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1 Materials and Methods

Solvents and reagents were commercially obtained and used without further purification and
distilled water was used. Pressure tubes (15 mL) were purchased from FengTecEx GmbH
and as a precaution, the reactions using pressure tubes were performed behind a blast shield.

For thin-layer chromatography Macherey Nagel plates (Polygram®SIL G/UV3s4, coating
thickness 0.2 mm) equipped with a fluorescence indicator were used. Silica gel with a pore
diameter of 0.040-0.063 mm was purchased from Merck. For flash chromatography Biotage®
SNAP Ultra columns (10 g, 25 g, 50 g) and Biotage® Sfér Silica HC D columns (10 g, 25 g)
were used on an Isolera One from Biotage®.

Centrifugation of the complexes was performed using a Grant-Bio LMC-3000.

1.1 Light Sources
For irradiation experiments, a custom-built light source was used consisting of five 365 nm
Nichia NCSU275 UV SMD-LEDs (148 nW).

1.2 NMR Spectroscopy

NMR spectra were recorded on a Bruker Avance 200, a Bruker AvanceNeo 500, or a Bruker
Avance 600 spectrometer, the latter being equipped with a cryogenically cooled
triple-resonance probe head. Chemical shifts for *H, 3C, and °F spectra are expressed in
parts per million (ppm) and coupling constants (J) are reported in Hertz (Hz). *H and 3C
spectra were referenced to either TMS at 0.0 ppm or CDCls (dn = 7.62 ppm, &¢c = 77.16 ppm),
CD3CN (dn = 1.94 ppm, d¢c = 1.32 ppm), toluene-ds (51 = 7.09 ppm). Furthermore, '°F spectra
of the in situ cycloaddition experiments were referenced to Ce¢Fs (O = -164.9 ppm). All
measurements were carried out at 298 K unless reported otherwise. The following
abbreviations are used to describe signal multiplicity for *H, 3C and °F NMR spectra: s:
singlet, d: doublet, t: triplet, m: multiplet, br: broad.

1.3 Mass Spectrometry

Mass spectra using electron ionization (EI-MS) were recorded on a Jeol AccuTOF. High
resolution electrospray ionisation mass spectrometry (ESI-MS) was carried out on a Thermo
Scientific Q Exactive Plus (spray voltage 3-4 eV, capillary temperature 40-50 °C) infused from
a Harvard syringe pump at a rate of 5-10 pyL per minute.

1.4 Infrared Spectroscopy

Infrared spectra were recorded on a 1600 series FT-IR spectrometer from Perkin Elmer,
equipped with an A531-G Golden-Gate-Diamond-ATR-Unit. For analysis, the intensities were
classified as weak (w), medium (m) and strong (s).

1.5 UVlvis Spectroscopy
UV/vis spectra were recorded on a Perkin EImer UV Lambda 650 using Hellma Macro quartz
cuvettes with a pathlength of 10 mm.

1.6 Fluorescence Spectroscopy
Fluorescence spectra were recorded on a Perkin Fluorescence Spectrometer LS55 using
Hellma Micro quartz cuvettes for fluorescence with a pathlength of 25 mm.

1.7 X-Ray Crystallography

A suitable crystal was selected and mounted on a XtaLAB Synergy, Dualflex, HyPix
diffractometer. Using Olex2,! the structure was solved with SHELXT? and refined with the
SHELXL?® refinement package using Least Squares minimisation. All non-hydrogen atoms
were refined anisotropic. The C-H H atoms were positioned with idealised geometry and were
refined isotropic with Uiso(H) = 1.2 Ueq(C) using a riding model.
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CCDC 2142653 (3a) contains the supplementary crystallographic data for this paper. These
data can be obtained free charge from the Cambridge Crystallographic Data Centre via
http://www.ccdc.cam.ac.uk/data_request/cif.

2 Ligand Synthesis

Bipyridine-based ligands la-c and 2a-c were prepared according to Scheme S1. The
precursor 5-bromo-2,2-bipyridine (4) was prepared according to a literature-known
procedure.* Alkyne derivatives 2a-c were obtained after Sonogashira-type cross-coupling with
either the TMS-protected or deprotected alkyne precursor adapting a copper-free Sonogashira
cross-coupling procedure.> Compounds 3a-c were synthesised adapting a procedure from the
literature.® Cyclopropenones la-c were obtained after hydrolysis of difluorocyclopropenes
3a-c with hydrochloric acid followed by precipitation under basic conditions.

TMS——R
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/N \ s H—=—=R__, (¢ N \ )——=—R
—N \ Y Pd(PPhs), —N N
4 TBAF 9.0
TMSCF,Br
TBABr
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[ j / X /_\ »
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a b c | R
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2. NazCO3
0
7 N_
\
— 7
1a-c R

Scheme S1. Synthesis of the bipyridine-based ligands 2a-c and l1a-c.

2.1 Phenyl-Substituted Bipyridine Ligands
2.1.1 5-(Phenylethynyl)-2,2'-bipyridine (2a)

5-Bromo-2,2’-bipyridine (4) (1.87 g, 7.95 mmol) and Pd(PPhs)4 (459 mg, 5 mol%) were added
under a nitrogen atmosphere to a three necked flask. Phenylacetylene (0.96 mL, 8.75 mmol)

S4



and tetrabutylammonium fluoride (1 M in tetrahydrofuran, 47.7 mL, 47.7 mmol) were added
and the reaction mixture was heated at 70 °C for 3 h. After cooling to room temperature, 50 mL
water and 30 mL dichloromethane were added. The organic layer was separated and the
aqueous layer was extracted with dichloromethane (3 x 25 mL). The combined organic
extracts were dried over MgSO4 and the solvent was removed in vacuo. The residue was dry
loaded onto silica gel and purified by flash column chromatography (silica gel, 5% ethyl
acetate/cyclohexane) and the product was obtained as a colourless crystalline solid.

Yield: 1.42 g (70%, 5.54 mmol)
The analytical data is consistent with the literature data.’

