Supporting Information

The ZIF-67-derived framework as efficient bifunctional

catalysts for overall water splitting in alkaline medium

Wenhao Liao^[a], Xianfeng Tong^[a], Yali Zhai^[b], Haojiang Dai^[a], Yingyan Fu^[a], Min

Qian^[a], Geng Wu^[c], Tianyun Chen*^[a] and Qinghua Yang*^[b]

[a]School of Chemistry and Chemical Engineering, Hefei University of Technology,

Hefei, Anhui, 230009, China, E-mail address: t-y99@163.com

[b]School of Food and Biological Engineering, Hefei University of Technology, Hefei,

Anhui, 230009, China, E-mail address: yqhsina@126.com

[c]School of Chemistry and Materials Science, University of Science and Technology

of China, Hefei, Anhui, 230026, China

Fig. S1 SEM images of (a) ZIF-67, (b) CoP/CNTs, (c) Co@Co(OH)₂, (d) CoP/HPs

Fig. S2 SEM images of (a) Co(OH)₂-1h, (b) Co(OH)₂-3h, (c, d) LSV curves

Fig. S3 TEM images of (a) ZIF-67, (b) Co/CNTs, (c) Co@Co(OH)₂/CNTs, (d)

CoP/CNTHPs.

Fig. S4 XRD patterns of (a) ZIF-67, (b) Co/CNTs, (c) Co@Co(OH)₂/CNTs, (d)

CoP/CNTHPs

Fig. S5 TEM images and XRD patterns of (a,d) Co@Co(OH)₂, (b,e) CoP/HPs, (c,f)

CoP/CNTs

Fig. S6 Energy dispersive X-ray spectroscopy (EDX) of CoP/CNTHPs

Element	Wt.%	At.%
Со	20.92	6.08
Р	16.14	8.93
С	47.65	68.94
Ν	1.79	1.6
Ο	13.50	14.45

Table. S1 The weight and atomic percentage of different elements in CoP/CNTHPs

Fig. S7 Cyclic voltammetry curves (CVs) of (a) Co@Co(OH)₂/CNTs, (b) CoP/CNTHPs, (c) CoP/HPs and (d) CoP/CNTs measured in 1.0 M KOH solution at scan rates of 10-100 mv s⁻¹ for HER

Fig. S8 The electrochemical surface area (ECSA) of CoP/CNTHPs,

Co@Co(OH)₂/CNTs, CoP/HPs and CoP/CNTs for HER

Fig. S9 (a) XRD pattern and (b) SEM image of CoP/CNTHPs after HER test

Fig. S10 XPS spectra of CoP/CNTHPs after HER durability test (a) survey, (b) Co 2p,

(c) N 1s, (d) P 2p, (e) C 1s and (f) O 1s

Fig. S11 Cyclic voltammetry curves (CVs) of (a) $Co@Co(OH)_2/CNTs$, (b) CoP/CNTHPs (c) CoP/HPs and (d) CoP/CNTs measured in 1.0 M KOH solution at scan rates of 10-100 mv s⁻¹ for OER

Fig. S12 The electrochemical surface area (ECSA) of CoP/CNTHPs, Co@Co(OH)₂/CNTs, CoP/HPs and CoP/CNTs for OER

Fig. S13 (a) XRD pattern and (b) SEM image of CoP/CNTHPs after OER test

Fig. S14 XPS spectra of CoP/CNTHPs after OER durability test (a) survey, (b) Co 2p,

(c) N 1s, (d) P 2p, (e) C 1s and (f) O 1s

Table. S2 Comparison of the overpotentials at 10 mA cm⁻² compared to previously

Electrocatalysts	Electrolyte	η_{10}	Tafel slope	Reference
		(mV)	$(mV dec^{-1})$	
CoP/CNTHPs	1.0M KOH	147	78.1	This work
CoP/CNFs	1.0M KOH	225	100.8	[1]
CoP(C/Z)	1.0M KOH	154	85.1	[2]
CoP/C NPs	1.0M KOH	138	95	[3]
CoP-NPC	1.0M KOH	318	97.5	[4]
Co@PCM	1.0M KOH	177	151.8	[5]
CoP@NPC-	1.0M KOH	181	59	[6]
900				
CoP NS/CNT	1.0M KOH	68	57	[7]
Zn-Co-P	1.0M KOH	172	116	[8]

reported catalysts in 1.0 M KOH electrolyte for HER

Electrocatalysts	Electrolyte	η_{10}	Tafel slope	Reference
		(mV)	(mV dec ⁻¹)	
CoP/CNTHPs	1.0M KOH	238	77.9	This work
CoP@HNC	1.0M KOH	327	81.3	[9]
CoP@NPCNF	1.0M KOH	266	70	[10]
CoP-HNTs@NCL	1.0M KOH	350	160	[11]
N/Mo-CoP@NPG	1.0M KOH	201	97.3	[12]
Co ₂ P/CoP@NPGC	1.0M KOH	340	116	[13]
CoP/BP	1.0M KOH	300	120	[14]
CoP@NC-3/1	1.0M KOH	298	68.3	[15]
NC-G-CoP/NF	1.0M KOH	255	80	[16]

