### Supporting Information

# Metal-Metal Communication Between 1,1'-Bis(diphenylphosphino)cobaltocenium and an Organonickel Moiety

Daniel Auweiler<sup>†</sup>, Marc Schnierle<sup>†</sup>, Valentin Rapp<sup>†</sup>, and Mark R. Ringenberg<sup>\*†</sup>

<sup>†</sup> Insitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany

### Contents

| 1        | Experimental                    | S3            |
|----------|---------------------------------|---------------|
| <b>2</b> | Crystallography                 | $\mathbf{S5}$ |
| 3        | Cyclic Voltammetry              | $\mathbf{S9}$ |
| 4        | NMR Spectroscopy                | $\mathbf{S9}$ |
| 5        | Absorption Spectroscopy         | S17           |
| 6        | Electron Paramagnetic Resonance | <b>S18</b>    |
|          | 6.1 TD-DFT                      | S19           |

## List of Figures

| S1            | CV of $[2]^{2+}$ in MeCN                                | S9  |
|---------------|---------------------------------------------------------|-----|
| S2            | <sup>1</sup> H NMR of (dppc)BF <sub>4</sub>             | S9  |
| S3            | <sup>31</sup> P NMR of (dppc)BF <sub>4</sub>            | S10 |
| S4            | <sup>13</sup> C NMR of $(dppc)BF_4$                     | S10 |
| S5            | <sup>11</sup> B NMR of (dppc)BF <sub>4</sub>            | S11 |
| S6            | <sup>1</sup> H NMR of $[1]_2(\text{Fe}_2\text{OCl}_6)$  | S11 |
| S7            | <sup>31</sup> P NMR of $[1]_2(\text{Fe}_2\text{OCl}_6)$ | S12 |
| $\mathbf{S8}$ | <sup>1</sup> H NMR of $[1]$ PF <sub>6</sub>             | S12 |
| S9            | <sup>13</sup> C NMR of $[1]$ PF <sub>6</sub>            | S13 |
| S10           | <sup>31</sup> P NMR of $[1]$ PF <sub>6</sub>            | S13 |
| S11           | <sup>1</sup> H NMR of $[2](PF_6)_n(BF_4)_m$             | S14 |
| S12           | <sup>31</sup> P NMR of $[2](PF_6)_n(BF_4)_m$            | S14 |
| S13           | <sup>1</sup> H NMR of $[2](PF_6)_n(BF_4)_m$             | S15 |
| S14           | <sup>1</sup> H NMR of $[2](BF_4)_2$                     | S15 |
| S15           | <sup>11</sup> B NMR of $[2](BF_4)_2$                    | S16 |
| S16           | <sup>13</sup> C NMR of $[2](BF_4)_2$                    | S16 |
| S17           | <sup>31</sup> P NMR of $[2](BF_4)_2$                    | S17 |
| S18           | UV-Vis-NIR SEC of $[1]^{+/0}$                           | S17 |
| S19           | UV-Vis-NIR SEC of $[1]^{0/-1}$                          | S17 |
| S20           | UV-Vis-NIR SEC of $[2]^{+/0}$                           | S18 |
| S21           | EPR of $[2]^+$ 100K                                     | S18 |
| S22           | TDDFT Transitions $[2]^{2+}$                            | S19 |
| S23           | TDDFT Transitions $[2]^+$                               | S20 |

| S24 | TDDFT | Transitions | $[2]^{0}$ |  |  |  |  |  | • |  |  |  |  |  |  |  |  |  |  |  | • | • |  |  |  | • | • | S21 |
|-----|-------|-------------|-----------|--|--|--|--|--|---|--|--|--|--|--|--|--|--|--|--|--|---|---|--|--|--|---|---|-----|
|-----|-------|-------------|-----------|--|--|--|--|--|---|--|--|--|--|--|--|--|--|--|--|--|---|---|--|--|--|---|---|-----|

### List of Tables

| S1 | Selected Bond Lengths $[2]^{2+}$                                  | S5            |
|----|-------------------------------------------------------------------|---------------|
| S2 | Crystallographic Information for $[1]_2(\text{Fe}_2\text{OCl}_6)$ | S5            |
| S3 | Crystallographic Information for $[2](PF_6)_{1.58}(BF_4)_{0.42}$  | S6            |
| S4 | Crystallographic Information for $[1]$ PF <sub>6</sub>            | S7            |
| S5 | Crystallographic Information for $[2](BF_4)_2$                    | $\mathbf{S8}$ |

#### 1 Experimental

 $^1\text{H}$  NMR,  $\{^1\text{H}\}^{11}\text{B}$  NMR,  $\{^1\text{H}\}^{13}\text{C}$  NMR and  $^{31}\text{P}$  NMR spectra were recorded on a Bruker AC 250 spectrometer at 250.1299986 MHz, 26.866 MHz, 62.8954017 MHz, 101.2544800 MHz respectively. <sup>1</sup>H NMR and {<sup>1</sup>H}<sup>13</sup>C NMR spectra were referenced against remanent solvent peak.  $^{31}$ P NMR spectra were referenced against H $_3$ PO $_4$  as external standard. IR spectra were recorded on a Nicolet 6700 FT-IR. UV-vis-NIR absorption spectra were obtained on J&M TIDAS spectrophotometer. Cyclic voltammetry was carried out in a 0.1 M  $^{n}$ Bu<sub>4</sub>NPF<sub>6</sub> solution in acetonitrile using a three-electrode configuration (glassy carbon working, Pt wire counter, and Ag reference electrode) on a Metrohm Autolab potentiostat. The couple  $[Fe(C_5H_5)_2]/[Fe(C_5H_5)_2]^+$   $(FeCp_2/FeCp_2^+)$  served as internal reference in all experiments. All solvents were degassed by passing through argon prior to use. Spectroelectrochemistry was performed at -30 °C using an optically transparent thinlayered electrode (OTTLE) [1] and a liquid nitrogen cryostat previously described. [2] A suitable crystals of  $[1]_2(Fe_2OCI_6)$  [ac465a],  $[1]PF_6$  [ac539 sqd],  $[2](BF_4)_n(PF_6)_m$  [ac500/] and  $[2](BF_4)_2$  [ac535] were selected and measured on an Apex II, Brucker diffractometer. Using Olex2 [3] the structures were solved with the SheIXS structure solution program using Direct Methods and refined with the least squared refinement. [4]