IH NMR (500 MHz, CDCls, 298 K, TMS) & (ppm): 8.85 (dd, “J = 2.2 Hz, 5J = 0.8 Hz, 2H, H))
8.71 (ddd, 3] = 4.8 Hz, *J = 1.8 Hz, %] = 0.8 Hz, 2H, H.), 8.43 (dt, 3J = 7.9 Hz,%J = 1.1 Hz, 1H,
Ha), 8.42 (dd, 3] = 8.2 Hz,5J = 0.8 Hz, 1H, Hy), 7.99 (dd, 3J = 8.2 Hz, 4] = 2.2 Hz, 2H, Hy), 7.85
(td, 3J = 7.9 Hz, 43 = 1.8 Hz, 2H, H.), 7.59-7.53 (m, 2H, Hy), 7.40-7.36 (M, 3H, Ho,p), 7.34 (ddd,
3)=7.9 Hz, 33 = 4.8 Hz,%J = 1.1 Hz, 2H, Hy).

13C NMR (151 MHz, CDCls, 298 K, TMS) & (ppm): 155.5 (Ce), 154.8 (Cy), 151.7 (C)), 149.3
(Ca), 139.4 (Ch), 137.0 (C.), 131.7 (C), 128.8 (Cp), 128.5 (C,), 123.9 (Cy), 122.6 (Cn), 121.4
(Cq), 120.3 (Cy)), 93.4 (C), 86.4 (Cy).

HRMS (El, 70eV) m/z: 256.09987 |[M]" (calculated: 256.10005 for CigHi2Np,
difference: -0.7 ppm).

FT-IR: V = 3052.9 (w), 3005.7 (w), 2216.7 (w), 1586.4 (m), 1570.7 (w), 1539.9 (m), 1492.0
(m), 1454.6 (s), 1432.3 (m), 1368.7 (m), 1243.2 (m), 1143.4 (w), 1121.4 (w), 1090.8 (w),
1039.1 (w), 1020 (w), 914.9 (w), 862.5 (m), 795.9 (s), 753.3 (s), 745,5 (s), 686.6 (s), 647.4
(m), 619.3 (m), 562.9 (w), 540.8 8m), 540.4 (m) cm™™.
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Figure S1. 'H NMR spectrum (500 MHz, CDCls, 298 K, TMS) of 5-(phenylethynyl)-2,2’-
bipyridine (5-(phenylethynyl)-2,2’-bipyridine (2a).
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Figure S2. C NMR spectrum (151 MHz, CDCls, 298 K, TMS) of 5-(phenylethynyl)-2,2’-
bipyridine (2a).
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Figure S3. 'H-'H COSY NMR spectrum (600 MHz, CDCls, 298 K, TMS) of 5-(phenylethynyl)-
2,2'-bipyridine (2a).

S6



i d n P
2% 1o |c;HC|3 H,0
e | ppm

c d g h n o -0
—Ne /TN kK Im
BN TN T — P
N N i = 20
a
- 40
o,p
] d n
T b 0
L [ WY l om
CDCl, s
10— 80
k_ Q,l 115
| — d:'_,_ = Fizo
M b - 25 [ 100
(o] -
g,i n—p:' - 130
d . [l - s
m ,b,,,,—,—_l - h — - 140 120
p__%77-> 145
= - yp— - e 140
a ef: 155
J e = 160
Lies — 160
o ppm
T T T T I T T T T I
9 8 7 6 5 4 3 2 1 ppm

Figure S4. 'H-3C HSQC NMR spectrum (600 MHz/151 MHz, CDCls, 298 K, TMS) of
5-(phenylethynyl)-2,2'-bipyridine (2a).
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Figure S5. H-*C HMBC NMR spectrum (600 MHz/151 MHz, CDCl;, 298 K, TMS) of
5-(phenylethynyl)-2,2'-bipyridine (2a).
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2.1.2 5-(3,3-Difluoro-2-phenylcycloprop-1-en-1-yl)-2,2'-bipyridine (3a)

5-(Phenylethynyl)-2,2'-bipyridine (2a) (500 mg, 1.95 mmol) and TBABr (18.9 mg, 58.5 ymol)
were added under a nitrogen atmosphere to a pressure tube. 6 mL Dry toluene and
(bromodifluoromethyltrimethylsilane (422 uL, 2.92 mmol) were added. The pressure tube was
immediately closed and the reaction mixture was heated at 120 °C for 2 hours. After cooling
to room temperature, addition of 10 mL dichloromethane caused partial precipitation of the
product from the reaction mixture. The solid was filtered, washed with DCM and afterwards
added to 20 mL sat. aqueous Na.COs solution. The aqueous layer was extracted with
dichloromethane (3 x 10 mL) and the combined organic layers were dried over MgSO,4 and
the solvent was removed in vacuo giving the product as a powdered brownish solid (40 mg,
131 ymol). Furthermore, the filtrate of the crude reaction mixture was also added to 50 mL
sat. aqueous Na;COs; solution. The aqueous layer was extracted with dichloromethane
(3 x 15 mL) and the organic extracted were dried over MgSO,4 and the solvent was removed
in vacuo. The crude product was purified by flash chromatography (silica gel, 5%-10% ethyl
acetate/cyclohexane) to obtain the product as a powdered white solid (152 mg, 496 umol).

Yield: 192 mg (32%, 627 pmol)

'H NMR (600 MHz, CDCls, 298 K, TMS) & (ppm): 9.10 (d, 4J = 1.7 Hz, 1H, H), 8.73 (d,
3J = 4.8 Hz, 1H, Ha), 8.61 (d, 3J = 8.2 Hz, 1H, Hy), 8.50 (d, 3J = 7.9 Hz, 1H, Hg), 8.17 (dd,
3J=8.2Hz, 4 = 1.7 Hz, 1H, Hy), 7.87 (td, 3J = 7.9 Hz, 4J = 1.5 Hz, 1H, H.), 7.82 (dd,
33 = 7.9 Hz, *J = 1.6 Hz, 2H, Hy), 7.60-7.51 (m, 3H, Hoy), 7.37 (ddd, 3] = 7.4 Hz, 3] = 4.8 Hz,
1H, Hy).

13C NMR (151 MHz, CDCls, 298 K, TMS) & (ppm): 157.6 (Cy), 155.0 (C.), 150.4 (C)), 149.4
(Ca), 137.9 (Cr), 137.1 (Cc), 131.6 (Cy), 130.5 (Cy), 129.4 (Co), 125.3 (t, 2Jcr = 11 Hz, C)), 124.5
(Cb), 124.2 (Cm), 121.7 (Cq), 121.2 (Cg), 120.9 (C), 120.1 (t, 2Jcr = 11 Hz, Cy), 101.6 (t,
ek = 272 Hz, Cy).

