Electronic Supplementary Information

Unusually Symmetry Breaking from 1 to 2 in a High-Temperature

Enantiomeric Ferroelectrics with Large Spontaneous Polarization

Yu-Kong Li, Ting-Ting Ying, Hao Zhang, Yun-Zhi Tang,*Yu-Hui Tan,* Fang Xin Wang, Ming Yang Wan

Fig. S1. Infrared spectrum of compound 1 (a) and 2 (b)

Fig. S2. The powder XRD of 1 (a) and 2 (b) with the simulated one in red and the measurement in blue.

Fig. S3. Thermogravimetric analysis (TGA) curves of 1 and 2.

Table S1. Crystal data and structure refinements for $[(R)-\beta-MPA]_2CdCl_4$ and $[(S)-\beta-MPA]_2CdCl_4$ at

various temperatures.							
Compound	$[(R)-\beta-MPA]_2CdCl_4$		$[(S)-\beta-MPA]_2CdCl_4$				
Temperature	300 K	360 K	300 K	360 K			
Crystal system	Monoclinic	Triclinic	Monoclinic	Triclinic			
Space group	С2	<i>P</i> 1	С2	<i>P</i> 1			
a, b, c (Å)	35.8807(16)	7.7844(1)	35.910(7)	7.7817(1)			
	5.4904(2)	7.8052(1)	5.4715(9)	7.7972(1)			
	5.4314(2)	18.2463(2)	5.4511(10)	18.2458(3)			
<i>α, β,</i> γ (°)	90	94.189(1)	90	94.151(1)			
	94.076(1)	97.931(1)	94.108(5)	97.976(1)			
	90	90.917(1)	90	90.842(1)			
Volume /Å ³	1067.28(7)	1094.70(2)	1068.3(3)	1093.14(3)			
Z	2	1	2	1			
Density/g.cm ⁻³	1.639	1.598	1.637	1.597			
R_1	0.0137(2348)	0.0327(9463)	0.0754(2374)	0.0400(9076)			
wR_2	0.0338(2353)	0.0819(11780)	0.2003(2377)	0.1114(11847)			
GOF	1.084	1.070	1.126	1.081			

Fig. S4. Variable-temperature PXRD patterns of **1**(a) and **2**(b). The Ellipsoid box represents the slight change ranges of the diffraction peaks.

Fig. S5. Packing view of crystal structure of compounds **1**(a) and **2**(b), and the red arrow indicates the polarization direction.

Fig. S6. Molecular structures of 1 at 300 K (a) and 360 K (b).

Fig. S7. DSC curves of compound 1 and 2 at 160-250K.

Fig. S8. The frequency dependence of the dielectric of compounds 1 (a) and 2 (b) during heating.

Fig. S9. Polarization hysteresis loops at 370 K of compounds 1 (a) and 2 (b).

Fig. S10. SHG signal intensity of compounds 1, 2 and KDP at room temperature.

	<i>T</i> _c (K)	$P_{\rm s}$ (μ C·cm ⁻²)
Compounds 1 and 2	343	4.65/4.67
[(R)-N-(1-phenylethyl)ethane-1,2-diaminium]PbI ₄ ³⁸	378	0.15
(R)-3-quinuclidinol ³⁹	381	7
(S)-3-F-(pyrrolidinium)CdCl ₃ ¹³	240	5.79
(R)-3-F-(pyrrolidinium)CdCl ₃ ¹³	240	5.63
(S)-(N,N-dimethyl-3-fluoropyrrolidinium)iodide ⁴⁰	470	0.4
(R)-(N,N-dimethyl-3-fluoropyrrolidinium)iodide40	470	0.48

Table S2. Some related values of ferroelectric properties

Table S3 Hydrogen bond geometry (Å, degree) for 1 at 300 K and 360 K

	D–H····A	Н…Ч	D…A	∠D-H […] A
300 K	N1-H1A…Cl1	2.73	3.562(9)	176
	N1-H1B····Cl2	2.66	3.510(9)	156
	N1-H1C····Cl2	2.57	3.466(9)	158
360 K	N3-H3A…C8	2.80	3.46(10)	131
	N3-H3B…Cl1	2.41	3.27(10)	165
	N3-H3C…Cl5	3.11	3.58(10)	113