Density functional theory (DFT) calculations were performed using the molecular structure of  $[1]^+$ . A computational analysis was performed by means of restricted Kohn-Sham density functional theory (DFT) using TPSS [5] functional in combination with the D3 dispersion correction [6] with the def2-TZVP and Weigend J auxiliary basis set. [7,8] Geometry optimizations were realized with the ORCA program package with TightSCF convergence (1.0e-7 a.u.). [9] Solvation in CH<sub>2</sub>Cl<sub>2</sub> was modeled using the CPCM solvation model. [10] Open-shell calculations on the structure  $[1]^0$ ,  $[1]^{-1}$  (S =3) and compared to restricted KS for and  $[1]^{-1}$  were determined by adding the requisite number of electrons, and calculations were performed by means of (un)restricted Kohn–Sham DFT using the same basis set, functionals, and solvent models as  $[1]^+$ .

Density functional theory (DFT) calculations were performed using the molecular structure of  $[2]^{2+}$ . A computational analysis was performed by means of restricted Kohn-Sham density functional theory (DFT) using TPSS <sup>[5]</sup> functional in combination with the D3 dispersion correction <sup>[6]</sup> with the def2-TZVP and Weigend J auxiliary basis set. <sup>[7,8]</sup> Geometry optimizations were realized with the ORCA program package with TightSCF convergence  $(10^{-7} \text{ a.u.})$ . <sup>[9]</sup> Solvation in CH<sub>2</sub>Cl<sub>2</sub>was modeled using the CPCM solvation model. <sup>[10]</sup> Openshell calculations on the structure  $[1]^0$ ,  $[1]^{-1}$  (S =3) and compared to restricted KS for and  $[1]^{-1}$  were determined by adding the requisite number of electrons, and calculations were performed by means of (un)restricted Kohn–Sham DFT using the same basis set, functionals, and solvent models as  $[1]^+$ .

1,1'-bis(diphenylphosphino)cobaltocenium (dppc)<sup>+</sup>: A solution of chlorodiphenylphosphine (10 mL, 12 g, 54 mmol, 1.1 equiv.) in THF (100 mL) was cooled to -78 C and a solution of sodium cyclopentadienide (4.35 g, 49.4 mmol, 1 equiv.) in THF (40 mL) was added slowly. After the addition the dry-ice/acetone bath was removed, and the solution was allowed react for 30 min at room temperature. The color turned bright yellow. The reaction solution was again cooled to -78 C and "BuLi was added (2.5 M in hexanes, 22 mL, 55 mmol, 1.1 equiv.). The reaction mixture was stirred for 15 min and anhydrous CoCl<sub>2</sub> (3.56 g, 27.4 mmol, 0.55 equive) was added as a solid against a counterflow of argon. The reaction mixture was allowed to warm to room temperature overnight. The reaction was quenched with acetic acid (1.6 mL) in water (4 mL) and air was purged through the solution for 3 h to oxidize the product. The resulting suspension was filtered through celite and a solution of NH4PF6 (5.2 g) in water (5 mL) was added. The mixture was diluted with ethanol (80 mL) and the solvent volume was reduced to 50 mL under reduced pressure. Filtration gave a brown solid which was recrystal-lized from DCM/Et2O to give an orange crystalline solid (2.450 g, 3.282 mmol, 13%). <sup>1</sup>H NMR (CD3CN):  $\delta =$ 7.48-7.28 (m, 20H), 5.77 (t, J = 2.0 Hz, 4H), 5.34 ppm (t, J = 2.0 Hz, 4H). <sup>31</sup>P NMR (CD3CN):  $\delta = -22.9 \text{ ppm}$  (s), -144.4 ppm (sep).

 $[Ni(dppc)Cl_2]Cl \bullet CH_3CN$ :  $[Et_4N]_2[NiCl_4]$  (100 mg, 0.217 mmol, 1 equiv.) and (dppc)PF6 (175 mg, 0.234 mmol, 1.1 equiv.) were each dissolved in Acetonitrile (35 mL in total), combined and heated to reflux for 5 min. After cooling to 20 C the formed brown precipitate was filtered off and recrystallized from Acetonitrile giving a brown crystalline solid (149 mg, 0.185 mmol, 85%). Elemental analysis calcd. (%) for  $C_{36}H_{31}NCl_6CoFeNiO_2P_2$ : C 56.63, H 4.092, N 1.83; found C 65.56, H 4.040, N 1.76.