19F NMR (471 MHz, CDCls, 298 K) & (ppm): -112.4 (s, C-F2) ppm.
MS (El, 70 eV) m/z: 306.09 [M]*, 256.09 [M-CF]*.

HRMS (El, 70eV) m/z: 306.09663 [M]* (calculated: 306.09685 for CigH12N2F,
difference: -0.73 ppm).

FT-IR: ¥ = 1782.6 (w), 1588.1 (m), 1571.7 (w), 1547.5 (w), 1497.7 (w), 1458.3 (m), 1437.1
(W), 1363.0 (M), 1266.1 (s), 1266.1 (s), 1156.9 (w), 1091.5 (w), 1019.5 (w), 993.31 (s), 831.3
(s), 800.8 (s), 768.8 (W), 754.5 (s), 737.0 (s), 689.1 (s), 636.3 (M), 618.7 (W), 574.7 (W), 538.8
(w) cm™,
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Figure S6. 'H NMR spectrum (600 MHz, CDCls, 298 K, TMS) of 5-(3,3-difluoro-2-
phenylcycloprop-1-en-1-yl)-2,2'-bipyridine (3a).
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Figure S7. *C NMR spectrum (151 MHz, CDCls, 298 K) of 5-(3,3-difluoro-2-phenylcycloprop-
1-en-1-yl)-2,2'-bipyridine (3a).

S9



i n | CHCI
L s
“ m
TMS - L pp
”
-1
]
2
-3
_ N o
j 294 A . J“ A CHCI; | ,
RV
k7.0 5
CHClI
3 [y - . - o Lsa
Qp—ﬁ L - 76 F 6
nc——i] - - - ® o 78
8.0
CHCl; . .. h— e - - e |7
Op—‘; LA d___] - - } Fs.a
nF PR , * . ga - o 'Y 8.6 g
(I:"]_ - - . - - - 8.8
95= SPL L R i—1 . - -
] : | DE
9.‘2 9.‘0 E.‘I l.‘i S.‘d 8:2 !:0 7:! 7ji 7j¢ 7:2 ppm
I I I T I I T I I I
9 8 7 6 5 4 3 2 1 ppm

Figure S8. *H-'H COSY NMR spectrum (600 MHz, CDClz, 298 K, TMS) of 5-(3,3-difluoro-2-
phenylcycloprop-1-en-1-yl)-2,2'-bipyridine (3a).
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Figure S9. H-13C HSQC NMR spectrum (600 MHz/151 MHz, CDCls, 298 K, TMS) of 5-(3,3-
difluoro-2-phenylcycloprop-1-en-1-yl)-2,2'-bipyridine (3a).
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Figure S10. *H-*C HMBC NMR spectrum (600 MHz/151 MHz, CDCls, 298 K, TMS) of 5-(3,3-

difluoro-2-phenylcycloprop-1-en-1-yl)-2,2'-bipyridine (3a).
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Figure S11. ®F NMR spectrum (471 MHz, CDCls, 298 K) of 5-(3,3-difluoro-2-phenylcycloprop-

1-en-1-yl)-2,2'-bipyridine (3a).
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2.1.2.1 X-Ray Crystal Structure of 3a

Figure S12. Crystal structure of 3a with labelling and displacement ellipsoids drawn at the

50% probability level.

Table S1. Selected crystal data and details of the structure refinement for 5-(3,3-difluoro-2-
phenylcycloprop-1-en-1-yl)-2,2'-bipyridine (3a).

Empirical formula Ci9H12F2N;
Formula weight  306.31
Temperature/K  100.01(10)
Crystal system triclinic
Space group P-1

a/A 6.91900(10)
b/A 8.13080(10)
c/A 13.4122(2)
al° 82.2840(10)
B/° 84.2680(10)
v/° 77.2190(10)
Volume/A3 727.248(18)
Z 2

pca|cg/Cm3 1.399
p/mm-t 0.841

F(000)

Crystal size/mm?3
Radiation

20 range /°
Reflections collected
Independent refl.
Refl. with [I>=20 ()]
Rint

Parameters

GoF on F?

R for [I>=20 (I)]

R, for all data

WR; for [I>=20 (I)]
WR: for all data
Largest diff. peak/hole / e A3

2.1.3 5-(2-Cycloprop-2-enone-3-phenyl)-2,2'-bipyridine (1a)

316.0
0.08 x 0.05 x 0.02
Cu Ka (A = 1.54184)
6.668 to 156.094
18340

3042

2870

0.0171

208

1.097

0.0388

0.0404

0.1142

0.1156

0.26/-0.27

5-(3,3-Difluoro-2-phenylcycloprop-1-en-1-yl)-2,2"-bipyridine (3a) (100 mg, 327 pmol) was
dissolved in 9 mL 6 M hydrochloric acid. The clear brown solution was left standing at room
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temperature in the dark for 15 min. After this, the solution was added dropwise to 50 mL sat.
agueous NaCOs solution which was cooled to 0 °C. The precipitate was filtered, washed with
water and dried under air at room temperature giving the product as a colourless powdered
solid.

In the case of unreacted starting material, it is possible to repeat this procedure in order to
ensure complete hydrolysis.

Yield: 85 mg (91%, 299 umol)

IH NMR (500 MHz, CDCls, 298 K, TMS) & (ppm): 9.29 (dd, “J = 2.1 Hz, %] = 0.8 Hz, 1H, H)),
8.74 (ddd, 3J = 4.7 Hz,%J = 1.7 Hz, %] = 1.0 Hz, 1H, H,), 8.68 (dd, 3J = 8.2 Hz, 5] = 0.8 Hz, 1H,
Hg), 8.53 (dt, 3J = 7.8 Hz, 4J = 1.0 Hz, 1H, Ha), 8.37 (dd, 3J = 8.2 Hz, 4J = 2.1 Hz, 1H, Hy),
8.04-7.99 (M, 2H, Hy), 7.89 (td, 3J = 7.8 Hz,%J = 1.7 Hz, 1H, Ho), 7.68-7.59 (M, 3H, Ho,), 7.40
(ddd, 3J = 7.8 Hz, 3 = 4.7 Hz, 3 = 1.0 Hz, 1H, Hp).

13C NMR (126 MHz, CDCls, 298 K, TMS) & (ppm): 158.9 (Cy), 155.2 (C,), 154.7 (C.), 151.3
(C), 150.0 (C)), 149.5 (Ca), 145.5 (C), 139.1 (Cp), 137.2 (Cc), 133.2 (Cp), 131.6 (Cy), 129.5
(Co), 124.8 (Cb), 123.8 (Cm), 122.0 (Cy), 121.4 (Cy), 120.0 (C).

