Supplementary Information

A novel $g-C_3N_4$ nanosheet/Ag₃PO₄/ α -Bi₂O₃ ternary dual Z-scheme heterojunction with increasing light absorption and expanded specific surface area for efficient photocatalytic removal TC

Zongyu Zhang^a, Xiuling Xue^{a*}, Xiaoyi Chen^a.

College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China

* Corresponding Author: Xiuling Xue

E-mail: xueling@hqu.edu.cn

Telephone: +86-592-6162300

Fax: +86-5926162300

Section 1. Supporting Figures and Tables

Fig. S1 The XPS spectra of P 2p (a) of CNN/AP/BO-4 photocatalyst. Ag 3d (b) and survey spectra (c) of fresh and used CNN/AP/BO-4 photocatalyst.

Fig. S2 Energy band structures of CNN, AP and BO.

Fig. S3 Zeta potentials of CNN/AP/BO under different pH conditions.

Fig. S4 (a) Effect of different water body samples condition under sunlight irradiation;(b) stability test on the performance of CNN/AP/BO-4 for TC degradation; (c) FTIR spectra and (d) XRD patterns of fresh and used CNN/AP/BO-4.

Table S1 Comparison of photocatalytic performance with other previously reported photocatalysts for tetracycline (TC) degradation

Materials	Light source Xe lamp/W	Catalys t (g/L)	Concentration (mg/L)	Volume (mL)	Degradation Performance (%)	Refs.
Ag ₃ PO ₄ /AgBr-	$300~(\lambda >$	0.5	40	100	80 (25min)	1

20%g-C ₃ N ₄	420 nm)					
$Bi_2Zr_2O_7/g-$	$300 (\lambda >$	0.5	20	100	86.2 (45min)	2
C_3N_4/Ag_3PO_4	420 nm)					
g-	LED10(4	1	20	100	90 (150min)	3
C_3N_4/Ag_3PO_4 -	00					
1	nm<λ<7					
	00 nm)					
Ag ₃ PO ₄ /g-	300 (λ>	1	10	50	69(10 min)	4
$C_3N_4/MoSe_2$	420 nm)					
Ag ₃ PO ₄ /	$300 (\lambda >$	0.5	10	/	88 (120 min)	5
$Co_3(PO_4)_2/g$ -	420 nm)					
C_3N_4						
PNIPAM@Ag	800 (λ >	0.5	20	100	88.96 (120	6
/Ag ₃ PO ₄ -	400 nm)				min)	
20/CN						
Ag ₃ PO ₄ /NG/g-	100 (λ >	0.5	20	50	93.6 (90 min)	7
C_3N_4	420 nm)					
Bi ₂ O ₂ CO ₃ /g-	$300 (\lambda >$	0.2	10	50	95 (60 min)	8
C_3N_4/Bi_2O_3	420 nm)					
WO ₃ /g-	$300 (\lambda >$	1	10	100	80.2 (60 min)	9
C_3N_4/Bi_2O_3	420 nm)					
Bi ₂ O ₃ QDs/g-	$300 (\lambda >$	0.5	10	100	84 (120 min)	10
C ₃ N ₄ (ii)	420 nm)					
Bi/a-Bi ₂ O ₃ /g-	$300 (\lambda >$	1	10	50	90.2 (180	11
C_3N_4	400 nm)				min)	
CNN/AP/BO	$300 (\lambda >$	1	30	50	91.6 (60min)	This
	420 nm)					work

- H. Yu, D. Wang, B. Zhao, Y. Lu, X. Wang, S. Zhu, W. Qin and M. Huo, Sep. Purif. Technol., 2020, 237.
- Z. Qu, Z. Jing, X. Chen, Z. Wang, H. Ren and L. Huang, *Journal of Environmental Sciences*, 2023, 125, 349-361.
- 3. Z. Hu, J. Lyu and M. Ge, Mater. Sci. Semicond. Process., 2020, 105.
- 4. H. Zhang, G. Tang, X. Wan, J. Xu and H. Tang, Appl. Surf. Sci., 2020, 530.
- W. Shi, C. Liu, M. Li, X. Lin, F. Guo and J. Shi, J. Hazard. Mater., 2020, 389, 121907.
- 6. L. Sun, Y. Zhou, X. Li, J. Li, D. Shen, S. Yin, H. Wang, P. Huo and Y. Yan, *Chinese Journal of Catalysis*, 2020, 41, 1573-1588.
- 7. Q. Zhang, X. Gao, Y. Wang, H. Li, Y. Zhang, Y. Fan and J. Niu, *Mater. Sci. Semicond. Process.*, 2019, **104**.
- C. Wu, H. Zuo, H. Du, S. Zhang, L. Wang and Q. Yan, Sep. Purif. Technol., 2022, 282.
- 9. L. Jiang, X. Yuan, G. Zeng, J. Liang, X. Chen, H. Yu, H. Wang, Z. Wu, J. Zhang and T. Xiong, *Appl. Catal.*, B, 2018, 227, 376-385.

- 10. Y. Liang, W. Xu, J. Fang, Z. Liu, D. Chen, T. Pan, Y. Yu and Z. Fang, *Appl. Catal., B*, 2021, **295**.
- 11. D. Chen, S. Wu, J. Fang, S. Lu, G. Zhou, W. Feng, F. Yang, Y. Chen and Z. Fang, *Sep. Purif. Technol.*, 2018, **193**, 232-241.