Table. S3 Comparison of the overpotentials at 10 mA cm⁻² compared to previously

reported catalysts in 1.0 M KOH electrolyte for OER

Table. S4 Comparison of the overall water splitting performance at 10 mA cm⁻²

Electrocatalysts	Electrolyte	The overall water	Reference
		splitting(V)	
CoP/CNTHPs	1.0M KOH	1.54	This work
Co ₂ P/CoP@Co@NCNT	1.0M KOH	1.56	[17]
Co(z)-NiMoS/NF	1.0M KOH	1.46	[18]
Mo ₂ N–CoxN	1.0M KOH	1.53	[19]
CoP-InNC@CNT	1.0M KOH	1.58	[20]
Co@CoP ₂ /CF	1.0M KOH	1.54	[21]
CoMnP/Ni ₂ P/NF	1.0M KOH	1.43	[22]

compared to previously reported catalysts in 1.0 M KOH electrolyte

References

[1] X.Q. Xie, J.P. Liu, C. Gu, J. Li, Y. Zhao, C.S. Liu, Hierarchical structured CoP

nanosheets/carbon nanofibers bifunctional eletrocatalyst for high-efficient overall

water splitting, J. Energy Chem. 64 (2022) 503-510,

ttps://doi.org/10.1016/j.jechem.2021.05.020.

- [2] Y.L. Meng, J. Tang, X. Chen, Z.Y. Niu, Y.H. Zhao, Y. Pan, X.F. Wang, X.Z. Song,
 Z. Tan, Hierarchical particle-on-sheet CoP fabricated by direct phosphorization of Co(OH)₂/ZIF-67 hybrid for boosting hydrogen evolution electrocatalysis, Inorg.
 Chem. Commun. 134 (2021) 109058, https://doi.org/10.1016/j.inoche.2021.109058.
- [3] Y.R. Li, Y. Zou, Y. Bai, X. Zhang, G. Wang, X. Huang, D. Chen, A novel wormlike micelles@MOFs precursor for constructing hierarchically porous CoP/Ndoped carbon networks towards efficient hydrogen evolution reaction, J. Colloid Inter. Sci, 600 (2021) 872-881, https://doi.org/10.1016/j.jcis.2021.05.094.
- [4] T. Ahamad, M. Naushad, S.M. Alshehri, Fabrication of CoP based nanocomposite as an electrocatalyst for oxygen- and hydrogen-evolving energy conversion reactions, Mater. Lett. 278 (2020) 128351, https://doi.org/10.1016/j.matlet.2020.128351.
- [5] S.X. Min, W.N. Deng, Y.N. Li, F. Wang, Z.G. Zhang, Self-Supported CoP Nanoparticle-Embedded Wood-Derived Porous Carbon Membrane for Efficient H₂ Evolution in Both Acidic and Basic Solutions, ChemCatChem. 12 (2020) 3929-3936, https://doi.org/10.1002/cctc.202000407.
- [6] J.Q. Ma, X. Chi, Y.M. Huang, R. Zou, D. Li, Z.Y. Li, X. Li, C. Liu, X. Peng, Biomass-based protic ionic liquid derived N, P, co-doped porous carbon-coated CoP nanocrystals for efficient hydrogen evolution reaction, J. Mater. Sci. 56 (2021) 18188-18199, https://doi.org/10.1007/s10853-021-06235-z.
- [7] Y. Zhang, Y. Wang, T. Wang, N. Wu, Y. Wang, Y. Sun, L. Fu, Y. Du, W. Zhong,

Heterostructure of 2D CoP Nanosheets/1D Carbon Nanotubes to Significantly Boost the Alkaline Hydrogen Evolution, Adv. Mater. Inter. 7 (2019), https://doi.org/10.1002/admi.201901302.

- [8] Y. Jing, H. Liu, R. Yan, J. Chen, H. Dai, C. Liu, X.D. Zhang, Mesoporous CoP Nanowire Arrays for Hydrogen Evolution, ACS Appl. Nano Mater. 2 (2019) 5922-5930, https://doi.org/10.1021/acsanm.9b01353.
- [9] W. Huang, J. Tang, F. Diao, S. Li, H. Sun, X. Xiao, CoP Nanoparticles Fabricated Through the Nanoscale Kirkendall Effect Immobilized in 3D Hollow Carbon Frameworks for Oxygen Evolution Reaction, J. Electrochem. Soc. 168 (2021) 094501, https://doi.org/10.1149/1945-7111/ac2090.
- [10] Z.X. Cui, J.X. Lin, J.H. Wu, J.Q. Yu, J.H. Si, Q.T. Wang, N-doped CoP nanoparticles embedded in electrospun N-doped porous carbon nanofiber as highefficiency oxygen evolution electrocatalysts, J. Alloy. Compound. 854 (2021) 156830, https://doi.org/10.1016/j.jallcom.2020.156830.
- [11] B. Liu, R.Y. Wang, Y. Yao, J. Ma, Y.B. Sun, J.F. Wan, Y. Zhang, S.Q. Wang, J.L. Zou, Hollow-structured CoP nanotubes wrapped by N-doped carbon layer with interfacial charges polarization for efficiently boosting oxygen reduction/evolution reactions, Chem. Eng. J. (2021),https://doi.org/10.1016/j.cej.2021.133238.
- [12] K. Li, H.L. Ding, J.J. Zhou, W.W. Wang, P.L. Zhang, L. Wang, J. Wu, Y. Lei, C.C. Zhou, J.Z. Liu, L.Y. Chen, Nitrogen and molybdenum co-doped CoP nanohoneycombs on 3D nitrogen-doped porous graphene as enhanced