HRMS (ESI) m/z: 285.10201 [M+H]" (calculated: 285.10224 for CigHi3N20,
difference: -0.81 ppm), 257.10710 [M-CO+H]*.

FT-IR: ¥ = 3051.9 (w), 1850.47 (s), 1780.9 (m), 1623.37 (s), 1595.7 (m), 1586.8 (s), 1546.9
(m), 1456.7 (m), 1444.4 (m), 1435.0 (m), 1372.2 (m), 1341.0 (s), 1310.7 (w), 1246.2 (w),
1153.4 (w), 1138.8 (w), 1092.8 (W), 1073.8 (w), 1015.2 (m), 992.5 (w), 958.2 (m), 942.0 (w),
801.8 (M), 796.5 (s), 749.7 (s), 728.0 (m), 683.5 (s), 639.6 (M), 621.7 (m), 551.1 (w), 541.1
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Figure S13. *H NMR spectrum (500 MHz, CDCls, 298 K, TMS) of 5-(2-cycloprop-2-enone-3-
phenyl)-2,2'-bipyridine (1a).
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Figure S14. C NMR spectrum (126 MHz, CDCls, 298 K, TMS) of 5-(2-cycloprop-2-enone-3-
phenyl)-2,2'-bipyridine (1a).
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Figure S15. *H-'H COSY NMR spectrum (500 MHz, CDCls, 298 K, TMS) of 5-(2-cycloprop-2-
enone-3-phenyl)-2,2'-bipyridine (1a).
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Figure S16. 'H-13C HSQC NMR spectrum (500 MHz/126 MHz, CDCls, 298 K, TMS) of 5-(2-
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Figure S17. *H-13C HMBC NMR spectrum (500 MHz/126 MHz, CDCls, 298 K, TMS) of 5-(2-
cycloprop-2-enone-3-phenyl)-2,2'-bipyridine (1a).
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2.2 Thiophene-Substituted Bipyridine Ligands
2.2.1 5-(Thiophen-2-ylethynyl)-2,2'-bipyridine (2b)

—\e /—N\i k_ImS=P

J— .

j n

5-Bromo-2,2’-bipyridine (4) (1.0 g, 4.25 mmol) and Pd(PPhs)4 (245 mg, 5 mol%) were added
under a nitrogen atmosphere to a three necked flask. 2-Ethynylthiophene (444 uL, 4.68 mmol)
and tetrabutylammonium fluoride (1 M in tetrahydrofuran, 25.5 mL, 25.5 mmol) were added
and the reaction mixture was heated at 70 °C for 2 h. After cooling to room temperature, 50 mL
water and 30 mL dichloromethane were added. The organic layer was separated and the
aqueous layer was extracted with dichloromethane (3 x 25 mL). The combined organic
extracts were dried over MgSO4 and the solvent was removed in vacuo. The residue was dry
loaded onto silica gel and purified by flash column chromatography (silica gel, 2%-15% ethyl
acetate/cyclohexane) and the product was obtained as a yellow crystalline solid.

Yield: 658 mg (58%, 2.51 mmol)

IH NMR (600 MHz, CDCls, 298 K) & (ppm): 8.80 (dd, *J = 2.1 Hz, 5] = 0.8 Hz, 1H, H)), 8.69
(ddd, 3J = 4.8 Hz, %3 = 1.8 Hz, 5] = 0.9 Hz, 1H, H.), 8.42 (dt, 3J = 7.9 Hz,%J = 1.1 Hz, 1H, Ha),
8.41 (dd, 3] = 8.2 Hz, 5] = 0.8 Hz, 1H, Hy), 7.92 (dd, 3J = 8.2 Hz, 4 = 2.1 Hz, 1H, Hy), 7.83 (td,
3 = 7.9 Hz, 4 = 1.8 Hz, 1H, Hy), 7.36-7.34 (m, 2H, Hny), 7.32 (ddd, 3J = 7.9 Hz, 3] = 4.8 Hz,
J=1.1 Hz, 1H, Hp) 7.06-7.03 (m, 1 H, Ho).

13C NMR (151 MHz, CDCls, 298 K) & (ppm): 155.5 (Ce), 154.9 (Cy), 151.4 (C)), 149.3 (Ca),
139.1 (Cr), 137.0 (Ce), 132.6 (Cyp), 128.1 (Cp), 127.3 (Co), 124.0 (Cp), 122.6 (C), 121.4 (Cy),
120.4 (Cg), 120.0 (Ci) 90.1 (Cx), 86.8 (C)).

HRMS (EI, 70eV) m/z: 262.05615 [M]* (calculated: 262.05647 for CisH10N2Ss,
difference: -1.22 ppm).

FT-IR: ¥ = 3052.4 (w), 2203.1 (m), 1954.7 (w), 1798.68 (w), 1655.2 (w), 1587.0 (m), 1570.1
(W), 1541.4 (w), 1518.9 (w), 1455.8 (s), 1431.6 (m), 1424.1 (m), 1369.7 (m), 1357.7 (w),
1300.9 (W), 1242.0 (w), 1215.2 (m), 1141.3 (w), 1117.2 (w), 1090.3 (w), 1075.7 (w), 1059.2
(W), 1040.7 (w), 1018.9 (m), 993.1 (w), 901.1 (w), 850.6 (m), 830.5 (M), 794.7 (s), 744.4 (S),
722.1 (m), 697.4 (s), 607.0 (m), 646.2 (m) cm™™.
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Figure S18. 'H NMR spectrum (600 MHz, CDCls;, 298 K) of 5-(thiophen-2-ylethynyl)-2,2'-
bipyridine (2b).
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Figure S19. ¥C NMR spectrum (151 MHz, CDCls, 298 K) of 5-(thiophen-2-ylethynyl)-2,2'-
bipyridine (2b).
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Figure S20. 'H-'H COSY NMR spectrum (600 MHz, CDCls;, 298 K) of 5-(thiophen-2-
ylethynyl)-2,2'-bipyridine (2b).
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Figure S21. H-13C HSQC NMR spectrum (600 MHz/151 MHz, CDCls, 298 K) of 5-(thiophen-
2-ylethynyl)-2,2'-bipyridine (2b).
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Figure S22. H-13C HMBC NMR spectrum (600 MHz/151 MHz, CDCls, 298 K) of 5-(thiophen-
2-ylethynyl)-2,2'-bipyridine (2b).
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2.2.2 5-(3,3-Difluoro-2-(thiophen-2-yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3b)

