Enhancing chalcogen bonding by metal coordination.

Rosa M. Gomila,^a Antonio Bauzá,^a and Antonio Frontera^{a,*}

^aDepartment of Chemistry, Universitat de les Illes Balears Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca (Spain) E-mail: toni.frontera@uib.es

Results from the CSD search

Table S1. List of X-ray structures exhibiting metal enhanced-Ch bonds including the
CSD code, the ChB donor and acceptor atoms, the Ch…X distance (d, in Å) and the Y–
C…X angle (∠, in°).

CSD code	ChB donor	ChB acceptor	d	۷
HEPXEG	Те	Cl	3.249	174.5
ZEYXIN	Те	Cl	3.309	166.8
OGOXAM	Se	Cl	3.341	174.3
XUFHEM	Se	0	3.353	160.8
ZOWYEP	Те	С	3.581	166.8
BEJWUL	Se	Cl	3.376	168.0
OLURIZ	Те	Cl	3.382	167.6
QATVAK	Те	Cl	3.397	162.8
	Те	Cl	3.401	1747
QADDOO	Те	Cl	3.494	1/4./
ROXFOB	Те	Cl	3.404	170.9
WICDOD	Se	Cl	3.405	162.4
XILFEE	Se	Cl	3.410	164.7
XUFHIQ	Se	0	3.418	158.9
ZOWYEP10	Те	С	3.583	169.5
QAXKIJ	Те	Cl	3.425	170.3
KEXSAK	Те	Cl	3.429	170.9
XOYTOW	Se	Cl	3.431	167.7
PUYWUC	Se	Cl	3.444	167.8
TOQPEV	Se	С	3.450	157.0
RUHFIM	Те	Cl	3.451	171.1
TAFWIJ	Se	Cl	3.463	176.1
OLUREV	Те	Cl	3.464	166.5
WIXSEB	Те	С	3.465	172.5
DISVIL	Se	Cl	3.470	159.5
UCAJAM	Se	Cl	3.480	160.4

EPULIM	Se	Cl	3.482	161.5
CIPKEU	Se	С	3.484	173.8
KEBXAR	Se	Cl	3.484	164.6
WAVTIY	Se	Cl	3.485	167.0
	S	Cl	3.488	167.1
DEVGUN	Те	Cl	3.401	107.1
VIIIII	То	Cl	3.509	174.0
VIJUIJ	Te	Br	3.844	1/4.2
BEJWIZ	Se	С	3.536	168.6
HIXCEX	Те	Cl	3.539	172.9
WIVZAD	Те	Cl	3.551	167.7
TOTRUR	Те	Cl	3.568	173.8
KEBXEV	Se	Cl	3.575	160.6
ZATMEM	Se	Cl	3.579	176.7
ABOREP	Те	Pt	3.585	173.0
ΤΑΡΥΕΟ	Те	Cl	3.585	154.7
EKIROG	Se	Cl	3.589	165.0
MULZIC	Se	Cl	3.592	174.6
GOYSIZ	Se	Cl	3.618	152.7
CODTEX	Те	Cl	3.621	154.1
JAGZIA	Те	Br	3.647	152.3
COKFIT	Se	С	3.658	176.2
SIDDAL	Те	С	3.666	166.8
VUGWOK	Se	Pd	3.678	150.7ª
PUYXAJ	Se	Cl	3.679	166.7
NEDTAS	Se	Cl	3.681	160.8
QETFED	Se	Pt	3.697	173.6
MELJUJ	Se	Pd	3.701	175.7
SETFON	Se	Cl	3.701	163.8
CODTAT	Те	Cl	3.706	151.3
QETFAZ	Se	Pd	3.708	170.6
CUHMAV	Те	Pt	3.715	166.5
QADDOO	Те	Cl	3.734	175.8
DIZWAL	Те	Cl	3.753	172.3
DISWAE	Se	Cl	3.760	157.7
KICSIA	Se	Br	3.787	169.6
	Se	Cl	3.647	105.0
EKIQUL	Se	Cl	3.795	168.9
PDSECL	Se	Cl	3.820	153.1
LEQSIK	Se	Cl	3.833	166.0
FELPOD	Se	Cl	3.836	159.4
CUHMEZ	Те	Cl	3.850	171.6
YIZPOM	Те	Cl	3.852	153.7
JOZXOL	Те	l	3.862	169.2
BIGDAX	Те	Cl	3.887	160.5
DUWMEN	Se	0	3.909	172.4
CUHMOJ	Те		3.937	161.1
REXBOL	Те	Cl	3.937	152.0
WACNIX	Те	Cl	3.989	172.8
UZACEE	Se		4.033	165.8

^aAngle measured to the Cl–Pd bond centroid.