electrocatalyst for oxygen evolution reaction, Inter. J. Hydrog. Energy. 46 (2021) 35585-35593, https://doi.org/10.1016/j.ijhydene.2021.08.132.

- [13] W.J. Gong, H.Y. Zhang, L. Yang, Y. Yang, J.S. Wang, H. Liang, Core@shell MOFs derived Co₂P/CoP@NPGC as a highly-active bifunctional electrocatalyst for ORR/OER, J. Ind. Eng. Chem. 46 (2021) 35585-35593, https://doi.org/10.1016/j.jiec.2021.11.032.
- [14] H. Xiao, X.L. Du, M. Zhao, Y. Li, T.J. Hu, H.S. Wu, J.F. Jia, N.J. Yang, Structural dependence of electrosynthesized cobalt phosphide/black phosphorus pre-catalyst for oxygen evolution in alkaline media, Nanoscale. 13 (2021) 7381-7388, https://doi.org/10.1039/d1nr00062d.
- [15] Q.Q. Li, J.S. Hu, X.Y. Wang, S.X. Yang, X.H. Huang, X.F. Cheng, Coordination confinement pyrolysis to Flower-like nanocomposites composed of ultrathin nanosheets with embedded ultrasmall CoP nanoparticles for overall water splitting, Appl. Sur. Sci. 569 (2021) 151099, https://doi.org/10.1016/j.apsusc.2021.151099.
- [16] G.L. Li, L. Li, Z. Lin, CoP-anchored high N-doped carbon@graphene sheet as bifunctional electrocatalyst for efficient overall water splitting, Inter. J. Hydrog. Energy. 46 (2021) 18224-18232, https://doi.org/10.1016/j.ijhydene.2021.02.219.
- [17] Z.J. Lu, Y.L. Cao, J. Xie, J.D. Hu, K. Wang, D.Z. Jia, Construction of Co₂P/CoP@Co@NCNT rich-interface to synergistically promote overall water splitting, Chem. Eng. Jour. 430 (2022) 132877, https://doi.org/10.1016/j.cej.2021.132877.

- [18] H.L. Chen, Z.B. Yu, Y. Hou, R. Jiang, J. Huang, W. Tang, Z. Cao, B. Yang, C. Liu, H. Song, Double MOF gradually activated S bond induced S defect rich MILN-based Co(z)-NiMoS for efficient electrocatalytic overall water splitting, Nanoscale. 13 (2021) 20670-20682, https://doi.org/10.1039/d1nr06556d.
- [19] H. Guo, A.P. Wu, Y. Xie, H.J. Yan, D.X. Wang, L. Wang, C.G. Tian, 2D porous molybdenum nitride/cobalt nitride heterojunction nanosheets with interfacial electron redistribution for effective electrocatalytic overall water splitting, J. Mater. Chem. A. 9 (2021) 8620-8629, https://doi.org/10.1039/d0ta11997k.
- [20] L.L. Chai, Z.Y. Hu, X. Wang, Y.W. Xu, L.J. Zhang, T.T. Li, Y. Hu, J.J. Qian, S.M. Huang, Stringing Bimetallic Metal-Organic Framework-Derived Cobalt Phosphide Composite for High-Efficiency Overall Water Splitting, Adv. Sci. 7 (2020) 1903195, https://doi.org/10.1002/advs.201903195.
- [21] Y.K. Sun, T. Liu, Z.J. Li, G.C. Li, L. Wang, S.X. Li, Morphology and interfacial charge regulation strategies constructing 3D flower-like Co@CoP2 heterostructure electrocatalyst for efficient overall water splitting, Chem. Eng. Jour. (2021), https://doi.org/10.1016/j.cej.2021.133684.
- [22] M.Z. Liu, Z. Sun, S.Y. Li, X.W. Nie, Y.F. Liu, E.D. Wang, Z.K. Zhao, Hierarchical superhydrophilic/superaerophobic CoMnP/Ni₂P nanosheet-based microplate arrays for enhanced overall water splitting, J. Mater. Chem. A. 9 (2021) 22129-22139, https://doi.org/10.1039/d1ta04713b.