#### References

- M. Krejcik, M. Danek, and F. Hartl, "Simple construction of an infrared optically transparent thin-layer electrochemical cell: Applications to the redox reactions of ferrocene, Mn<sub>2</sub>(CO)<sub>10</sub> and Mn(CO)<sub>3</sub>(3,5-di-t-butyl-catecholate)<sup>-</sup>," J. Electroanal. Chem. Interfacial Electrochem., vol. 317, no. 1–2, pp. 179–187, 1991.
- [2] T. Mahabiersing, H. Luyten, R. C. Nieuwendam, and F. Hartl, "Synthesis, spectroscopy and spectroelectrochemistry of chlorocarbonyl 1,2-Bis[(2,6-diisopropylphenyl)imino]acenaphthene-κ<sup>2</sup>-N,N'rhodium(i)," *Collect. Czech. Chem. Commun.*, vol. 68, no. 9, pp. 1687–1709, 2003.
- [3] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann, "Olex2: a complete structure solution, refinement and analysis program," J. Appl. Cryst., vol. 42, pp. 339–341, 2009.
- [4] G. M. Sheldrick, "ShelxI-97: Program for crystal structure determination," 1997.
- [5] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple [phys. rev. lett. 77, 3865 (1996)]," Phys. Rev. Lett., vol. 78, no. 7, pp. 1396–1396, 1997.
- [6] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, "A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu," J. Chem. Phys., vol. 132, no. 15, p. 154104, 2010.
- [7] F. Weigend and R. Ahlrichs, "Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for h to rn: Design and assessment of accuracy," Phys. Chem. Chem. Phys., vol. 7, no. 18, pp. 3297–3305, 2005.
- [8] F. Weigend, M. Häser, H. Patzelt, and R. Ahlrichs, "Ri-mp2: optimized auxiliary basis sets and demonstration of efficiency," Chem. Phys. Lett., vol. 294, no. 1–3, pp. 143–152, 1998.
- [9] F. Neese, "The orca program system," WIREs Comput Mol Sci, vol. 2, no. 1, pp. 73-78, 2012.
- [10] Y. Takano and K. N. Houk, "Benchmarking the conductor-like polarizable continuum model (cpcm) for aqueous solvation free energies of neutral and ionic organic molecules," J. Chem. Theory Comput., vol. 1, no. 1, pp. 70–77, 2005.

## 2 Crystallography

| Bond / Å         | $[2](\mathrm{PF}_6)_n(\mathrm{BF}_4)_m$ | $[2](\mathrm{BF}_4)_2$ |
|------------------|-----------------------------------------|------------------------|
| Ni1-Co1          | 4.165(2)                                | 4.106(3)               |
| Ni1-P1           | 2.174(3)                                | 2.1681(4)              |
| Ni1-P2           | 2.156(3)                                | 2.1744(4)              |
| Ni1-Cp(centroid) | 1.729                                   | 1.727                  |

Table S1: Selected Bond Lengths  $[2]^{2+}$ 

| Table S2: | Crystallographic | Information | for | $[1]_2(\operatorname{Fe}_2\operatorname{OCl}_6)$ | ) |
|-----------|------------------|-------------|-----|--------------------------------------------------|---|
|-----------|------------------|-------------|-----|--------------------------------------------------|---|

| Identification code                  | ac465a                                                                                |
|--------------------------------------|---------------------------------------------------------------------------------------|
| Empirical formula                    | C <sub>36</sub> H <sub>28</sub> Cl <sub>3</sub> CoFeNiO <sub>2.5</sub> P <sub>2</sub> |
| Formula weight                       | 842.40                                                                                |
| Temperature/K                        | 135.0                                                                                 |
| Crystal system                       | triclinic                                                                             |
| Space group                          | P-1                                                                                   |
| a/Å                                  | 10.1357(5)                                                                            |
| b/Å                                  | 17.5973(8)                                                                            |
| c/Å                                  | 21.6427(11)                                                                           |
| α/°                                  | 68.911(3)                                                                             |
| β/°                                  | 80.097(4)                                                                             |
| γ/°                                  | 74.415(3)                                                                             |
| Volume/Å <sup>3</sup>                | 3457.0(3)                                                                             |
| Z                                    | 4                                                                                     |
| $\varrho_{calc}g/cm^3$               | 1.6184                                                                                |
| $\mu/mm^{-1}$                        | 10.952                                                                                |
| F(000)                               | 1688.3                                                                                |
| Crystal size/mm <sup>3</sup>         | $0.09 \times 0.047 \times 0.038$                                                      |
| Radiation                            | Cu K $\alpha$ ( $\lambda$ = 1.54178)                                                  |
| $2\Theta$ range for data collection/ | °4.4 to 133.3                                                                         |
| Index ranges                         | $-11 \le h \le 11, -18 \le k \le 20, -25 \le l \le 24$                                |
| Reflections collected                | 46677                                                                                 |
| Independent reflections              | 11746 [ $R_{int} = 0.1107, R_{sigma} = 0.0978$ ]                                      |
| Data/restraints/parameters           | 11746/0/838                                                                           |
| Goodness-of-fit on $F^2$             | 1.022                                                                                 |
| Final R indexes $[I \ge 2\sigma(I)]$ | $R_1 = 0.0509, wR_2 = 0.0978$                                                         |
| Final R indexes [all data]           | $R_1 = 0.1008, wR_2 = 0.1164$                                                         |
| Largest diff. peak/hole / e Å-3      | 3 0.85/-0.94                                                                          |