Comparison of ChB geometric parameters between optimized and nonoptimized X-ray structures.

Table S2. List of the geometric parameters (d, (in Å) and (C–Ch…X angle, (\angle , in °)) regarding the ChBs established in JOXZOL dimer. Opt. stands for optimized structure at the PBE0-D3/def2-TZVP level of theory.

CSD code	ChB donor	ChB acceptor	d	۷
JOXZOL (X-ray)	Те	I	3.679/3.862	173.3/169.2
JOXZOL (Opt.)	Те	I	3.727/3.732	171.4/171.5

Additional information regarding the selected X-ray structures

JOXZOL

This structure corresponds to the *trans*-di-iodo-bis(methyl-phenyl-tellurido)platinum(II), which exhibits a solid state architecture composed by discrete squareplanar *trans* molecules, where the methyl phenyl telluride ligands with the stereochemically active lone pair adopt the RR (and SS) configuration. The authors observed a preference for the *trans* conformation, which was originally attributed to the use of heavy halogens (I) as coligands.

PUYWUC

This structure corresponds to a selenoether functionalized tertiary phosphine. In the original work, the authors remarked the variation of the dihedral angle between the phenyl/phenylene rings attached to Se owing to its potential interaction with the Pt metal center, resulting in weak intermolecular Se…Pt interactions. Also, the authors were intrigued about possible attractive interactions between the Se and Cl atoms belonging to two neighboring units, stating that their interatomic distance was significantly shorter than the sum of their van der Waals radii.

ROXFOB

1

This structure crystallized in a distorted square planar geometry around a Pd metal center, thus forming a five membered chelate ring. The authors highlighted the contribution of the Cl···H(aromatic), Cl···H ($-OCH_3$) and Cl···Te interactions in the formation of a three dimensional network.

Cartesian coordinates of complexes 1 to 8

С	0.3352470	-1.3458533	-0.5623259
С	0.1691118	-0.6817133	0.6467251
С	-0.1691118	0.6817133	0.6467251

C C H H H S e F F	-0.3352470 -0.1685559 0.1685559 0.5850955 -0.5850955 -0.2981141 0.2981141 -0.4739766 0.4739766 1.2173527 -1.2173527	$\begin{array}{c} 1.3458533\\ 0.6708619\\ -0.6708619\\ -2.3997799\\ 2.3997799\\ 1.2016364\\ -1.2016364\\ 1.6529463\\ -1.6529463\\ 1.9125354\\ -1.9125354\end{array}$	-0.5623259 -1.7662357 -1.7662357 -0.5564025 -0.5564025 -2.7022305 -2.7022305 2.2565979 2.2565979 2.6838715 2.6838715
2 C C C C C C C C H H H H T E F F	0.3569074 0.1794580 -0.1794580 -0.3569074 -0.1794243 0.1794243 0.6223006 -0.6223006 -0.6223006 -0.3178894 0.3178894 0.5285886 0.5285886 1.3252088 -1.3252088	-1.3396738 -0.6787384 0.6787384 1.3396738 0.6678118 -0.6678118 -2.3901538 2.3901538 1.1967839 -1.1967839 1.7497482 1.9657173 -1.9657173	-0.6122117 0.5990280 0.5990280 -0.6122117 -1.8165692 -1.8165692 -0.6150726 -0.6150726 -2.7524273 2.3775901 2.3775901 2.8196626 2.8196626
3 C C C C C C H H H H S E F F P d C L	0.2568538 0.1306025 -0.1306025 -0.2568538 -0.1296334 0.1296334 0.4560144 -0.4560144 -0.2298395 0.2298395 0.3352239 0.3352239 -2.0776291 0.000000 -0.3512068 0.3512068	-1.3691376 -0.6841230 0.6841230 1.3691376 0.6813115 -0.6813115 -2.4346372 1.2151708 -1.2151708 1.6699106 1.7810497 -1.7810497 0.000000 1.6838620 -1.6838620	-1.3619290 -0.1611536 -0.1611536 -1.3619290 -2.5604096 -1.3614488 -1.3614488 -3.4977696 1.4761313 1.4761313 1.3554551 1.3554551 3.0645695 4.5788395
4 C C C	0.2421280 0.1254471 -0.1254471	-1.3679237 -0.6871495 0.6871495	-1.4258950 -0.2184054 -0.2184054

