1	173.9	-	174.2	174.3
${}^{1}\Pi_{b-1s}$ -ts1	1.888	1.447	2.390	2.184	2.151	2.162	2.187	2.171	1.345	-	1.258	-	134.2	173.1	-	-	174.6	174.8
0-13																		
⁵ II _{b-bs} -Int	1.943	1.516	2.397	2.147	2.183	2.196	2.161	2.172	-	-	-	-	127.5	172.0	-	-	175.1	174.6
$^{3}\text{II}_{\text{b-ls}}$ -Int	1.894	1.518	2.386	2.161	2.144	2.185	2.196	2.171	-	-	-	-	129.2	171.8	-	-	175.3	174.9
0-13																		
⁵ II _{b-bs} -ts2	1.911	1.754	2.431	2.159	2.159	2.202	2.202	2.180	-	1.561	-	1.194	127.2	176.7	-	179.6	174.5	174.5
$^{3}\text{II}_{1}$ 1-ts?	1.867	1.706	2.432	2.156	2.155	2.208	2.208	2.182	-	1.683	-	1.163	125.6	175.1	-	179.0	175.1	175.1

Table S4. B3LYP-D2 computed selective structural parameters of metal-superoxo species, intermediates, transition states and product with 14-TMC ligand.

${}^{3}\text{II}_{b-hs}-P$	1.715	-	2.419	2.167	2.167	2.176	2.176	2.171	-	-	-	-	-	176.8	-	-	174.5	174.5
¹ II _{b-ls} -P	1.580	-	2.387	2.176	2.182	2.175	2.182	2.179	-	-	-	-	-	176.9	-	-	176.6	176.6
Exp. ⁵	1.698	-	2.383											176.8				
								[Mn(14-T]	MC)O ₂ Cl] ⁺								
⁶ III _{b-hs}	2.107	1.355	2.393	2.289	2.292	2.122	2.151	2.213	-	-	-	-	133.2	171.8	-	-	170.5	170.2
⁴ III _{b-hs}	2.043	1.322	2.354	2.254	2.273	2.217	2.268	2.253	-	-	-	-	133.1	171.4	-	-	169.6	170.0
⁴ III _{b-is}	1.966	1.365	2.331	2.162	2.137	2.129	2.153	2.145	-	-	-	-	132.8	171.7	-	-	173.7	173.1
$^{2}\text{III}_{b-is}$	1.918	1.357	2.333	2.158	2.161	2.132	2.139	2.147	-	-	-	-	134.5	172.4	-	-	173.8	174.1
² III _{b-ls}	1.884	1.357	2.328	2.157	2.141	2.134	2.158	2.079	-	-	-	-	139.2	173.8	-	-	174.2	174.01
⁶ III _{b-hs} -ts1	1.922	1.430	2.346	2.257	2.265	2.268	2.219	2.252	1.358	-	1.242	-	130.6	171.3	169.6	-	172.7	172.8
⁴ III _{b-hs} -ts1	1.928	1.423	2.353	2.257	2.253	2.276	2.230	2.254	1.305	-	1.296	-	131.3	169.6	167.2	-	173.1	173.2
⁴ III _{b-is} -ts1	1.886	1.447	2.348	2.166	2.134	2.128	2.166	2.148	1.360	-	1.240	-	131.2	172.5	169.7	-	174.8	174.8