5-(Thiophen-2-ylethynyl)-2,2'-bipyridine (2b) (500 mg, 1.61 mmol) and TBABr (18.4 mg,
57.2 ymol) were added under a nitrogen atmosphere to a pressure tube. 10 mL Dry toluene
and (bromodifluoromethyl)trimethylsilane (444 pL, 2.86 mmol) were added. The pressure tube
was immediately closed and the reaction mixture was heated at 120 °C for 2 hours. After
cooling to room temperature, the reaction mixture was added to 50 mL sat. aqueous Na>COs3
solution. The aqueous layer was extracted with dichloromethane (3 x 35 mL), the combined
organic extracts were dried over MgSO, and the solvent was removed in vacuo. The residue
was dry loaded onto silica gel and purified by flash column chromatography (silica gel, 5%-
20% ethyl acetate/cyclohexane) and the product was obtained as a colourless crystalline solid.

Yield: 297 mg (50%, 951 umol)

IH NMR (600 MHz, CDCls, 298 K) & (ppm): 9.06 (dd, 4J = 2.2 Hz, 5 = 0.8 Hz, 1H, H)), 8.72
(ddd, 3J = 4.8 Hz, “J = 1.8 Hz, 5 = 0.9 Hz, 1H, Ha), 8.60 (dd, 3J = 8.2 Hz, 5] = 0.8 Hz, 1H, Hy),
8.49 (dt, 3J = 7.8 Hz,%J = 1.1 Hz, 1H, Hy), 8.13 (dd, 3J = 8.2 Hz,*J = 2.2 Hz, 1H, Hy), 7.86 (td,
3) = 7.8 Hz, 4= 1.8 Hz, 1H, H.), 7.73 (dd, 3J = 5.1 Hz, “J = 0.9 Hz, 1H, H,), 7.61 (dd,
3) =3.6 Hz, 1= 0.9 Hz, 1H, H,), 7.37 (ddd, 3J = 7.8 Hz, 3J = 4.8 Hz, “J = 1.1 Hz, 1H, Hy),
7.25 (dd, 3J = 5.1 Hz, 3J = 3.6 Hz, 1H, Ho).

13C NMR (151 MHz, CDCls, 298 K) & (ppm): 157.3 (Cy), 155.0 (Ce), 150.1 (C)), 149.4 (Ca),
137.5 (Cr), 137.2 (Co), 132.8 (Cp), 132.2 (Cy), 128.7 (Co), 125.7 (Cm), 124.4 (Cp), 121.7 (Ca),
121.3 (C,), 120.7 (C), 118.3 (t, 2Jor = 12 Hz, C), 116.0 (t, 2Jer = 12 Hz, CJ), 100.4 (t,
lJCFZ 274 HZ, Cq)

1F NMR (471 MHz, CDClz, 298 K) & (ppm): -111.0 (s, C-F2) ppm.
MS (EI, 70 eV) m/z: 312.05 [M]*, 262.06 [M-CF]*.

HRMS (EI, 70eV) m/z: 312.05317 [M]" (calculated: 312.05328 for Ci7H10N2S:F>,
difference: -0.34 ppm).

FT-IR: ¥ = 3075.4 (w), 3057.5 (w), 1777.9 (m), 1591.3 (m), 1548.9 (w), 1515.0 (w), 1461.7
(m), 1434.9 (w), 1417.9 (m), 1370.6 (m), 1334.6 (w), 1284.0 (s), 1224.8 (m), 1149.2 (w),
1130.6 (w), 1092.1 (w), 1066.9 (w), 1040.5 (w), 994.3 (s), 920.6 (w), 860.1 (W), 827.5 (s),
795.9 (m), 783.1 (M), 762.9 (w), 743.8 (s), 725.2 (s), 709.5 (M), 658.8 (W), 637.6 (m), 619.1
(m), 577.8 (w), 551.9 (m) cm™.
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Figure S23. *H NMR spectrum (600 MHz, CDCls, 298 K) of 5-(3,3-difluoro-2-(thiophen-2-
yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3b).
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Figure S24. ¥C NMR spectrum (151 MHz, CDCls, 298 K) of 5-(3,3-difluoro-2-(thiophen-2-
yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3b).
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Figure S25. 'H-'H COSY NMR spectrum (600 MHz, CDCls, 298 K) 5-(3,3-difluoro-2-
(thiophen-2-yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3b).
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Figure S26. H-*C HSQC NMR spectrum (600 MHz/151 MHz, CDCls, 298 K) of 5-(3,3-
difluoro-2-(thiophen-2-yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3b).
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Figure S27. 'H-13C HMBC NMR spectrum (600 MHz/151 MHz, CDCls;, 298 K) of 5-(3,3-
difluoro-2-(thiophen-2-yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3b).
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Figure S28. F NMR spectrum (471 MHz, CDCls, 298 K) of 5-(3,3-difluoro-2-(thiophen-2-
yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3b).

2.2.3 5-(2-Cycloprop-2-enone-3-(thiophen-2-yl))-2,2'-bipyridine (1b)

5-(3,3-Difluoro-2-(thiophen-2-yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3b) (113 mg, 362 pmol)
was suspended in 5 mL 6 M hydrochloric acid and addition of 0.5 mL conc. hydrochloric acid
was necessary to dissolve 3b. The clear yellow solution was left standing at room temperature
in the dark for 15 min. After this, the solution was added dropwise to 50 mL sat. aqueous
Na2COs; solution which was cooled to 0 °C. The precipitate was filtered, washed with water
and dried under air at room temperature giving the product as a brownish powdered solid.

In the case of unreacted starting material, it is possible to repeat this procedure in order to
ensure complete hydrolysis.

Yield: 82 mg (78%, 282 umol)

IH NMR (500 MHz, CDCls, 298 K) & (ppm): 9.25 (d, 4 = 1.7 Hz, 1H, H), 8.72 (d, 3J = 4.5 Hz,
1H, Ha), 8.65 (d, 3J = 8.2 Hz, 1H, H,), 8.51 (d, 3J = 7.9 Hz, 1H, Ha), 8.34 (dd, 3J = 8.2 Hz,
43 = 1.7 Hz, 1H, Hy), 7.93 (d, 3J = 3.6 Hz, 1H, Hy), 7.89-7.84 (M, 2H, Hc,), 7.38 (dd, 3J = 6.7 Hz,
3] = 4.5 Hz, 1H, Hy), 7.32 (dd, 3J = 4.7 Hz, 3J = 3.6 Hz, 1H, Ho).