|                                                         | ocessing                                                                                                                        |                                                                                      |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| )atablock: ac5                                          | 00                                                                                                                              |                                                                                      |
| ond precision:                                          | C-C = 0.0168 A                                                                                                                  | Wavelength=0.71073                                                                   |
| Cell: a=19.10                                           | 7(2) b=10.7707(12) c=18.1                                                                                                       | 508 (2)                                                                              |
| alpha=9<br>Femperature:140 K                            | 0 Deta=96.858(5) gamma:                                                                                                         |                                                                                      |
| /olume                                                  | Calculated<br>3781.6(7)                                                                                                         | Reported<br>3781.6(7)                                                                |
| Space group<br>Hall group                               | P 21/c<br>-P 2ybc                                                                                                               | P 1 21/c 1<br>-P 2ybc                                                                |
| oiety formula                                           | C39 H33 Co Ni P2, 1.582(F6 P),<br>0.418(B F4) [+ solvent]                                                                       | C39 H33 Co Ni P2, 1.58(F6 P),<br>0.42(B F4)                                          |
| um formula                                              | C39 H33 B0.42 Co F11.16 Ni<br>P3.58 [+ solvent]                                                                                 | C39 H33 B0.42 Co F11.16 Ni<br>P3.58                                                  |
| r<br>x a cm=3                                           | 946.84                                                                                                                          | 946.84                                                                               |
| (mm 1)                                                  | 4                                                                                                                               | 4                                                                                    |
| 000                                                     | 1913.2                                                                                                                          | 1965.8                                                                               |
| 000'<br>,k,lmax                                         | 1918.44<br>23,13,23                                                                                                             | 23,13,23                                                                             |
| ref<br>min,Tmax                                         | 7787<br>0.871,0.912                                                                                                             | 7711<br>0.653,0.888                                                                  |
| min'<br>orrection method=                               | 0.595<br># Reported T Limits: Tmin=0.653                                                                                        |                                                                                      |
| max=0.888 AbsCorr                                       | = NUMERICAL                                                                                                                     |                                                                                      |
| (reflections)= 0.1                                      | 324( 5089) WR2(r                                                                                                                | reflections)=                                                                        |
| = 1.047                                                 | 0.362<br>Npar= 410                                                                                                              | .8( 7711)                                                                            |
|                                                         |                                                                                                                                 |                                                                                      |
| test-name_ALERIS<br>test-name_ALERIS                    | <pre>Swere generated. Each ALERI has<br/>ERT_alert-type_alert-level.<br/>inks for more details of the term</pre>                | s the format<br>st.                                                                  |
| RALERT LEVEL B<br>LAT084 ALERT 3 B H                    | igh wR2 Value (i.e. > 0.25)                                                                                                     |                                                                                      |
| LAT097 ALERT 2 B La<br>LAT232 ALERT 2 B H               | arge Reported Max. (Positive)  <br>irshfeld Test Diff (M-X) Ni1                                                                 | Residual Density 3.09 eA-3<br>P4 . 16.3 s.u.                                         |
| PLAT341_ALERT_3_B_LC                                    | ow Bond Precision on C-C Bonds                                                                                                  | 0.01678 Ang.                                                                         |
| <pre>ALETT LEVEL C BSMU01_ALERT_1_C </pre>              | The ratio of given/expected abs                                                                                                 | orption coefficient lies                                                             |
| outs<br>Calcula                                         | ide the range 0.99 <> 1.01<br>ted value of mu = 1.174                                                                           |                                                                                      |
| Value ot<br>۳ <u>ENSD01_ALERT_1_C</u>                   | r mu given = 1.196<br>The ratio of the submitted crys                                                                           | tal density and that                                                                 |
| calculat<br>Crystal                                     | density given = 1.706                                                                                                           | tne range 0.99 ⇔ 1.01                                                                |
| Calculat<br>IFMN02_ALERT_2_C                            | ted crystal density = 1.66<br>The minimum difference density                                                                    | 3<br>is < -0.1*ZMAX*0.75                                                             |
| _retine_<br>Test val                                    | Lue = -2.100                                                                                                                    | 2.300                                                                                |
| The rele                                                | evant atom site should be ident.                                                                                                | 15 ~ -0.1+217HA7#0./J<br>ified.<br>ic ~ 0.1+27MAY+0.75                               |
| The rele                                                | evant atom site should be ident.                                                                                                | 15 > 0.1*2MAX*0.75<br>ified.                                                         |