$^{2}\text{III}_{\text{b-is}}$ -ts1	1.881	1.442	2.354	2.140	2.157	2.169	2.133	2.149	1.315	-	1.275	-	132.4	171.2	169.3	-	175.2	175.1
$^{2}\text{III}_{b-ls}$ -ts1	1.869	1.444	2.355	2.136	2.158	2.169	2.134	2.149	1.330	-	1.262	-	133.3	171.6	170.9	-	175.1	175.2
⁶ III. he -In t	1 916	1 511	2 344	2 132	2 318	2 179	2 313	2,235	_	_	_	_	127.8	169.9	_	_	173 7	173 7
⁴ III _{a io} -Int	1.885	1.519	2.351	2.117	2.162	2.175	2.130	2.146	-	_	_	-	127.0	171.2	_	_	175.8	175.3
² III _{a-ls} -Int	1.767	1.537	2.343	2.128	2.173	2.184	2.135	2.155	-	-	-	-	130.1	170.8	-	-	176.7	176.3
⁴ III _{b-is} -ts2	1.839	1.654	2.341	2.304	2.209	2.304	2.184	2.250	-	1.769	-	1.146	130.8	168.6	_	173.6	174.8	173.6
² III _{b-1s} -ts2	1.814	1.641	2.369	2.147	2.155	2.147	2.180	2.157	-	1.800	-	1.141	133.9	169.2	-	178.2	175.7	176.7
⁴ III _{b-hs} -P	1.680	-	2.417	2.134	2.157	2.134	2.157	2.145	-	-	-	-	_	2.417	-	-	175.1	175.1
² III _{b-ls} -P	1.637	-	2.370	2.143	2.154	2.143	2.153	2.148	-	-	-	-	-	2.370	-	-	175.6	175.5
								[Fe(14-TN	MC)O ₂ Cl]	+								
⁷ IV _{b-hs}	2.116	1.327	2.371	2.215	2.223	2.224	2.226	2.222	-	-	-	-	148.1	175.6	-	-	167.6	167.9
⁵ IV _{b-hs}	1.950	1.348	2.355	2.221	2.239	2.213	2.237	2.227	-	-	-	-	145.3	176.0	-	-	170.7	170.2
⁵ IV _{b-is}	2.172	1.364	2.444	2.149	2.135	2.152	2.124	2.140	-	-	-	-	134.9	173.6	-	-	171.3	170.8
${}^{3}IV_{b-is}$	2.160	1.304	2.386	2.232	2.181	2.242	2.215	2.217	-	-	-	-	132.6	173.0	-	-	169.8	170.6
$^{3}IV_{b-ls}$	1.976	1.363	2.339	2.115	2.130	2.136	2.103	2.121	-	-	-	-	129.5	171.3	-	-	174.6	174.1
${}^{1}IV_{b-ls}$	1.929	1.355	2.346	2.112	2.138	2.136	2.106	2.123	-	-	-	-	130.8	171.7	-	-	174.7	174.9
⁷ IV _{b-hs} -ts1	1.942	1.417	2.395	2.224	2.209	2.241	2.252	2.231	1.341	-	1.258	-	142.3	175.9	178.9	-	171.8	171.8
⁵ IV _{b-hs} -ts1	1.916	1.420	2.391	2.252	2.224	2.210	2.235	2.230	1.334	-	1.259	-	141.1	175.5	177.7	-	172.3	172.1