C C H H H T e F F C l C l	-0.2421280 -0.1219873 0.1219873 0.4294908 -0.4294908 -0.2154762 0.2154762 -0.3333120 0.3333120 -2.2268220 2.2268220 0.000000 -0.3716345 0.3716345	1.3679237 0.6821612 -0.6821612 -2.4363211 1.2181585 -1.2181585 1.7981982 -1.7981982 1.8327826 -1.8327826 0.000000 1.8144011 -1.8144011	-1.4258950 -2.6267329 -2.6267329 -1.4378664 -1.4378664 -3.5637760 -3.5637760 1.5844419 1.5844419 1.4360945 1.4360945 3.2171071 4.6435856 4.6435856
5 C C C C C C C C H H H H S S E F F C C O O	0.0934443 0.0428087 -0.0428087 -0.0934443 -0.0533179 0.0533179 0.1611119 -0.1611119 -0.0938848 0.0938848 0.0938848 -0.1823626 0.1823626 -1.8497968 1.8497968 1.8497968 1.8497968 1.8497968 1.3129151 -3.3448077 3.3448077	-1.3802742 -0.6982659 0.6982659 1.3802742 0.6910673 -0.6910673 -2.4614155 1.2377812 -1.2377812 1.7684258 -1.7684258 2.2899919 -2.2899919 -0.8542774 0.8542774 -0.5112638 0.5112638	-1.0951687 0.1173130 0.1173130 -1.0951687 -2.2960387 -2.2960387 -1.0902098 -1.0902098 -3.2308704 -3.2308704 1.7012359 1.7012359 1.3358555 1.3358555 2.1420072 2.1420072 2.4158759 2.4158759
6 CCCCCCHHHHSE FFF	-0.1551862 -0.0903483 0.0903483 0.1551862 0.0674384 -0.0674384 -0.2634095 0.2634095 0.1211819 -0.1211819 0.2985172 -0.2985172 1.3520241 -1.3520241 -1.3520241	-1.3651176 -0.6990356 0.6990356 1.3651176 0.6912891 -0.6912891 -2.4433510 2.4433510 1.2480656 -1.2480656 1.8441051 0.6633562 -0.6633562 4.1613725	-0.7433965 0.4859998 0.4859998 -0.7433965 -1.9452769 -1.9452769 -0.7317532 -0.7317532 -2.8761978 2.0214551 2.0214551 2.9404830 2.9404830 0.8486866

Br	1.1870382	-4.1613725	0.8486866
Вг С С С С С С Н Н	0.0111929 0.0052210 -0.0052210 -0.0111929 -0.0083373 0.0083373 0.0181845 -0.0181845	-4.1613723 -1.3918109 -0.6951987 0.6951987 1.3918109 0.6933082 -0.6933082 -2.4756967 2.4756967	-1.6903005 -0.4903181 -0.4903181 -1.6903005 -2.8892785 -2.8892785 -1.6888214 -1.6888214
H Se Se F F Cl Cl C C	-0.0143693 0.0143693 -0.0500996 0.0500996 -1.7723429 1.7723429 0.0000000 -0.0090455 0.0090455 -2.7885974 2.7885974	1.2371087 -1.2371087 1.7061906 -1.7061906 2.0427674 -2.0427674 -0.0000000 1.7249409 -1.7249409 -1.0674824 1.0674824	-3.8262274 -3.8262274 1.1472834 1.0166610 1.0166610 2.7509775 4.2639749 4.2639749 1.2547823 1.2547823
0 0 8 0 0 0 0 0	-3.8335927 3.8335927 0.1885676 0.0919593 -0.0919593 -0.1885676	-0.7689184 0.7689184 -1.3726217 -0.6858150 0.6858150 1.3726217	1.5267554 1.5267554 -1.5045605 -0.3006753 -0.3006753 -1.5045605
C C H H H Se Se	-0.0955837 0.0955837 0.3209286 -0.3209286 -0.1697325 0.1697325 -0.2945205 0.2945205	0.6885881 -0.6885881 -2.4484223 2.4484223 1.2302998 -1.2302998 1.6831064 -1.6831064	-2.7040069 -2.7040069 -1.4910202 -1.4910202 -3.6416841 -3.6416841 1.3392605 1.3392605
F F Pd Cl Cl Br Br	-2.1406591 2.1406591 0.0000000 -0.3144785 0.3144785 -2.3265786 2.3265786	1.4888106 -1.4888106 0.0000000 1.6934062 -1.6934062 -2.2498923 2.2498923	1.1688845 1.1688845 2.9900353 4.5802391 4.5802391 1.0585454 1.0585454

