Molecular Ruby: Exploring the Excited State Landscape

Winald Robert Kitzmann,^a Charusheela Ramanan,^b Robert Naumann^a and Katja Heinze^{*a}

a Department of Chemistry, Johannes Gutenberg University of Mainz, Mainz, Germany. E-mail: <u>katja.heinze@uni-mainz.de</u> *b* Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands. *c* Max-Planck-Institute for Polymer Research, Mainz, Germany.

Supporting Information

Experimental Details

Absorption spectra were recorded using a JASCO V770 spectrometer. Emission and excitation spectra were recorded using an FLS1000 (Edinburgh Instruments) spectrofluorometer with a xenon lamp (Xe2) as excitation source and the photomultipliers N-G11 PMT-980 (250–980 nm) as well as the liquid nitrogen cooled Hamamatsu N-G09 PMT-1700 (500–1700 nm) were used for detection. The absolute fluorescence quantum yield of $[Cr(ddpd)_2]^{3+}$ was determined using the FLS1000 spectrofluorometer and an integrating sphere setup. Deconvolution of the absorption and emission spectra was performed using the software OriginPro 9.0.

Fs-Transient absorption spectra were measured using a Helios-Fire pump-probe setup (Ultrafast Systems) paired with a regeneratively amplified 1030 nm laser (Pharos, Light Conversion, 1030 nm, 200 fs, 200 μ J). The effective laser repetition rate of 1 kHz was set via an internal pulse picker. A small portion of the 1030 nm fundamental is directed to the optical delay line and is subsequently used to generate broadband probe light by focusing onto a sapphire (visible range) or YAG (NIR range) crystal. The pump pulse is generated with an optical parametric amplifier (Orpheus-F, Light Conversion). The pump fluence at the sample was 1 μ J/pulse. Samples were measured in 1 mm path length cuvettes, with an OD of 0.4 at 500 nm. Global analysis of the TA data was done using the R-package TIMP software with the graphical interface Glotaran 1.5.1.¹

Figure S1: Experimental absorption spectrum of $[Cr(ddpd)_2]^{3+}$ in CD₃CN (120 mM) in the region of the spin-forbidden ${}^{4}A_2 \rightarrow {}^{2}T_1/{}^{2}E$ transitions with Voigt fits.

Table S1: Parameters of the Voigt fits of the absorption spectrum of $[Cr(ddpd)_2]^{3+}$ in CD₃CN (120 mM) in the region of the spin-forbidden ${}^{4}A_2 \rightarrow {}^{2}T_1/{}^{2}E$ absorptions. The assignment is based on CASSCF(7,12)-FIC-NEVPT2 calculations.²

Fit	Peak position / cm ⁻¹ (in nm)	\mathcal{E}_{max} / M ⁻¹ cm ⁻¹	FWHM / cm ⁻¹	Norm. area	Assignment
1	12989 (770)	0.11	395	1.00	$^{4}A_{2}\rightarrow ^{2}T_{1}(1)$
2	13580 (736)	0.26	346	2.96	$^{4}A_{2}\rightarrow ^{2}E(1)$
3	14352 (697)	0.17	572	3.17	$^{4}A_{2}\rightarrow ^{2}T_{1}(2)$

Figure S2: Phosphorescence spectrum of $[Cr(ddpd)_2]^{3+}$ in acetonitrile at 293 K fitted with two Voigt functions.

Table S2: Parameters of the Voigt fits of the phosphorescence spectrum of $[Cr(ddpd)_2]^{3+}$ in acetonitrile at 293 K. The assignment is based on CASSCF(7,12)-FIC-NEVPT2 calculations.²

Figure S3: Absorption and excitation spectrum ($\lambda_{em} = 1274 \text{ nm}$) of [Cr(ddpd)₂]³⁺ in aerated CD₃CN (120 mM) in the region of spin-forbidden ${}^{4}A_{2} \rightarrow {}^{2}T_{1}/{}^{2}E$ transitions. Inset: ${}^{1}O_{2}$ phosphorescence spectra sensitized by [Cr(ddpd)₂]³⁺ with excitation at 735 and 771 nm, respectively.

Figure S4: Evolution-associated difference spectrum (EADS) obtained from fs-transient absorption data of $[Cr(ddpd)_2]^{3+}$ in CH₃CN (λ_{exc} = 435 nm).

Figure S5: Decay traces of the TA signal of $[Cr(ddpd)_2]^{3+}$ (λ_{exc} = 435 nm) in CH₃CN with monoexponential fits.

References

- 1 J. J. Snellenburg, S. P. Laptenok, R. Seger, K. M. Mullen and I. H. M. van Stokkum, *J. Stat. Soft.*, 2012, **49**.
- 2 S. Otto, J. P. Harris, K. Heinze and C. Reber, *Angew. Chem. Int. Ed.*, 2018, **57**, 11069–11073.