⁵ IV _{b-is} -ts1	1.947	1.420	2.365	2.263	2.207	2.218	2.190	2.219	1.358	-	1.251	-	128.9	170.5	168.6	-	173.7	173.4
$^{3}IV_{b-is}$ -ts1	1.961	1.412	2.377	2.257	2.213	2.225	2.195	2.222	1.295	-	1.306	-	130.5	169.9	167.0	-	173.5	173.8
$^{3}IV_{b-1s}$ -ts1	1.871	1.447	2.351	2.110	2.150	2.137	2.103	2.125	1.370	-	1.232	-	129.0	172.2	167.0	-	175.7	175.3
¹ IV _{b-ls} -ts1	1.867	1.447	2.354	2.105	2.111	2.139	2.146	2.125	1.337	-	1.257	-	129.3	171.2	170.5	-	175.9	175.7
⁷ IVInt	1 953	1 495	2 378	2 209	2 229	2 247	2 231	2 229	_	_	_	_	134.8	173 5	_	_	173.0	172 4
${}^{5}IV_{1}$ - Int	2 021	1.495	2.370 2 457	2.207	2.229	2.247 2 151	2.251	2.229	_	_	_	_	130.6	130.6	_	_	174.5	174.3
$^{3}IV_{b-1s}$ -Int	1.858	1.522	2.344	2.124	2.100	2.101	2.108	2.149	-	-	-	-	126.5	171.4	-	-	176.4	175.9
7 IV ₁ -ts ²	1 927	1 724	2 403	2 209	2 229	2 260	2 237	2 233	_	1 604	_	1 180	134.4	172.9	_	174 7	173.6	172.6
${}^{5}\text{IV}_{1}$ -ts?	1.927	1.724	2.403	2.209	2.229	2.200	2.237	2.233	_	1.604	_	1.150	134.4	172.0	_	170.8	175.0	176.2
3 IV _{b-1s} -ts2	1.802	1.716	2.369	2.100	2.109	2.160	2.142	2.128	-	1.699	-	1.159	130.7	172.0	-	170.0	176.2	175.7
⁵ W D	1 650		2 2 2 7	2 202	2 202	1 120	2 227	2 210						177 5			172 4	172 /
$^{1}V_{b-hs}$ -P	1.039	-	2.521	2.202	2.202	2.230	2.237	2.219	-	-	-	-	-	1701	-	-	175.4	175.4
$^{1}V_{b-is}-P$	1.037	-	2.302	2.195	2.233	2.207	2.242	2.219	-	-	-	-	-	176.1	-	-	175.4	175.4
F_{b-ls}	1.009	-	2.347	2.119	2.120	2.119	2.120	2.125	-	-	-	-	-	170.9	-	-	175.5	175.5
Exp.	1.040	-	-	2.007	2.009	2.109	2.117	- [Co(14 T		+	-	-	-	-	-	-	-	-
2 V.	1 050	1 351	2 3/8	2 1 1 6	2 1 1 4	2 1 1 6	2.086	2 116					120 /	171.6			174.0	175 1
v b-ls	1.939	1.551	2.540	2.110	2.114	2.110	2.080	2.110	-	-	-	-	129.4	171.0	-	-	174.9	175.1
$^{2}V_{b-ls}$ -ts1	1.939	1.443	2.359	2.089	2.112	2.127	2.083	2.103	1.310	-	1.296	-	127.7	170.4	172.5	-	175.4	175.7
⁶ V _{b-hs} -Int	1.984	1.472	2.415	2.180	2.221	2.216	2.209	2.206					132.1	171.4	_	-	174.0	173.3
$^{4}V_{b-is}$ -Int	1.917	1.511	2.384	2.063	2.243	2.117	2.235	2.164					128.6	172.0	-	-	175.6	175.2
$^{2}V_{b-ls}$ -Int	1.934	1.525	2.342	2.080	2.133	2.114	2.073	2.100	-	-	-	-	123.9	171.2	-	-	176.2	175.7
⁶ V _{b-hs} -ts2	1.949	1.670	2.392	2.193	2.209	2.223	2.239	2.216		1.706		1.157	133.4	171.2	-	-	173.4	173.2
$^{2}V_{b-ls}$ -ts2	1.926	1.736	2.375	2.073	2.083	2.001	2.044	2.050	-	1.612	-	1.176	130.1	172.4	-	175.5	167.0	172.9
⁶ V _{b-hs} -P	1.872	_	2.374	2.221	2.225	2.221	2.226	2.223	-	-	-	_	-	174.4	_	-	170.9	170.9
${}^{4}V_{\text{b-is}}-P$	1.647	-	2.284	2.199	2.221	2.199	2.221	2.210	-	-	-	-	-	177.5	-	-	173.9	173.8
^{2}V	1 835	_	2 353	2 090	2 098	2 090	2 099	2 094	_	_	_	_	_	1774	_	_	1737	173 7

Scheme S2. Orbital picture of vanadium-superoxo species.