Cartesian coordinates of JOZXOL (Optimized dimer)

Pt	-1.0550482	-1.2428088	0.0243163
I	-2.3349546	-0.3396908	-2.0899117
I	0.0374256	-2.3577805	2.1425128

Те	-2.8764587	0.0861165	1.3036416
Те	0.5482103	-2.8235066	-1.2584945
С	-4.3917530	-1.3820722	1.0677798
С	-4.1075878	-2.7213889	1.3091415
C	-5 0994516	-3 6743070	1 1375936
C	-6 3668779	-3 2958716	0 71/5282
C	6.6440060	1 0 0 0 5 1 7	0.7145202
Ĉ	-6.6440060	-1.9603417	0.4655615
C	-5.6569619	-0.9996097	0.6439728
С	-2.6525221	-0.3137985	3.3844221
С	-0.6385724	-4.5714069	-1.0501824
С	-0.0265809	-5.7780120	-0.7386759
С	-0.7960843	-6.9259387	-0.5990915
С	-2.1701879	-6.8663820	-0.7739981
С	-2.7786558	-5.6571610	-1.0839506
C	-2.0172425	-4.5063609	-1.2177866
C	0 1170931	-2 6555959	-3 33879/5
	2 1102724	2.0000000	1 6094601
п 	-3.1102734	-3.0230010	1 2052274
Н	-4.8/3616/	-4./180256	1.3253374
H	-7.1385189	-4.0445263	0.5751615
H	-7.6303558	-1.6616667	0.1293636
Н	-5.8766714	0.0429393	0.4418609
Н	-1.7156345	0.1398063	3.6999586
Н	-2.6269365	-1.3895802	3.5370640
Н	-3.5011359	0.1400798	3.8944086
н	1.0473590	-5.8285539	-0.5962882
н	-0 3178179	-7 8668770	-0 3518412
и П	-2 7695081	-7 7631799	-0 6653056
11	2.7095001	7.70J1799	1 01/1201
H	-3.8535840	-5.6024546	-1.2141301
H	-2.4992785	-3.5589053	-1.4342//5
H	0.4206371	-1.6593326	-3.6522682
H	-0.9501459	-2.7963965	-3.4885185
Н	0.6952336	-3.4230946	-3.8515986
Pt	1.0550482	1.2428088	0.0243163
I	2.3349546	0.3396908	-2.0899117
I	-0.0374256	2.3577805	2.1425128
Те	2.8764587	-0.0861165	1.3036416
 Те	-0 5482103	2 8235066	-1 2584945
C	4 3917530	1 3820722	1 0677798
C	1 1075070	2 7212000	1 2001/15
	4.10/30/0	2.7213009	1.3091413
Ĉ	5.0994516	3.6/430/0	1.13/5936
С	6.3668//9	3.2958/16	0./145282
С	6.6440060	1.9605417	0.4655813
С	5.6569619	0.9996097	0.6439728
С	2.6525221	0.3137985	3.3844221
С	0.6385724	4.5714069	-1.0501824
С	0.0265809	5.7780120	-0.7386759
С	0.7960843	6.9259387	-0.5990915
C	2.1701879	6.8663820	-0.7739981
C	2 7786558	5 6571610	-1 0839506
C	2 0170/05	1 5063600 J. 5063600	-1 0177066
	$\angle \cdot \cup \perp / \angle 4 \angle 3$	4.JU030U9	-1.21//000
C	-0.11/0931	∠. ७२२२४५४	-3.338/945

Η	3.1102734	3.0258610	1.6084691
Η	4.8736167	4.7180256	1.3253374
Η	7.1385189	4.0445263	0.5751615
Η	7.6303558	1.6616667	0.1293636
Н	5.8766714	-0.0429393	0.4418609
Η	1.7156345	-0.1398063	3.6999586
Η	2.6269365	1.3895802	3.5370640
Η	3.5011359	-0.1400798	3.8944086
Н	-1.0473590	5.8285539	-0.5962882
Η	0.3178179	7.8668770	-0.3518412
Η	2.7695081	7.7631799	-0.6653056
Н	3.8535840	5.6024546	-1.2141301
Н	2.4992785	3.5589053	-1.4342775
Н	-0.4206371	1.6593326	-3.6522682
Н	0.9501459	2.7963965	-3.4885185
Η	-0.6952336	3.4230946	-3.8515986