Supporting Information

Novel heterobimetallic Ir(III)-Re(I) complexes: design, synthesis and antitumor mechanism investigation

Jun-Jian Lu,^a Xiu-Rong Ma,^a Kai Xie,^a Pei-Xin Yang,^a Rong-Tao Li^{*a} and Rui-Rong Ye^{*a}

^a Faculty of Life Science and Technology, Kunming University of Science and

Technology, Kunming 650500, P. R. China

*Corresponding author.

E-mail addresses: rongtaolikm@163.com (R.-T. Li), yerr@mail2.sysu.edu.cn (R.-R.

Ye).

 $\label{eq:condition: (i) CH_3CH_2OH, reflux, 24 h;}$ (ii) MeOH/CH_2Cl_2, N_2, 55 °C, 5 h; (iii) acetone, N_2, 24 h.

Fig. S1 ESI-MS characterization of Ir-1, 799.1828 [M-PF₆]⁺.

Fig. S2 ESI-MS characterization of Ir-2, 405.5577 [M-PF₆+H]²⁺, 810.1081 [M-PF₆]⁺.

Fig. S3 ESI-MS characterization of Ir-3, 435.5822 [M-PF₆+H]²⁺, 870.1574 [M-PF₆]⁺.

Fig. S4 ESI-MS characterization of **IrRe-1**, 603.0720 [M-L-Ir(ppy)₂-2PF₆]⁺, 700.6331 [M-2PF₆]²⁺, 798.1961 [M-Re(DIP)(CO)₃-2PF₆]⁺, 1400.2591 [M-2PF₆-H]⁺, 1546.2322 [M-PF₆]⁺.

Fig. S5 ESI-MS characterization of **IrRe-2**, 603.0706 [M-L-Ir(thpy)₂-2PF₆]⁺, 706.5877 [M-2PF₆]²⁺, 810.1072 [M-Re(DIP)(CO)₃-2PF₆]⁺, 1412.1692 [M-2PF₆-H]⁺, 1558.1417 [M-PF₆]⁺.

Fig. S6 ESI-MS characterization of **IrRe-3**, 603.0715 [M-L-Ir(dfppy)₂-2PF₆]⁺, 736.61 34 [M-2PF₆]²⁺, 870.1575 [M-Re(DIP)(CO)₃-2PF₆]⁺, 1472.2216 [M-2PF₆-H]⁺, 1618.1949 [M-PF₆]⁺.

Fig. S7 ¹H NMR spectrum of Ir-1.

Fig. S8 ¹H NMR spectrum of Ir-2.

Fig. S9 ¹H NMR spectrum of Ir-3.

Fig. S10 ¹H NMR spectrum of IrRe-1.

$\begin{pmatrix} -9.90\\ -9.85\\ -9.89\\ -9.06\\ -9.06\\ -9.06\\ -9.29\\ -9.29\\ -9.29\\ -9.29\\ -9.26\\ -7.77\\ -7.72\\ -7.77\\ -7.72\\ -7.72\\ -7.72\\ -7.72\\ -7.72\\ -7.72\\ -7.72\\ -7.72\\ -7.72\\ -6.25$

Fig. S11 ¹H NMR spectrum of IrRe-2.

Fig. S12 ¹H NMR spectrum of IrRe-3.

Fig. S13 (A) UV/Vis spectra (1 × 10⁻⁵ M) of IrRe-1–3 measured in PBS (a), CH₃CN (b) and CH₂Cl₂ (c) at 298 K. (B) Emission spectra (1 × 10⁻⁵ M) of IrRe-1–3 measured in PBS (a), CH₃CN (b) and CH₂Cl₂ (c) at 298 K (λ_{ex} = 405 nm).

Fig. S14 Cell viability of HeLa cells treated with IrRe-1–3 in the presence or absence of NAC for 48 h. (* P < 0.05, as compared with the group without NAC treatment).

Fig. S15 Cell viability of HeLa treated with **IrRe-1–3** in the presence or absence of CHX (A) or Nec-1 (B) for 24 h.