Spin State	М	01	O2	C1	C2
	[V(13	$3-TMC)O_2Cl]^+$			
⁴ I _{a-hs}	2.143	0.236	0.699	-	-
$^{2}I_{a-hs}$	1.960	-0.397	-0.451	-	-
${}^{4}I_{a-hs}$ -ts1	2.150	-0.011	0.477	0.264	-
$^{2}I_{a-hs}$ -ts1	2.162	-0.153	-0.380	-0.283	-
u 115					
⁴ I _{a-hs} -Int	2.121	-0.091	0.076	-	-
${}^{2}I_{als}$ -Int	0	0	0	-	-
uis					
4I _{a-hs} -ts2	1.985	0.218	0.348	-	0.049
u iis					
2 I _a -P	1.267	-0.195	-	-	-
	[Cr(1]	$3-TMC)O_2Cl]^+$			
⁵ II _{a-hs}	3.219	0.317	0.643	-	-
$^{3}\text{II}_{a-hs}$	3.221	-0.397	-0.627	-	-
$^{3}\mathrm{II}_{a-1s}$	1.161	0.308	0.606	-	-
${}^{1}\mathrm{II}_{a-1s}$	1.117	-0.383	-0.648	-	-
u is					
$5_{\text{II}_{a-bs}}$ -ts1	3.170	0.079	0.431	0.301	-
${}^{3}\text{II}_{a-bs}$ -ts1	3.173	-0.106	-0.34	-0.327	-
${}^{3}\text{II}_{2,16}$ -ts1	1.169	-0.017	0.383	0.319	_
${}^{1}\text{II}_{a-1s}$ ts1	-1.116	0.102	0.403	0.297	-
	1.110	0.102	0.105	0.277	
⁵ II _{a ha} -Int	1.137	-0.067	0.0136	_	-
${}^{3}\text{II}_{a-1a}$ -Int	1 137	-0.067	0.013	_	-
Ha-is int	1.107	0.007	0.015		
5II. he-ts?	3 149	0 376	0.001	_	-0 118
^{3}II , -ts?	1 195	0.219	-0.107	_	0.115
m _{a-ls} to 2	1.175	0.21)	0.107		0.115
³ II , -P	2 761	-0 566	_	_	_
1 II $_{1}$ -P	0	0.500	_	_	_
11 _{a-1s} -1	<u>[Mn(1</u>	$\frac{0}{3-TMC)O_{2}C11^{+}}$			
⁶ III .	<u> </u>	$\frac{0.467}{0.467}$	0.637		
4_{III}	4.102	-0.621	-0.765	_	_
4_{III}	4.330	-0.021	-0.705	-	-
2_{III}	2.105	0.353	0.013	-	-
2_{III}	-0.000	0.333	0.041	-	-
m _{a-ls}	-0.007	0.555	0.041	-	-
⁶ III 1 -tel	4 100	-0.030	0 371	0 282	-
4III to 1	4.100	-0.030	-0.381	-0.202	-
4_{III} 4_{III} 4_{III}	4.147	-0.244 0.1066	-0.304	-0.324	-
2_{III}	2.007	0.1000	0.433	0.200	-
m_{a-is} -tS I ² III (-1)	2.092	-0.004	-0.349	-0.310	-
m_{a-1s} -ts 1	0.086	0.003	0.392	0.306	-
⁶ III , Int	3 008	0.083	0.027		
111 _{a-hs} -1111	J.770	0.005	0.047	-	-

Table S5. B3LYP-D2 computed spin density values of metal-superoxo species, intermediates, transition states and product with 13-TMC.