| <u>LAT046 ALERT 1_C</u> Re<br>LAT077_ALERT_4_C Ur       | nitcell Contains Non-integer Nu                                                                                                 | mber of Atoms Please Check                                                           |
| PLAT098_ALERT_2_C_La                                    | arge Reported Min. (Negative)                                                                                                   | Residual Density –2.58 eA-3                                                          |
| LAT250 ALERT 2 C La                                     | arge U3/U1 Ratio for Average U(                                                                                                 | i,j) Tensor 3.0 Note                                                                 |
| <u>LAT790_ALERT_4_C</u> Ce                              | entre of Gravity not Within Uni<br>33 Co Ni P2                                                                                  | t Cell: Resd. # 1 Note                                                               |
| Alert level G                                           |                                                                                                                                 |                                                                                      |
| LAT002 ALERT 2 G NU                                     | umber of Distance or Angle Rest                                                                                                 | raints on AtSite 51 Note                                                             |
| PLAT012 ALERT 1 G No                                    | shelx_res_checksum Fou                                                                                                          | nd in CIF Please Check                                                               |
| LAT014 ALERT 1 G NO                                     | alc. and Reported Moiety Formula                                                                                                | a Strings Differ Please Check                                                        |
| LAT072 ALERT 2 G SI                                     | HELXL Second Parameter in WGHT                                                                                                  | Unusually Large 84.37 Why ?                                                          |
| LAT171 ALERT 4 G TH                                     | ne CIF-Embedded .res File Conta<br>ne CIF-Embedded .res File Conta                                                              | ins DFIX Records 13 Report                                                           |
| PLAT186 ALERT 4 G TH                                    | ne CIF-Embedded .res File Conta<br>ain Residue Disorder                                                                         | ins ISOR Records 3 Report                                                            |
| LAT302 ALERT 4 G Ar<br>nd 3 other PLAT302               | nion/Solvent/Minor-Residue Diso                                                                                                 | rder (Resd 2 ) 100% Note                                                             |
| Ore                                                     | n-Integer Number of Atoms in                                                                                                    | (Resd 2 ) 4.33 (herk                                                                 |
| nd 3 other PLAT304                                      | Alerts                                                                                                                          |                                                                                      |
| LAT432_ALERT_2_G_SH                                     | nort Inter XY Contact F33                                                                                                       | C9 . 2.96 Ang.<br>2+v.1/2-z = 2 655 Check                                            |
| LAT432_ALERT_2_G_SH                                     | nort Inter XY Contact F45                                                                                                       |                                                                                      |
| LAT432_ALERT_2_G_St                                     | nort Inter XY Contact F8A                                                                                                       | 2 - 1/2 + 7 = 4 556 Check                                                            |
| LAT605 ALERT 4 G La                                     | argest Solvent Accessible VOID                                                                                                  | in the Structure 17 A**3<br>t Cell: Resd. # 2 Note                                   |
| EAT790 ALERT 4 6 0                                      | entre of Gravity not Within Uni-                                                                                                | t Cell: Resd. # 4 Note                                                               |
| F6 P                                                    | entative Bond Valency for Col                                                                                                   | (III) . 3.48 Info                                                                    |
| LAT802 ALERT 4 G CI                                     | IF Input Record(s) with more the<br>ADDSYM Analysis: Too Many Fyr                                                               | an 80 Characters 1 Info<br>luded Atoms                                               |
| LAT860 ALERT 3 G NI<br>LAT933 ALFRT 2 G NI              | umber of Least-Squares Restrain                                                                                                 | ts                                                                                   |
| LAT982 ALERT 1 G Th<br>nd 2 other PLAT982               | ne Co-f'= 0.3565 Deviates fro                                                                                                   | om IT-value = 0.3494 Check                                                           |
| ORE<br>LAT983 ALFRT 1 G TI                              | ne Co-f"= 0.9658 Deviates fr                                                                                                    | om IT-Value = 0.9721 Check                                                           |
| nd 2 other PLAT983                                      | Alerts                                                                                                                          |                                                                                      |
| 0 ALERT level A                                         | = Most likelv a serious problem                                                                                                 | - resolve or explain                                                                 |
| 4 ALERT level B<br>13 ALERT level C<br>37 ALERT level G | <ul> <li>A potentially serious problem</li> <li>Check. Ensure it is not caused</li> <li>General information/check it</li> </ul> | , consider carefully<br>d by an omission or oversight<br>is not something unexpected |
| 14 ALERT type 1 CI                                      | IF construction/syntax error, in                                                                                                | nconsistent or missing data                                                          |
| 4 ALERT type 3 Ir                                       | ndicator that the structure qua                                                                                                 | ting be wrong or deficient<br>lity may be low                                        |
| то нескі туре 4 In                                      | nformative message, check                                                                                                       | or suggestion                                                                        |
| 2 ALERT type 5 I                                        |                                                                                                                                 |                                                                                      |

