# Supporting information for

#### Two-dimensional Layered Lithium Lanthanum Titanium Oxide/Graphene-like

### **Composites as Electrodes for Lithium-Ion Batteries**

Bo Gu,<sup>a,b,c</sup> Chenyang Zhan,<sup>b,c</sup> BingHeng Liu,<sup>b,c</sup> Gang Wang,<sup>b,c</sup>, Qian Zhang,<sup>\*,a</sup> Ming

Zhang, \*,b,c and Zhongrong Shen\*,b,c

<sup>a</sup> School of Materials Science and Engineering, Key Laboratory of Power Batteries and Relative Materials, Jiangxi University of Science and Technology, Ganzhou 341000, China.

<sup>b</sup>CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. <sup>c</sup>The Laboratory of Rare-earth Functional Materials and Green Energy, Xiamen Institute of Rare-Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China.

\*Correspondence: zhangqian@jxust.edu.cn (Q.Z.); mingzhang@fjirsm.ac.cn (M.Z.); z-shen@fjirsm.ac.cn (Z.S.)

## Contents

Supporting Figures S1-S9... pages 2-4

Supporting Tables... page 5

## **Supporting Figures**



Fig. S1 XRD patterns of KLLTO



Fig. S2 a) C1s, b) O1s and c) La 3d XPS spectra for the LLTO@C-600.



Fig. S3 electrical conductivity of KLLTO and LLTO@C.



Fig. S4 different current densities of KLLTO



Fig. S5 rate capability of the LLTO@C-800 at various current densities.



Fig. S6 Cycling performance of the coin cells with LLTO@C-600 at various currents.



Fig. S7 Cyclic voltammetry curves of the LLTO@C-600 at a) 0.5 mV s<sup>-1</sup>, b) 1 mV s<sup>-1</sup>, c) 2 mV s<sup>-1</sup>.



Fig. S8 Differential dQ/dV versus voltage plots of the LLTO@C-600 nanosheet composite at a)0.2 mV s<sup>-1</sup>, b)0.4 mV s<sup>-1</sup>, c)0.6 mV s<sup>-1</sup>, d)0.8 mV s<sup>-1</sup>, e)1 mV s<sup>-1</sup>; f)contribution ratio of the capacitive and diffusion-controlled charge storage at different scan rates for the LLTO@C-600.



Fig. S9 a-c) the ex situ Ti 2p XPS spectra at different charge/discharge states of the LLTO@C-600.

| materials  | Synthesis<br>of LLTO            | structure types of LLTO          | current density           | specific discharge<br>capacity | Ref.        |
|------------|---------------------------------|----------------------------------|---------------------------|--------------------------------|-------------|
| LLTO/C     | sol–gel                         | Single Perovskite                | $0.05 \text{ mA cm}^{-2}$ | 145 mAh g <sup>-1</sup>        | 1           |
| P-LLTO/C   | electro-spinning                | Single Perovskite<br>(Nanowires) | 100 mA g <sup>-1</sup>    | 210 mAh g <sup>-1</sup>        | 2           |
| LLTO/C@Au  | electro-spinning                | Single Perovskite<br>(Nanowires) | 2 mA cm <sup>-2</sup>     | 10 mA h cm <sup>-2</sup>       | 3           |
| LLTO@C     | sol–gel                         | Single Perovskite                | 100 mA g <sup>-1</sup>    | 140 mAh g <sup>-1</sup>        | 4           |
| LLTO@C-600 | high temperature<br>solid-phase | Layered perovskite               | 100 mA g <sup>-1</sup>    | 285 mAh g <sup>-1</sup>        | Our<br>work |

Table S1. Electrochemical performance of lithium ion batteries with various TiO<sub>2</sub> based electrode

#### **References:**

- 1 C.-X. Hua, X.-P. Fang, Z.-X. Wang and L.-Q. Chen, Lithium storage in perovskite lithium lanthanum titanate, *Electrochemistry Communications*, 2012, **32**, 5-8.
- 2 N. Zheng, C. Zhang, Y. Lv and et al. Low-Temperature Synthesis of Lithium Lanthanum Titanate/Carbon Nanowires for Fast-Charging Li-Ion Batteries, *ACS Applied Materials & Interfaces*, 2022.
- 3 N. Zheng, C. Liang, C. Wu and et al. Circumferential Li metal deposition at high rates enabled by the synergistic effect of a lithiophilic and ionic conductive network, *J. Mater. Chem. A*, 2022, **10**,5391.
- 4 J.-R. Wang, M.-M. Wang, J.-C. Xiao and et al, A microstructure engineered perovskite super anode with Listorage life of exceeding 10,000 cycles, *Nano Energy*, 2022, **94**, 106972.