4 III _{a-is} -Int 2.093 0.038 0.017	
2 III _{a-ls} -Int 0	
${}^{4}\text{III}_{a-is}$ -ts2 2.194 0.329 -0.160	0.112
2 III _{a-ls} -ts2 0.037 0.297 -0.079	0.113
4	
$-\Pi_{a-hs}$ -P 2.625 0.555 -	
$^{2}\text{III}_{a-ls}$ -P 1.083 0.012 -	
[Fe(13-TMC)O ₂ CI]	
$^{\prime}\mathrm{IV}_{\mathrm{a-hs}}$ 3.903 0.687 0.810	
$_{\rm IV_{a-hs}}^{\rm IV_{a-hs}}$ 3.938 -0.106 -0.512	
$_{\rm a-is}^{\rm JIV_{a-is}}$ 2.861 0.542 0.687	
$^{5}_{2}IV_{a-is}$ 3.448 -0.705 -0.842	
$_{\rm IV_{a-ls}}^{\rm SIV_{a-ls}}$ 1.179 0.329 0.628	
1 IV _{a-ls} 1.233 -0.402 -0.664	
7 W to 1 2.022 0.420 0.502 0	201
$1V_{a-hs}$ -181 3.925 0.429 0.502 0. $5W_{a-hs}$ -181 2.022 0.222 0.251 0.	
$1V_{a-hs}$ -181 3.952 0.252 -0.251 -0	.500 -
$1V_{a-is}$ -ts1 3.115 -0.040 0.315 0.	275 -
$-1V_{a-is}$ -ts1 3.198 -0.290 -0.433 -0	.331 -
V_{a-ls} -ts1 1.028 0.142 0.432 0.	- 282 -
$1V_{a-ls}$ -ts1 1.038 -0.014 -0.389 -0	.302 -
7 IV. LInt 3.971 0.269 0.052	
^{5}IV - Int 2.835 0.180 0.023	
3 IV $_{3-15}$ -Int 1.038 0.078 0.001	
$1 v_{a-ls}$ -int 1.056 0.076 0.001	
7 IV _{a-hs} -ts2 3.965 0.692 0.008	- 0.084
${}^{5}IV_{a-is}$ -ts2 3.851 0.102 0.025	0.052
3 IV _{a-ls} -ts2 1.045 0.408 -0.086	- 0.081
e e e e e e e e e e e e e e e e e e e	
⁵ IV _{a-hs} -P 3.052 0.638 -	
⁵ IV _{a-is} -P 1.288 0.796 -	
1 IV _{a-ls} -P 0 0 -	
$[Co(13-TMC)O_2Cl]^+$	
$^{2}V_{a-ls}$ -0.127 0.449 0.638	
^{2}V . ts1 _0.011 0.119 0.349 0	337 -
v_{a-ls} -tsi -0.011 0.119 0.549 0.	
⁶ V _{a-hs} -Int 1.775 0.196 0.014	
$^{2}V_{a-ls}$ -Int 0 0 -	
(NA) 0 0000 0 0001	0.115
v_{a-hs} -tS2 2./36 0.856 0.061	0.115
$-v_{a-ls}$ -ts2 0.059 0.364 -0.084	0.122
⁶ V _{2-bs} -P 2.734 1.396 -	
${}^{4}V_{a,is}-P$ 1.831 0.900 -	
$^{2}V_{a-ls}-P$ -0.028 0.972 -	