13C NMR (126 MHz, CDCls, 298 K) & (ppm): 158.6 (Ci), 154.7 (Co), 151.9 (Cq), 151.2 (C)),
149.5 (Ca), 14189 (C)), 138.7 (Cr), 137.9 (Ci), 137.1 (Co), 137.1 (Cy), 134.5 (C,), 129.33 (Co),
125.3 (Cm), 124.7 (Cp), 121.9 (Cq), 121.4 (Cg), 119.8 (C)).

HRMS (ESI) m/z: 291.05843 [M+H]* (calculated: 291.05866 for Ci7H11N20S,
difference: -0.78 ppm), 263.06360 [M-CO+H]*.

FT-IR: ¥ = 3057.6 (W), 1839.6 (s), 1621.4 (s), 1586.9 (M), 1543.4 (m), 1483.4 (W), 1459.1 (m),
1433.6 (w), 1409.0 (m), 1380.3 (w), 1360.9 (m), 1320.5 (m), 1230.0 (w), 1134.6 (w), 1087.8
(w), 1063.3 (w), 1030.6 (w), 1010.0 (w), 991.6 (W), 866.6 (m), 853.3 (W), 797.8 (m), 748.5 (M),
731.2 (s), 701.2 (m), 655.9 (w), 635.4 (m), 616.3 (w), 547.9 (w) cm™,
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Figure S29. 'H NMR spectrum (500 MHz, CDCl;, 298 K) of 5-(2-cycloprop-2-enone-3-

(thiophen-2-yl))-2,2'-bipyridine (1b).
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Figure S30. ¥C NMR spectrum (126 MHz, CDCls, 298 K) of 5-(2-cycloprop-2-enone-3-

(thiophen-2-yl))-2,2'-bipyridine (1b).
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Figure S31. 'H-'H COSY NMR spectrum (500 MHz, CDCls, 298 K) of 5-(2-cycloprop-2-
enone-3-(thiophen-2-yl))-2,2'-bipyridine (1b).
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Figure S32. 'H-¥C HSQC NMR spectrum (500 MHz/126 MHz, CDCls;, 298 K) of 5-(2-
cycloprop-2-enone-3-(thiophen-2-yl))-2,2'-bipyridine (1b).
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Figure S33. 'H-¥C HMBC NMR spectrum (500 MHz/126 MHz, CDCl;, 298 K) of 5-(2-
cycloprop-2-enone-3-(thiophen-2-yl))-2,2'-bipyridine (1b).

2.3 6-Quinoline-Substituted Bipyridine Ligands
2.3.1 5-(Quinolin-6-ylethynyl)-2,2'-bipyridine (2c)

5-Bromo-2,2’-bipyridine (4) (1.20 g, 5.10 mmol) and Pd(PPhz)4 (294 mg, 5 mol%) were added
under a nitrogen atmosphere to a three necked flask. 6-((Trimethylsilyl)ethynyl)quinoline
(1.38 g, 6.12 mmol) and tetrabutylammonium fluoride (1 M in tetrahydrofuran, 30.6 mL,
30.6 mmol) were added and the reaction mixture was heated at 70 °C for 20 h. After cooling
to room temperature, 50 mL water and 25 mL dichloromethane were added. The organic layer
was separated and the aqueous layer was extracted with dichloromethane (3 x 25 mL). The
combined organic extracts were dried over MgSO. and the solvent was removed in vacuo.
The residue was dry loaded onto silica gel and purified by flash column chromatography (silica
gel, 5%-80% ethyl acetate/cyclohexane). The solvent of product-containing fractions was
removed in vacuo and the residue was dissolved in 10 mL conc. hydrochloric acid and washed
with dichloromethane (3x10 mL). The layers were separated and the aqueous layer was
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basified with conc. sodium hydroxide solution. The precipitated colourless product was
collected and dried in vacuo.

Rf (1:4, ethyl acetate/cyclohexane) = 0.10
Yield: 1.12 g (66%, 3.64 mmol)

IH NMR (500 MHz, CDCls, 298 K, TMS) & (ppm): 8.94 (dd, 3J = 4.2 Hz, 4J = 1.5 Hz, 1H, Hy),
8.87 (dd, “J = 2.1 Hz, 5J = 0.8 Hz, 1H, H;), 8.71 (ddd, 3J = 4.8 Hz, *J = 1.8 Hz, ] = 1.1 Hz, 1H,
Ha), 8.45 (dd, 3J = 8.2 Hz, 5J = 0.8 Hz, 1H, Hy), 8.44 (dt, 3] = 8.0 Hz, 5] = 1.1 Hz, 1H, Hy), 8.17
(dd, 3J = 8.3 Hz, 4 = 1.5 Hz, 1H, Hs), 8.11 (d, 3J = 8.7 Hz, 1H, Ho), 8.08 (d, 4J = 1.7 Hz, 1H,
H.), 7.99 (dd, 3J = 8.3 Hz, J = 2.1 Hz, 1H, Hy), 7.87-7.83 (m, 2H, Hc,), 7.45 (dd, 3J = 8.3 Hz,
3] = 4.2 Hz, 1H, H,), 7.34 (ddd, 3J = 7.5 Hz, 3] = 4.8 Hz, 4J = 1.1 Hz, 1H, Hy).

13C NMR (126 MHz, CDCls, 298 K, TMS) & (ppm): 155.4 (Ce), 155.1 (Cy), 151.7 (C)), 151.2
(Cg), 149.3 (Ca), 147.9 (Cp), 139.5 (Ch), 137.0 (Cc), 135.9 (Cs), 132.0 (Cy), 131.5 (Cy), 129.8
(Co), 128.0 (Cy), 124.0 (Cp), 121.9 (C)), 121.4 (Cq), 121.1 (Cm), 120.4 (Cg), 120.0 (Cj), 93.1 (Cy),
87.6 (Cu).

HRMS (El, 70eV) m/z: 307.11059 [M]" (calculated: 307.11095 for Cz1Hi3Ns,
difference: -1.18 ppm).