### Table S3: Crystallographic Information for $[\mathbf{2}](PF_6)_{1.58}(BF_4)_{0.42}$

It is advance to advance to advance the correspondence of the advance of the advance of the advance of the oversights, errors and omissions in your CIP or refinements. However, the attention to these fine details can be worthwhile. In order to resolve some of the more serious protocons in may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special\_details" fields of the CIF, checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert

# ac539\_sqd

| Table 1 Crystal data and structure refinement for ac539 sad |                                                        |  |  |  |  |
|-------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| Identification code                                         | ac539 sqd                                              |  |  |  |  |
| Empirical formula                                           | $C_{37}H_{30}Cl_2CoF_6NiO_2P_3$                        |  |  |  |  |
| Formula weight                                              | 902.06                                                 |  |  |  |  |
| Temperature/K                                               | 140.01                                                 |  |  |  |  |
| Crystal system                                              | monoclinic                                             |  |  |  |  |
| Space group                                                 | C2/c                                                   |  |  |  |  |
| a/Å                                                         | 15.8614(11)                                            |  |  |  |  |
| b/Å                                                         | 12.6538(9)                                             |  |  |  |  |
| c/Å                                                         | 40.759(3)                                              |  |  |  |  |
| α/°                                                         | 90                                                     |  |  |  |  |
| β/°                                                         | 93.232(4)                                              |  |  |  |  |
| γ/°                                                         | 90                                                     |  |  |  |  |
| Volume/Å <sup>3</sup>                                       | 8167.6(10)                                             |  |  |  |  |
| Z                                                           | 8                                                      |  |  |  |  |
| $\varrho_{calc}g/cm^3$                                      | 1.467                                                  |  |  |  |  |
| $\mu/mm^{-1}$                                               | 1.174                                                  |  |  |  |  |
| F(000)                                                      | 3648.0                                                 |  |  |  |  |
| Crystal size/mm <sup>3</sup>                                | $0.512 \times 0.353 \times 0.07$                       |  |  |  |  |
| Radiation                                                   | MoK $\alpha$ ( $\lambda = 0.71073$ )                   |  |  |  |  |
| $2\Theta$ range for data collection/°                       | 4.004 to 56.746                                        |  |  |  |  |
| Index ranges                                                | $-21 \le h \le 21, -16 \le k \le 16, -54 \le l \le 54$ |  |  |  |  |
| Reflections collected                                       | 71525                                                  |  |  |  |  |
| Independent reflections                                     | 10165 [ $R_{int} = 0.0477, R_{sigma} = 0.0322$ ]       |  |  |  |  |
| Data/restraints/parameters                                  | 10165/0/469                                            |  |  |  |  |
| Goodness-of-fit on F <sup>2</sup>                           | 1.122                                                  |  |  |  |  |
| Final R indexes $[I \ge 2\sigma(I)]$                        | $R_1 = 0.0515, wR_2 = 0.1055$                          |  |  |  |  |
| Final R indexes [all data]                                  | $R_1 = 0.0622, wR_2 = 0.1095$                          |  |  |  |  |
| Largest diff. peak/hole / e Å <sup>-3</sup> 0.52/-0.42      |                                                        |  |  |  |  |

# ac535

| Table 1 Crystal data and structure refinement for ac535. |                                                       |  |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------|--|--|--|--|
| Identification code                                      | ac535                                                 |  |  |  |  |
| Empirical formula                                        | $C_{39}H_{33}B_2CoF_8NiP_2$                           |  |  |  |  |
| Formula weight                                           | 854.85                                                |  |  |  |  |
| Temperature/K                                            | 139.99                                                |  |  |  |  |
| Crystal system                                           | monoclinic                                            |  |  |  |  |
| Space group                                              | P2 <sub>1</sub> /c                                    |  |  |  |  |
| a/Å                                                      | 17.0540(14)                                           |  |  |  |  |
| b/Å                                                      | 10.2096(8)                                            |  |  |  |  |
| c/Å                                                      | 20.0648(16)                                           |  |  |  |  |
| a/°                                                      | 90                                                    |  |  |  |  |
| β/°                                                      | 92.827(4)                                             |  |  |  |  |
| γ/°                                                      | 90                                                    |  |  |  |  |
| Volume/Å <sup>3</sup>                                    | 3489.3(5)                                             |  |  |  |  |
| Z                                                        | 4                                                     |  |  |  |  |
| $\varrho_{calc}g/cm^3$                                   | 1.627                                                 |  |  |  |  |
| $\mu/mm^{-1}$                                            | 1.180                                                 |  |  |  |  |
| F(000)                                                   | 1736.0                                                |  |  |  |  |
| Crystal size/mm <sup>3</sup>                             | $0.536 \times 0.514 \times 0.21$                      |  |  |  |  |
| Radiation                                                | $MoK\alpha \ (\lambda = 0.71073)$                     |  |  |  |  |
| $2\Theta$ range for data collection/°                    | 24.064 to 61.036                                      |  |  |  |  |
| Index ranges                                             | $-24 \le h \le 24, -8 \le k \le 14, -28 \le l \le 28$ |  |  |  |  |
| Reflections collected                                    | 56875                                                 |  |  |  |  |
| Independent reflections                                  | 10610 [ $R_{int} = 0.0264, R_{sigma} = 0.0249$ ]      |  |  |  |  |
| Data/restraints/parameters                               | 10610/86/540                                          |  |  |  |  |
| Goodness-of-fit on F <sup>2</sup>                        | 1.047                                                 |  |  |  |  |
| Final R indexes $[I \ge 2\sigma(I)]$                     | $R_1 = 0.0305, wR_2 = 0.0652$                         |  |  |  |  |
| Final R indexes [all data]                               | $R_1 = 0.0447, wR_2 = 0.0724$                         |  |  |  |  |
| Largest diff. peak/hole / e Å <sup>-3</sup> 0.78/-0.41   |                                                       |  |  |  |  |

#### 3 Cyclic Voltammetry



Figure S1: Cyclic voltammogram of  $[\mathbf{2}]^{2+}$  in 0.1 M  $^n\mathrm{Bu}_4\mathrm{NPF}_6$  in MeCN

### 4 NMR Spectroscopy



Figure S2: <sup>1</sup>H NMR of (dppc)<sup>+</sup> in CD<sub>3</sub>CN.

![](_page_10_Picture_0.jpeg)

Figure S3:  $^{31}\mathrm{P}$  NMR of (dppc) BF\_4 in CD\_3CN.

![](_page_10_Figure_2.jpeg)

Figure S4:  $^{13}\mathrm{C}$  NMR of (dppc) BF\_4 in  $\mathrm{CD}_3\mathrm{CN}.$ 

![](_page_11_Figure_0.jpeg)

Figure S5:  $^{11}\mathrm{B}$  NMR of (dppc) BF\_4 in CD\_3CN.

![](_page_11_Figure_2.jpeg)

Figure S6: <sup>1</sup>H NMR of  $[1]_2(Fe_2OCl_6)$  in  $CD_3CN$ .