Spin State	М	01	O2	C1	C2
	[V(1	$4\text{-TMC}O_2Cl]^+$			
${}^{4}\mathbf{I}_{b-hs}$	2.166	0.203	0.722	-	-
$^{2}\mathbf{I}_{b-hs}$	2.014	-0.406	-0.478	-	-
${}^{4}I_{b-hs}$ -ts1	2.168	-0.020	0.484	0.256	-
$^{2}I_{b-hs}$ -ts1	2.181	-0.155	-0.386	-0.272	-
4 I _{b bc} -Int	2.1371	0.079	-0.096	-	-
2 I _{b to} -Int	0	0	0	-	-
0-13	-	-	-		
⁴ I _b -hs-ts2	1.919	0.175	0.685	-	-0.029
2					
² I _{b-hs} -P	1.288	2004	-	-	-
	[Cr($[4-TMC)O_2CI]^*$	0.470		
^J II _{b-hs}	3.248	0.307	0.650	-	-
³ II _{b-hs}	3.246	-0.390	-0.632	-	-
⁵ II _{b-ls}	1.185	0.299	0.607	-	-
$^{1}\mathrm{II}_{b-\mathrm{ls}}$	1.132	-0.375	-0.650	-	-
⁵ II to 1	2 102	0.070	0 422	0.205	
Π_{b-hs} -tSI	5.192 2.101	0.079	0.432	0.295	-
Π_{b-hs} -tSI	3.191	-0.096	-0.346	-0.322	-
Π_{b-ls} -ts I	0.945	0.155	0.429	0.291	-
II _{b-ls} -tSI	-1.116	0.101	0.403	0.297	-
5II _{b bc} -Int	3,179	-0.002	0.040	-	-
$^{3}\text{II}_{\text{b-ls}}$ -Int	1.126	-0.044	0.007	-	_
0 15					
⁵ II _{b-hs} -ts2	3.159	0.384	0.014	-	-0.118
${}^{3}\text{II}_{\text{b-ls}}$ -ts2	3.099	-0.266	0.099	-	0.126
3					
$^{J}II_{b-hs}-P$	2.784	-0.569	-	-	-
¹ II _{b-ls} -P	0	0	-	-	-
6	[Mn($14\text{-TMC}O_2Cl$	T		
^o III _{b-hs}	4.202	0.287	0.563	-	-
⁴ III _{b-hs}	4.344	-0.604	-0.776	-	-
⁴ III _{b-is}	2.176	0.331	0.640	-	-
$^{2}III_{b-is}$	2.186	-0.639	-0.377	-	-
² III _{b-ls}	-0.012	0.350	0.647	-	-
6III +o 1	1 1 4 4	0.044	0.250	0 266	
4_{TT}	4.144 1 106	-0.044	0.339	0.200	-
4_{III} 4_{α}	4.100	-U.24ð 0.100	-0.392	-0.520	-
111_{b-is} -tS I	2.095	0.109	0.441	0.279	-
111_{b-is} -tS I 2 TH (-1)	2.092	-0.051	-0.34/	-0.309	-
III _{b-ls} -tS I	0.101	-0.014	0.395	0.299	-
⁶ IIIInt	3 987	-0.010	0.042	_	_
4III Int	2.207	0.010	0.072	_	-
m _{b-is} -mu	2.090	0.042	0.023	-	-

Table S6. B3LYP-D2 computed spin density values of metal-superoxo species, intermediates, transition states and product with 14-TMC.