FT-IR: ¥ = 3044.3 (w), 1586.4 (m), 1569.8 (m), 1542.3 (m), 1495.2 (m), 1453.9 (s), 1430.9

(m), 1368.9 (w), 1337.5 (w), 1288.4 (w), 12415 (w), 1130.1 (w), 1088.8 (w), 1063.7 (W),

1040.0 (w), 1021.5 (m), 993.2 (w), 956.3 (W), 925.0 (w), 906.1 (w), 882.6 (m), 849.1 (m), 831.1

(s), 792.1 (S), 768.6 (W), 744.4 (s), 837.3 (S), 645.9 (M), 617.32 (S), 561.7 (W), 543.5 (W) cm-.
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Figure S34. 'H NMR spectrum (500 MHz, CDCls, 298 K, TMS) of 5-(quinolin-6-ylethynyl)-2,2'-
bipyridine (2c).
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Figure S35. *C NMR spectrum (126 MHz, CDCls, 298 K, TMS) of 5-(quinolin-6-ylethynyl)-
2,2'-bipyridine (2¢).
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Figure S36. H-'H COSY NMR spectrum (500 MHz, CDCls, 298 K, TMS) of 5-(quinolin-6-

ylethynyl)-2,2'-bipyridine (2c).
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Figure S37. 'H-13C HSQC NMR spectrum (500 MHz/126 MHz, CDCls;, 298 K, TMS) of

5-(quinolin-6-ylethynyl)-2,2'-bipyridine (2c).
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Figure S38. H-*C HMBC NMR spectrum (500 MHz/126 MHz, CDCls, 298 K, TMS) of
5-(quinolin-6-ylethynyl)-2,2'-bipyridine (2c).

2.3.2 5-(3,3-Difluoro-6-(quinolin-2-yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3c)

5-(Quinolin-2-ylethynyl)-2,2'-bipyridine (2c) (614 mg, 2.0 mmol) and TBABr (19.3 mg, 60 pmol)
were added under a nitrogen atmosphere to a pressure tube. 6 mL Dry toluene and
(bromodifluoromethyl)trimethylsilane (466 L, 1.5 mmol) were added. The pressure tube was
immediately closed and the reaction mixture was heated at 120 °C for 2 hours. After cooling
to room temperature, 10 mL dichloromethane was added and the crude reaction mixture was
added to 25 mL sat. aqueous Na.COs solution. The phases were separated and the aqueous
layer was extracted with dichloromethane (3 x 15 mL). The combined organic extracts were
dried over MgSO., and the solvent was removed in vacuo. The crude product was purified by
flash chromatography (silica gel, 50%-80% ethyl acetate/cyclohexane) to obtain the product
as a powdered yellowish solid.

R¢ (2:1, ethyl acetate/cyclohexane) = 0.27
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Yield: 150 mg (21%, 0.42 mmol)

IH NMR (600 MHz, CDCls, 298 K) & (ppm): 9.16 (dd, 4J = 2.2 Hz, 5J = 0.8 Hz, 1H, H;), 9.03
(dd, 33 = 4.2 Hz, 43 =1.7 Hz, 1H, H,), 8.74 (ddd, 3J = 4.7 Hz, 4] = 1.8 Hz, 5J = 0.9 Hz, 1H, Ha),
8.64 (d, 3J = 8.2 Hz, 1H, H,), 8.51 (d, 3J = 7.7 Hz, 1H, Hq), 8.31-8.26 (M, 3H, Hos.), 8.22 (dd,
3= 8.2 Hz, 4J= 2.2 Hz, 1H, Hy), 8.10 (dd, 3J = 8.6 Hz, “J= 1.8 Hz, 1H, H,), 7.87 (td,
3)=7.7Hz, 4= 1.8 Hz, 1H, Ho), 7.53 (dd, 3J = 8.2 Hz, 3 = 4.2 Hz, 1H, H,), 7.38 (ddd,
33 =7.7 Hz, 33 = 4.7 Hz, *J = 1.1 Hz, 1H, Hy).

13C NMR (151 MHz, CDCls, 298 K) & (ppm): 157.9 (Cy), 154.9 (Co), 152.4 (Cg), 150.5 (C)),
149.5 (Ca), 149.0 (C,), 138.0 (Cp), 137.1 (Co), 136.7 (Cs), 131.1 (Con), 131.1 (Cow), 130.0 (C.),
128.2 (Cy), 124.5 (Cb,), 122.4 (C,), 122.3 (Cm), 121.7 (Cq), 121.3 (Cg),121.2 (Ci), 120.7 (C),
101.4 (Jcr = 272 Hz, Cy).

1F NMR (471 MHz, CDClz, 298 K) & (ppm): -112.5 (s, C-F2) ppm.
MS (El, 70 eV) m/z: 357.11 [M]*, 307.11 [M-CF,]*.

HRMS (El, 70eV) m/z: 357.10753 [M]* (calculated: 357.10775 for CgzHisNsF,
difference: -0.62 ppm).

FT-IR: ¥ = 3054.7 (w), 1774.1 (W), 1662.6 (W), 1588.1 (m), 1571.7 (w), 1546.3 (w), 1501.1 (w),
1454.1 (m), 1435.7 (w), 1371.1 (m), 1313.9 (m), 1277.2 (s), 1192.3 (w), 1147.6 (w), 1115.5
(W), 1092.3 (w), 1060.3 (w), 1040.2 (w), 1003.0 (s), 990.4 (m), 949.6 (M), 927.1 (W), 890.5 (),
855.8 (M), 827.8 (s), 797.9 (S), 783.2 (W), 745.7 (S), 710.9 (W), 668.5 (W), 635.3 (W), 611.7 (W),
576.6 (w), 560.8 (w) cm™,

Figure S39. 'H NMR spectrum (600 MHz, CDCls, 298 K) of 5-(3,3-difluoro-6-(quinolin-2-
yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3c).
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Figure S40. C NMR spectrum (151 MHz, CDCls, 298 K) of 5-(3,3-difluoro-6-(quinolin-2-
yhcycloprop-1-en-1-yl)-2,2'-bipyridine (3c).
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Figure S41. 'H-'H COSY NMR spectrum (600 MHz, CDCls;, 298 K) of 5-(3,3-difluoro-6-
(quinolin-2-yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3c).
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Figure S42. H-C HSQC NMR spectrum (600 MHz/151 MHz, CDCls, 298 K) of 5-(3,3-

difluoro-6-(quinolin-2-yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3c).
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Figure S43. H-3C HMBC NMR spectrum (600 MHz/151 MHz, CDCls, 298 K) of 5-(3,3-

difluoro-6-(quinolin-2-yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3c).
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Figure S44. F NMR spectrum (471 MHz, CDClz, 298 K) of 5-(3,3-difluoro-6-(quinolin-2-
yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3c).