![](_page_12_Figure_0.jpeg)

Figure S7: <sup>31</sup>P NMR of  $[1]_2(\text{Fe}_2\text{OCl}_6)$  in  $\text{CD}_3\text{CN}$ .

![](_page_12_Figure_2.jpeg)

Figure S8: <sup>1</sup>H NMR of [1]PF<sub>6</sub> in CD<sub>3</sub>CN.

![](_page_13_Figure_0.jpeg)

Figure S9: <sup>13</sup>C NMR of [1]PF<sub>6</sub> in CD<sub>3</sub>CN.

![](_page_13_Figure_2.jpeg)

Figure S10: <sup>31</sup>P NMR of [1]PF<sub>6</sub> in CD<sub>3</sub>CN.

![](_page_14_Figure_0.jpeg)

Figure S11: <sup>1</sup>H NMR of  $[2](PF_6)_n(BF_4)_m$  in  $CDCl_3$ .

![](_page_14_Figure_2.jpeg)

Figure S12: <sup>31</sup>P NMR of  $[2](PF_6)_n(BF_4)_m$  in  $CDCl_3$ .

![](_page_15_Figure_0.jpeg)

Figure S13: <sup>1</sup>H NMR of  $[2](PF_6)_n(BF_4)_m$  in  $CDCl_3$ .

![](_page_15_Figure_2.jpeg)

Figure S14: <sup>1</sup>H NMR of  $[\mathbf{2}](BF_4)_2$  in  $CDCl_3$ .

![](_page_16_Figure_0.jpeg)

Figure S15: <sup>11</sup>B NMR of  $[\mathbf{2}](BF_4)_2$  in  $CDCl_3$ .

![](_page_16_Figure_2.jpeg)

Figure S16: <sup>13</sup>C NMR of  $[\mathbf{2}](BF_4)_2$  in  $CDCl_3$ .

![](_page_17_Picture_0.jpeg)

Figure S17: <sup>31</sup>P sNMR of  $[2](BF_4)_2$  in  $CDCl_3$ .

### 5 Absorption Spectroscopy

![](_page_17_Figure_3.jpeg)

Figure S18: UV-Vis-NIR SEC of cathodic process  $[\mathbf{1}]^{+/0}$  in 0.1 M  $^n\mathrm{Bu}_4\mathrm{NPF}_6$  in MeCN.

![](_page_17_Figure_5.jpeg)

Figure S19: UV-Vis-NIR SEC of cathodic process  $[\mathbf{1}]^{0/\text{-}1}$  in 0.1 M  $^n\text{Bu}_4\text{NPF}_6$  in MeCN.

![](_page_18_Figure_0.jpeg)

Figure S20: UV-Vis-NIR SEC of cathodic process  $[\mathbf{2}]^{+/0}$  in 0.1 M  $^{n}\text{Bu}_{4}\text{NPF}_{6}$  in MeCN.

### 6 Electron Paramagnetic Resonance

![](_page_18_Figure_3.jpeg)

Figure S21: EPR spectrum of  $[\mathbf{2}]^+$  in 0.1 M  $^n\mathrm{Bu}_4\mathrm{NPF}_6$  in  $\mathrm{CH}_2\mathrm{Cl}_2$  at 100K

#### 6.1 TD-DFT

| CpNidppc2+<br>PKS PBED PLICOSY daf2-T7\/P daf2/LD3PL NormalPrint Grid5 CPCM(acetonitrile) |                                                                                                                                                                                     |  |  |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Isosurface = 0.002, green denotes gain of electron density                                |                                                                                                                                                                                     |  |  |  |  |
| Tranistions below 5% were omittee                                                         | a<br>STATE 4: E= 0.056117 au 1.527 eV 12316.3 cm**-1<br>173a -> 175a : 0.927641 (c= 0.96314113)<br>173a -> 177a : 0.071125 (c= -0.26669304)                                         |  |  |  |  |
|                                                                                           | STATE 7: E= 0.077377 au 2.106 eV 16982.3 cm**-1<br>171a -> 175a : 0.941013 (c= -0.97005810)                                                                                         |  |  |  |  |
|                                                                                           | STATE 10: E= 0.088209 au 2.400 eV 19359.7 cm**-1<br>170a -> 175a : 0.943741 (c= 0.97146332)                                                                                         |  |  |  |  |
|                                                                                           | STATE 12: E= 0.097158 au 2.644 eV 21323.6 cm**-1<br>173a -> 175a : 0.061441 (c= -0.24787196)<br>173a -> 177a : 0.822517 (c= -0.90692719)                                            |  |  |  |  |
|                                                                                           | STATE 18: E= 0.098942 au 2.692 eV 21715.3 cm**-1<br>163a -> 175a : 0.073032 (c= -0.27024348)<br>165a -> 175a : 0.753275 (c= -0.86791407)<br>166a -> 175a : 0.064593 (c= 0.25415155) |  |  |  |  |
|                                                                                           | STATE 26: E= 0.097610 au 2.656 eV 21422.9 cm**-1<br>172a -> 177a : 0.120752 (c= 0.34749334)<br>174a -> 179a : 0.858999 (c= 0.92682191)                                              |  |  |  |  |

Figure S22: TDDFT transitions for  $[2]^{2+}$  green denotes gain, red denotes loss.