	² III _{b-ls} -Int	0	0	0	-	-
	4IIIts2	3 898	-0.214	0.049	_	0.113
	2 IIIts?	0.063	0.214	-0.054	_	-0.109
	m _{b-ls} -ts2	0.005	0.231	-0.054	_	-0.107
	⁴ III _{b-hs} -P	2.677	0.545	-	-	-
	$^{2}III_{b-ls}-P$	1.165	-0.061	-	-	-
		[Fe(1	$[4-TMC)O_2Cl]^+$	÷		
	⁷ IV _{b-hs}	3.929	0.656	0.799	-	-
	⁵ IV _{b-hs}	3.937	-0.079	-0.521	-	-
	⁵ IV _{b-is}	2.861	0.542	0.687	-	-
	³ IV _{b-is}	3.426	-0.834	-0.689	-	-
	³ IV _{b-ls}	1.179	0.329	0.628	-	-
	${}^{1}IV_{b-ls}$	1.233	-0.402	-0.664	-	-
	7 IV _{b-hs} -ts1	3.930	0.432	0.504	0.292	-
	${}^{5}IV_{b-hs}$ -ts1	3.938	0.247	-0.253	-0.294	-
	${}^{5}IV_{b-is}$ -ts1	3.194	-0.076	0.277	0.266	-
	${}_{2}^{3}IV_{b-is}$ -ts1	3.262	-0.307	-0.447	-0.327	-
	$^{3}IV_{b-ls}$ -ts1	1.031	0.150	0.437	0.269	-
	$^{1}IV_{b-ls}$ -ts1	1.036	0.003	-0.391	-0.295	-
	⁷ IV _{b-hs} -Int	3.980	0.276	0.051	-	-
	⁵ IV _{b-is} -Int	2.896	0.194	0.030	-	-
	³ IV _{b-ls} -Int	1.039	0.089	-0.000	-	-
	7 IV _{b bs} -ts2	3.961	0.698	0.038	-	-0.118
	5 IV _{b-is} -ts2	1.049	0.419	-0.080	-	-0.119
	$^{3}IV_{b-ls}$ -ts2	1.049	0.419	-0.080	-	-0.118
	_					
	⁵ IV _{b-hs} -P	3.081	0.632	-	-	-
	${}^{3}IV_{b-is}-P$	1.313	0.793	-	-	-
	¹ IV _{b-ls} -P	0	0	-	-	-
	2	[Co()	$14\text{-TMC}O_2Cl]$	Ŧ		
	$^{2}\mathbf{V}_{\mathrm{b-ls}}$	-0.146	0.456	0.642	-	-
	$^{2}V_{b-ls}$ -ts1	0.002	0.107	0.349	-	-
	⁶ V _{b-bs} -Int	2.776	0.437	0.083	-	-
	${}^{4}V_{\text{b-is}}$ -Int	1.829	0.173	0.013	-	-
	$^{2}V_{b-ls}$ -Int	0	0	0	-	-
	6 V to 2	0.755	0.921	0.070		0.114
	v_{b-hs} -ts2 ^{2}V ts2	2.755	0.821	0.070	-	-0.114
	v _{b-ls} -ts2	0.001	0.300	-0.077	-	-0.122
	⁶ V _{b-bs} -P	2.750	1.400	-	-	-
	${}^{4}V_{b-is}$ -P	1.855	0.884	-	-	-
	${}^{2}V_{b-ls}-P$	-0.026	0.974	-	-	-
-						

O2 (at distal oxygen)	O2 (at distal oxygen)
$\left[V(13\text{-}TMC)O_2Cl\right]^+$	$[V(14-TMC)O_2Cl]^+$
-0.211	-0.206
$\left[\mathrm{Cr}(13\text{-}\mathrm{TMC})\mathrm{O}_{2}\mathrm{Cl}\right]^{+}$	$\left[\mathrm{Cr}(14\text{-}\mathrm{TMC})\mathrm{O}_{2}\mathrm{Cl}\right]^{+}$
-0.166	-0.160
$[Mn(14-TMC)O_2Cl]^+$	$[Mn(14-TMC)O_2Cl]^+$
-0.203	-0.086
$[Fe(14-TMC)O_2C1]^+$	$[Fe(14-TMC)O_2Cl]^+$
-0.096	-0.099
$\left[\text{Co}(14\text{-}\text{TMC})\text{O}_2\text{Cl}\right]^+$	$\left[\text{Co}(14\text{-}\text{TMC})\text{O}_2\text{Cl}\right]^+$
-0.164	-0.159

 Table S7. B3LYP-D2 computed Mulliken charge at selected atoms with 13/14-TMC ring.

Fig. S3 Computed eigenvalue plot incorporating energies computed for *d* based orbitals for alpha and beta spin corresponding to the ground state $({}^{2}I_{a-hs})$ of vanadium-superoxo species (energies are given in eV).

Fig. S4 Computed eigenvalue plot incorporating energies computed for *d* based orbitals for alpha and beta spin corresponding to the ground state $({}^{2}I_{b-hs})$ of the vanadium-superoxo species (energies are given in eV).

