Electronic Supporting Information

Carbazole appended *trans*-dicationic pyridinium porphyrin finds supremacy in DNA binding/photocleavage over non-carbazolyl analogue

Athulya Das,^a Thasnim P Mohammed,^a Rajesh Kumar,^a Sarmistha Bhunia,^b Muniyandi Sankaralingam^{*a}

^aBioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode-673601, Kerala, India.
^bSchool of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata

700032, India

*Corresponding author email: <u>msankaralingam@nitc.ac.in; sankarjan06@gmail.com</u>

Fig. S1. (A) UV-visible absorption and (B) Fluorescence emission spectra of **1** recorded in CHCl₃ at 298 K.

Fig. S2. ¹H NMR spectrum of **1** recorded in CDCl₃. Marked peak with an asterisk (*) at 1.56 and 7.26 ppm indicates residual CDCl₃ and water respectively.

Fig. S3. Mass spectrum of 1 recorded in CHCl₃.

Fig. S4. Experimental (top) and theoretical (bottom) isotopic distribution of **1 was** recorded in CHCl₃.

Fig. S5. ¹H NMR spectrum of **2** recorded in DMSO- d_6 . Marked peak with an asterisk (*) at 2.5 and 3.5 ppm indicates residual DMSO and water, respectively.

Fig. S6. ¹³H NMR spectrum of **2** recorded in DMSO- d_6 . Marked peak with an asterisk (*) at 39-39.9 ppm indicates residual DMSO.

Fig. S7. Mass spectrum of 2 recorded in CH₃OH.

Fig. S8. Theoretical (top) experimental (bottom) isotopic distribution of 2 recorded in CH₃OH.

Fig. S9. Mass spectrum of 3 recorded in CH₃OH.

Fig. S10. Theoretical (top) experimental (bottom) isotopic distribution of 3 recorded in CH₃OH.

Fig. S11. ¹³H NMR spectrum of **4** recorded in DMSO- d_6 . Marked peak with an asterisk (*) at 39.1-39.8 ppm indicates residual DMSO, 29-31.5 ppm indicates hexane, and 69.8 ppm indicates chloroform.

Fig. S12. Mass spectrum of 4 recorded in CH₃OH.

Fig. S13. Theoretical (top) experimental (bottom) isotopic distribution of 4 recorded in CH₃OH.

Fig. S14. Cyclic voltammograms (oxidation) of 2, 3 and 4 in DMF containing 0.1 M tetrabutylammonium hexafluorophosphate as the supporting electrolyte with a scan rate of 0.1 V/s.

Fig. S15. UV-Visible spectra of compound **1** in aqueous phase before (black) and after (red) extraction with the water-saturated 1-octanol.

Fig. S16. UV-Visible spectra of compound **2** in aqueous phase before (black) and after (red) extraction with the water-saturated 1-octanol.

Fig. S17. UV-Visible spectra of compound **3** in aqueous phase before (black) and after (red) extraction with the water-saturated 1-octanol.

Fig. S18. UV-Visible spectra of compound **4** in aqueous phase before (black) and after (red) extraction with the water-saturated 1-octanol.

Fig. S19. (A) Absorption spectra of 2 in pH=7.2 buffer at 25 °C in the presence of the increasing amount of CT-DNA. [2] = 6 μ M, [DNA] = Increment of 0.4 μ M. The grey arrow indicates the change in absorption upon increasing the DNA concentration. (B) A plot of [DNA]/($\Delta\epsilon$) vs.[DNA].

Fig. S20. (A) Absorption spectra of 3 in pH = 7.2 buffer at 25 °C in the presence of an increasing amount of CT-DNA. [3] = 6 μ M, [DNA] = Increment of 0.4 μ M. The grey arrow indicates the change in absorption upon increasing the DNA concentration. (B) A plot of [DNA]/($\Delta\epsilon$) vs.[DNA].

Fig. S21. Fluorescence emission spectra of 2 in pH = 7.2 buffer solution, with increasing concentration of CT-DNA. $[2] = 6 \mu M$, [DNA] = increment of 0.2 μM . The grey arrow indicates the change in emission intensity upon increasing the complex concentration.

Fig. S22. (A) Emission spectra of EB bound to DNA in the presence of porphyrins, (A) 2 with increasing concentration of CT DNA. [DNA] = 12 μ M, [EB] = 5 μ M, [2] = 1.6 μ M increment. The grey arrow indicates the change in emission intensity upon increasing the concentration of [2]. (B) Fluorescence quenching curve of EB bound DNA by the porphyrins.

Fig. S23. Emission spectra of EB bound to DNA in the presence of porphyrins, (A) 3 with increasing concentration of CT DNA. [DNA] = 12 μ M, [EB] = 5 μ M, [3] = 1.6 μ M increment. The grey arrow indicates the change in emission intensity upon increasing the concentration of [3] (B) Fluorescence quenching curve of EB bound DNA by the porphyrins.

Fig. S24. Molecular docked structure and interactions of 2 with DNA.

Fig. S25. Molecular docked structure and interactions of 3 with DNA.

Fig. S26. The time-dependent absorption spectrum of compound 2 under the light source of λ = 450–750 nm, 15 J cm⁻².

Fig. S27. The time-dependent absorption spectrum of compound 3 under the light source of λ = 450–750 nm, 15 J cm⁻².

Fig. S28. The time-dependent absorption spectrum of compound 4 under the light source of λ = 450-750 nm, 15 J cm⁻².

Fig. S29. Change in absorbance of compound 2-4 with an increase in time of irradiation under the light source of $\lambda = 450-750$ nm, 15 J cm⁻².

Fig. S30. Effect of NaN₃ on the cleavage in presence of compounds 2-4. Lane (i): DNA alone; Lane (ii): DNA+10 μ M 2+ 50 μ M NaN₃; Lane (iii): DNA+10 μ M 3 + 50 μ M NaN₃; Lane (iv): DNA+10 μ M 4 + 50 μ M NaN₃.

Table S1 Electrochemical data of 2-4 in DMF using 0.1 M TBAHFP at 25°C.

					Energy Level (eV)		ΔE (eV)
Compound	<i>E</i> _{1/2} (oxd)/V		<i>E</i> _{1/2} (red)/V		HOMO ^a	LUMO ^a	(From CV)
H_2TPP^1	1.08	-	-1.11	-1.53	-5.48	-3.29	2.19
CuTPP ¹	1.01	1.26	-1.19	-1.71	-5.41	-3.21	2.20
ZnTPP ¹	0.79	1.38	-1.34	-1.73	-5.19	-3.06	2.13
2	0.69	1.04	-1.00	-1.71	-5.09	-3.40	1.69
3	0.68	1.01	-1.09	-1.80	-5.08	-3.31	1.77
4	0.54	0.99	-1.14	-1.66	-4.94	-3.26	1.68
$^{a}E_{HOMO} = -(E_{oxd} + 4.4) \text{ eV}; E_{LUMO} = -(E_{red} + 4.4) \text{ eV}, ^{a}Chem. Commun, 48 (2012), 8377$							

¹ J. Ramesh, S. Sujatha and C. Arunkumar, *RSCAdv.*, 2016, **6**, 63271-63285.