| CpNidppc_+                                                                                      |                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Isosurface = 0.002, green denotes gain of electron density<br>Tranistions below 5% were omitted |                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                 | STATE 1: E= 0.022236 au 0.605 eV 4880.3 cm**-1<br>175a -> 177a : 0.909918 (c= -0.95389643)                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                 | STATE 2: E= 0.030207 au 0.822 eV 6629.7 cm**-1<br>155a -> 176a : 0.054197 (c= -0.23280260)<br>174a -> 176a : 0.374785 (c= 0.61219656)<br>154b -> 175b : 0.069590 (c= 0.26379846)<br>174b -> 175b : 0.409706 (c= 0.64008254)                                                              |  |  |  |  |  |
|                                                                                                 | STATE 6: E= 0.059170 au 1.610 eV 12986.2 cm**-1<br>174a -> 176a : 0.458178 (c= 0.67688813)<br>174b -> 175b : 0.406821 (c= -0.63782530)                                                                                                                                                   |  |  |  |  |  |
|                                                                                                 | STATE 9: E= 0.056001 au 1.524 eV 12290.8 cm**-1<br>175a -> 176a : 0.952844 (c= 0.97613734)                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                 | STATE 17: E= 0.104472 au       2.843 eV       22928.8 cm**-1         155a -> 176a :       0.065952 (c= -0.25681153)         156a -> 176a :       0.163132 (c= -0.40389593)         157a -> 176a :       0.170243 (c= -0.41260538)         155b -> 175b :       0.274344 (c= -0.52377853) |  |  |  |  |  |
|                                                                                                 | STATE 23: E= 0.114282 au 3.110 eV 25082.0 cm**-1<br>175a -> 180a : 0.876538 (c= 0.93623601)                                                                                                                                                                                              |  |  |  |  |  |

Figure S23: TDDFT transitions for  $[2]^+$  green denotes gain, red denotes loss.

| CpNidppc0                                                                   |                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RKS PBEO RIJCOSX def2-TZVP def2/J D3BJ NormalPrint Grid5 CPCM(acetonitrile) |                                                                                                                                                                                                                              |
| Isosurface = 0.002, green denotes gain of electron density                  |                                                                                                                                                                                                                              |
| Tranistions below 5% were omitted                                           |                                                                                                                                                                                                                              |
|                                                                             | STATE 1: E= 0.021020 au 0.572 eV 4613.4 cm**-1<br>175a -> 177a : 0.180424 (c= -0.42476399)<br>175a -> 179a : 0.079465 (c= -0.28189508)<br>175a -> 180a : 0.336490 (c= 0.58007765)<br>175a -> 181a : 0.213628 (c= 0.46219948) |
|                                                                             | STATE 3: E= 0.054193 au 1.475 eV 11893.9 cm**-1                                                                                                                                                                              |
|                                                                             | 175a -> 176a : 0.106578 (c= 0.32646358)                                                                                                                                                                                      |
|                                                                             | 175a -> 177a : 0.342006 (c= 0.58481287)                                                                                                                                                                                      |
|                                                                             | 175a -> 178a : 0.443173 (c= 0.66571243)                                                                                                                                                                                      |
| Yest                                                                        |                                                                                                                                                                                                                              |
|                                                                             | STATE 5: E= 0.064692 au 1.760 eV 14198.3 cm**-1                                                                                                                                                                              |
|                                                                             | 173a -> 176a : 0.024194 (c= 0.15554497)                                                                                                                                                                                      |
|                                                                             | 175a -> 176a : 0.444551 (c= -0.66674646)                                                                                                                                                                                     |
|                                                                             | $175a \rightarrow 177a$ : 0.039200 (c= 0.19798895)                                                                                                                                                                           |
|                                                                             | $175a \rightarrow 178a : 0.143990 (c= 0.37945958)$                                                                                                                                                                           |
|                                                                             | $175a \rightarrow 179a$ : 0.147491 (c= 0.38404604)                                                                                                                                                                           |
|                                                                             | $175a \rightarrow 180a$ 0 010835 (c= 0 10409110)                                                                                                                                                                             |
|                                                                             | $175a \rightarrow 182a$ : 0.038183 (c= 0.19540484)                                                                                                                                                                           |
|                                                                             | $175a \rightarrow 182a$ : 0.021561 (c= 0.12540404)                                                                                                                                                                           |
|                                                                             | STATE 7' E= $0.0706/9 = 1.1922 eV = 15505.7 cm**-1$                                                                                                                                                                          |
|                                                                             | 175a -> 176a · 0.090239 (r= -0.30039728)                                                                                                                                                                                     |
|                                                                             | 175a > 170a : $0.050255 (c = 0.50055720)$                                                                                                                                                                                    |
|                                                                             | 1754 > 1754 : 0.417752 (c= 0.04053715)<br>175a -> 180a : 0.256787 (c= -0.50674175)                                                                                                                                           |
|                                                                             |                                                                                                                                                                                                                              |
|                                                                             | STATE 15: E= 0.087834 au 2.390 eV 19277.4 cm**-1                                                                                                                                                                             |
|                                                                             | 170a -> 176a : 0.065388 (c= -0.25571142)                                                                                                                                                                                     |
|                                                                             | 173a -> 176a : 0.572129 (c= 0.75639224)                                                                                                                                                                                      |
|                                                                             | 175a -> 185a : 0.058675 (c= -0.24222834)                                                                                                                                                                                     |
|                                                                             |                                                                                                                                                                                                                              |

Figure S24: TDDFT transitions for  $[2]^0$  green denotes gain, red denotes loss.