Compounds	Medium	$\lambda_{abs, max} (nm)$	$\lambda_{em, max} (nm)$
	PBS	380	568
IrRe-1	CH ₃ CN	391	570
	CH_2Cl_2	384	540
IrRe-2	PBS	378	576
	CH ₃ CN	391	576
	CH_2Cl_2	386	572
IrRe-3	PBS	379	607
	CH ₃ CN	391	610
	CH_2Cl_2	378	590

Table S1 Photophysical data of IrRe-1–3

Compounds	Medium	$arPsi_{ m em}{}^{ m a}$
	PBS	0.004
IrRe-1	CH ₃ CN	0.009
	CH_2Cl_2	0.213
	PBS	0.001
IrRe-2	CH ₃ CN	0.004
	CH_2Cl_2	0.069
	PBS	0.005
IrRe-3	CH ₃ CN	0.008
	CH_2Cl_2	0.109
	PBS	0.026
Ir-1	CH ₃ CN	0.014
	CH_2Cl_2	0.048
	PBS	0.003
Ir-2	CH ₃ CN	0.007
	CH_2Cl_2	0.017
	PBS	0.008
Ir-3	CH ₃ CN	0.027
	CH_2Cl_2	0.106
	PBS	0.108
Re-1	CH ₃ CN	0.193
	CH_2Cl_2	0.291
	1 .1	

Table S2 The emission quantum yields of compounds

^a Solutions of $[Ru(bpy)_3](PF_6)_2$ were used as the standard, PBS ($\Phi_{em} = 0.042$),¹ CH₃CN ($\Phi_{em} = 0.062$)² and CH₂Cl₂ ($\Phi_{em} = 0.059$).³

G0/G1	S	G2/M
00.01	~	
57.1 ± 3.3	24.5 ± 2.1	18.4 ± 1.2
59.9 ± 3.2	15.3 ± 2.4	24.8 ± 2.3
66.4 ± 3.1	5.4 ± 1.1	28.2 ± 1.2
66.6 ± 2.8	4.8 ± 1.2	28.6 ± 1.3
44.6 ± 3.3	41.0 ± 3.7	14.4 ± 1.7
61.3 ± 2.9	6.4 ± 1.7	32.3 ± 2.5
70.7 ± 3.8	10.1 ± 1.9	19.2 ± 3.5
59.8 ± 1.4	26.1 ± 1.8	13.9 ± 3.9
61.8 ± 3.7	5.3 ± 0.8	32.8 ± 2.3
82.6 ± 6.3	14.4 ± 1.6	3.0 ± 0.7
	$G0/G1$ 57.1 ± 3.3 59.9 ± 3.2 66.4 ± 3.1 66.6 ± 2.8 44.6 ± 3.3 61.3 ± 2.9 70.7 ± 3.8 59.8 ± 1.4 61.8 ± 3.7 82.6 ± 6.3	G0/G1S 57.1 ± 3.3 24.5 ± 2.1 59.9 ± 3.2 15.3 ± 2.4 66.4 ± 3.1 5.4 ± 1.1 66.6 ± 2.8 4.8 ± 1.2 44.6 ± 3.3 41.0 ± 3.7 61.3 ± 2.9 6.4 ± 1.7 70.7 ± 3.8 10.1 ± 1.9 59.8 ± 1.4 26.1 ± 1.8 61.8 ± 3.7 5.3 ± 0.8 82.6 ± 6.3 14.4 ± 1.6

Table S3 Cell-cycle analysis data of IrRe-1–3 on HeLa cells^a

^a Data shown are mean \pm SD of three independent experiments for each treatment.

Supporting References

- 1 J. Van Houten and R. J. Watts, J. Am. Chem. Soc., 1976, 98, 4853-4858.
- 2 D. S. Tyson and F. N. Castellano, J. Phys. Chem. A, 1999, 103, 10955-10960.
- 3 D. Pucci, A. Bellusci, A. Crispini, M. Ghedini, N. Godbert, E. I. Szerb and A. M. Talarico, *J. Mater. Chem.*, 2009, **19**, 7643-7649.