Supporting Information

Co-intercalation strategy of constructing partial cation substitution of ammonium vanadate $\{(NH_4)_2V_6O_{16}\}$ for stable zinc ion storage

Rui Sun^{a, b}, Siyang Dong^a, Feng Xu^a, Zhiyong Li^{a,b}, Caihong Wang, Shengjun Lu^{a*} and Haosen Fan^{b*}

^aCollege of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China ^bSchool of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China E-mail: sjlu@gzu.edu.cn; hsfan@gzhu.edu.cn

Fig. S1 XRD pattern of NVO.

Fig. S2 (a, b) SEM images of NVO.

Fig. S3 The TG of NNVO and NVO. The TG analysis was tested in nitrogen.

Fig. S4 O 1s regions of the XPS spectra of the NNVO.

Fig. S5 (a) XPS spectra of the NVO composite. (b) V 2p, (c) N 1s, and (d) Na 1s regions of the XPS spectra of the NNVO and NVO.

Fig. S6 The SEM image of NNVO after cycles at 0.1 A $g^{\mbox{-}1}.$

Fig. S7 Galvanostatic discharge-charge curves of V_2O_5 and NVO at 0.1 A $g^{-1},$ respectively.

Fig. S8 Galvanostatic discharge-charge curves of NNVO at 5 A g^{-1} .

Materials	Electrolyte	Voltage window	The energy	Cyclic capacity	Ref.
		(V vs Zn/Zn ²⁺)	density (Wh kg ⁻¹)	$(mAh g^{-1}/th/A g^{-1})$	
(NH ₄) ₂ V ₆ O ₁₆	3 M Zn(CF ₃ SO ₃) ₂	0.3-1.7	249	238.7/2000/5	1
CaV_6O_{16} ·3H ₂ O	3 M Zn(CF ₃ SO ₃) ₂	0.01-2.0	-	230/300/1	2
$Na_2V_6O_{16}$ ·2.14H ₂ O	$1~M~ZnSO_4{\cdot}7H_2O$ and	0.2-1.6	312	210/500/5	3
	$0.2 \text{ M} \text{ Na}_2 \text{SO}_4$				
$Na_{1+x}V_3O_8\\$	2 M ZnSO ₄	0.4-1.4	-	Ca.280/50/1	4
CrVO ₃	3 M ZnSO ₄	0.4-1.7	231.9	85.7/1000/4	5
β-AgVO ₃	1.5 M ZnSO ₄	0.4-1.3	90	95/1000/2	6
NNOD	3 M Zn(CF ₃ SO ₃) ₂	0.1-2.0	350.3	423.9/90/0.1;	This
				182.5/1400/5	work

Table S1. comparison of the electrochemical performance among NNVO and other reported V-based cathode materials.

References

- L. Xu, Y. Zhang, H. Jiang, J. Zheng, X. Dong, T. Hu and C. Meng, *Colloids and Surfaces A: Colloid surface A*, 2020, **593**, 124621.
- 2. N. Xu, X. Lian, H. Huang, Y. Ma, L. Li and S. Peng, Mater. Lett., 2021, 287, 129285.
- 3. F. Hu, D. Xie, D. Zhao, G. Song and K. Zhu, J. Energy Chem., 2019, 38, 185-191.
- S. J. Kim, C. R. Tang, G. Singh, L. M. Housel, S. Yang, K. J. Takeuchi, A. C. Marschilok, E. S. Takeuchi and Y. Zhu, *Chem. Mater.*, 2020, **32**, 2053-2060.
- 5. Y. Bai, H. Zhang, B. Xiang, Y. Zhou, L. Dou and G. Dong, J. Colloid Inter. Sci., 2021, 597, 422-428.
- 6. H. Liu, J. G. Wang, H. Sun, Y. Li, J. Yang, C. Wei and F. Kang, J. Colloid Inter. Sci, 2020, 560, 659-666.