Fig. S5 Computed eigenvalue plot incorporating energies computed for *d* based orbitals for alpha and beta spin corresponding to the ground state (${}^{2}I_{a-hs}$ -ts1) of vanadium-superoxo species (energies are given in eV).

Scheme S3. A model structure of chromium-superoxo species with existence of quintet, triplet and singlet spin states.

Fig. S6 B3LYP-D2 a) optimized structure (bond lengths in Å), a') corresponding spin density plot of the ground state ${}^{2}II_{a-hs}$, b) optimized structure (bond lengths in Å) and b') corresponding spin density plot of the ground state ${}^{2}II_{b-hs}$.

Fig. S7 B3LYP-D2 a) optimized structure (bond lengths in Å), a') corresponding spin density plot of ${}^{6}\text{III}_{a-hs}$, b) optimized structure (bond lengths in Å) and b') corresponding spin density plot of ${}^{4}\text{III}_{b-hs}$.

Fig. S8 B3LYP-D2 a) optimized structure (bond lengths in Å), a') corresponding spin density plot of ${}^{4}\text{III}_{a-is}$ -ts2, b) optimized structure and b') corresponding spin density plot of ${}^{4}\text{III}_{b-is}$ -ts2.

Fig. S9 B3LYP-D2 a) optimized structure (bond lengths in Å), a') corresponding spin density plot of 7 IV_{a-hs}, b) optimized structure (bond lengths in Å) and b') corresponding spin density plot of 7 IV_{b-hs}.

Fig. S10 B3LYP-D2 a) optimized structure (bond lengths in Å), a') corresponding spin density plot of ${}^{3}IV_{a-ls}$ -ts2, b) optimized structure (bond lengths in Å) and b') corresponding spin density plot of ${}^{7}IV_{b-hs}$ -ts2.

Here, we have got optimized geometry only at low spin surface of species V and other surfaces could not get optimize due to convergence issue. So we have performed the single point calculation for the other spin surfaces using co-ordinates of optimized geometry of the low spin state. Our results show that low spin of species V is the ground state.

Fig. S11 B3LYP-D2-computed energy surface (ΔG in kJmol⁻¹) for C-H activation by cobalt-superoxo species (13-TMC (black), 14-TMC (red).

Fig. S12 B3LYP-D2 a) optimized structure (bond lengths in Å) of ${}^{2}V_{a-ls}$, b) optimized structure (bond lengths in Å) of ${}^{2}V_{b-ls}$, B3LYP-D2 c) optimized structure (bond lengths in Å) of ${}^{2}V_{a-ls}$ -ts2, d) optimized structure (bond lengths in Å) of ${}^{2}V_{b-ls}$ -ts2.

References

- 1. M. Q. E. Mubarak, S. P. de Visser, *Dalton Trans.*, 2019, 48, 16899-16910.
- J. B. Gordon, A. C. Vilbert, M. A. Siegler, K. M. Lancaster, P. Moenne-Loccoz, D. P. Goldberg, J. Am. Chem. Soc., 2019, 141, 3641-3653.
- B. Wang, Y.-M. Lee, W.-Y. Tcho, S. Tussupbayev, S.-T. Kim, Y. Kim, M. S. Seo, K.-B. Cho, Y. Dede, B. C. Keegan, T. Ogura, S. H. Kim, T. Ohta, M.-H. Baik, K. Ray, J. Shearer, W. Nam, *Nat. Commun.*, 2017, 24, 14839-14849.
- 4. J. Cho, J. Woo, W. Nam, J. Am. Chem. Soc., 2010, 132, 5958-5959.
- 5. J. Cho, J. Woo, W. Nam, J. Am. Chem. Soc., 2012, 134, 11112-11115.
- J.-U. Rohde, J.-H. In, M. H. Lim, W. W. Brennessel, M. R. Bukowski, A. Stubna, E. Munck, W. Nam, L. Que, Jr., *Science*, 2003, **299**, 1037-1039.