2.3.3 5-(2-Cycloprop-2-enone-6-(quinolin-2-yl))-2,2'-bipyridine (1c)

5-(3,3-Difluoro-6-(quinolin-2-yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3c) (50 mg, 140 pmol)
was suspended in 2.5 mL 6 M hydrochloric acid. The clear orange solution was left standing
at room temperature in the dark for 1 h. After this, the solution was added dropwise to 20 mL
sat. aqueous Na,COs solution which was cooled to 0 °C. The precipitate was filtered and
washed with water. The residue was dissolved in dichloromethane, dried over MgSO, and the
solvent was removed under nitrogen flow and further dried under air at room temperature
giving the product as a yellow powdered solid.

In the case of unreacted starting material, it is possible to repeat this procedure in order to
ensure complete hydrolysis.

Yield: 32 mg (68%, 95 umol)

IH NMR (500 MHz, CDCls, 298 K, TMS) & (ppm): 9.36 (dd, J = 2.2 Hz, 5J = 0.8 Hz, 1H, H)),
9.08 (dd, 3J = 4.2 Hz, 4] = 1.7 Hz, 1H, Hy), 8.75 (ddd, 3J = 4.7 Hz, “J = 1.7 Hz, 5J = 1.1 Hz, 1H,
Ha), 8.71 (dd, 3J = 8.2 Hz, % = 0.8 Hz, 1H, H,), 8.57 (d, 4J = 1.8 Hz, 1H, H,), 8.54 (dt,
3] = 7.7 Hz, *J = 1.1 Hz, 1H, Hg), 8.43 (dd, 3J = 8.2 Hz, 4] = 2.2 Hz, 1H, Hy), 8.36-8.32 (m, 2H,
Hos), 8.25 (dd, 3J = 8.7 Hz, “J = 1.8 Hz, 1H, Hy), 7.89 (td, 3] = 7.7 Hz, 4J = 1.7 Hz, 1H, H.),
7.57 (dd, 3J = 8.3 Hz, 3J = 4.2 Hz, 1H, H,), 7.40 (ddd, 3J = 7.7 Hz, 3] = 4.7 Hz, “J = 1.1 Hz, 1H,
Hb).

13C NMR (126 MHz, CDCls, 298 K, TMS) & (ppm): 159.1 (Cy), 155.2 (C,), 154.6 (C.), 153.2
(Co), 151.4 (C)), 149.6 (Cap), 149.1 (C), 146.4 (Cy), 139.2 (Cr), 137.2 (Co), 137.2 (Cs), 133.8
(Cu), 131.3 (Co), 129.8 (C.), 128.2 (Cy), 124.9 (Cy), 122.6 (Cy), 122.0 (Cq), 121.6 (Cm), 121.5
(Cy), 119.9 (C).

HRMS (ESI) m/z: 336.1124 [M+H]" (calculated: 336.11314 for C2H14N3Oq,
difference: -2.11 ppm) 308.1176 [M-CO+H]".
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FT-IR: ¥ = 3241.4 (w), 3056.9 (w), 2195.7 (w), 1933.0 (w), 1836.3 (s), 1621.2 (s), 1584.7 (s),
1545.7 (m), 1498.2 (w), 1455.6 (m), 1433.5 (m), 1371.6 (m), 1343.4 (m), 1310.0 (m), 1247.5
(w), 1192.4 (w), 1146.0 (w), 1113.7 (w), 1090.4 (w), 1037.8 (w), 1017.5 (w), 992.9 (w), 951.8
(w), 890.1 (w), 835.8 (s), 795.6 (s), 740.2 (s), 706.5 (m), 649.1 (m), 637.9 (m), 608.8 (m) cm™.
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Figure S45. *H NMR spectrum (500 MHz, CDCls, 298 K, TMS) of 5-(2-cycloprop-2-enone-6-
(quinolin-2-y1))-2,2'-bipyridine (1c).
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Figure S46. *C NMR spectrum (126 MHz, CDCls, 298 K, TMS) of 5-(2-cycloprop-2-enone-6-
(quinolin-2-yl))-2,2'-bipyridine (1c).
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Figure S47. *H-'H COSY NMR spectrum (500 MHz, CDClz, 298 K, TMS) of 5-(2-cycloprop-
2-enone-6-(quinolin-2-yl))-2,2'-bipyridine (1c).
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Figure S48. 'H-C HSQC NMR spectrum (500 MHz/126 MHz, CDCls, 298 K, TMS) of 5-(2-
cycloprop-2-enone-6-(quinolin-2-yl))-2,2'-bipyridine (1c).
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Figure S49. 'H-13C HMBC NMR spectrum (500 MHz/126 MHz, CDCls, 298 K, TMS) of 5-(2-
cycloprop-2-enone-6-(quinolin-2-yl))-2,2'-bipyridine (1c).

3 In situ Cycloaddition Experiments
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Scheme S2. In situ synthesis of difluorocyclopropenes 3a-c through a [2+1] cycloaddition
reaction of alkyne derivatives 2a-c and :CF».

General procedure: Under a nitrogen flow, 0.1 mml of the respective alkyne derivative 2a-c,
0.97 mg (3.0 ymol) TBABr and 23.4 pL (0.15 mmol) TMSCF.Br were added to 0.6 mL
toluene-ds (containing hexafluorobenzene as an internal *°F standard) in an NMR tube. The
NMR tube was sealed and *H NMR and F NMR spectra were measured. The reaction
mixture was heated for 2 h at 120 °C and after cooling to room temperature, *H NMR and °F

S35



NMR spectra were measured. TMSCF:Br, HCF,Br and MesSiF were tentatively assigned
based on their shifts reported in the literature.®1°
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Figure S50. *H NMR spectrum (500 MHz, toluene-ds, 298 K, C¢Fs) of 5-(phenylethynyl)-2,2'-
bipyridine (2a), TMSCF:Br and TBABr before (bottom) and after heating for 2 h at 120 °C

(top).
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Figure S51. °F NMR spectrum (471 MHz, CDCls;, 298 K, CsFs) of 5-(phenylethynyl)-2,2'-
bipyridine (2a), TMSCF:Br and TBABr before (bottom) and after heating for 2 h at 120 °C

(top).
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Figure S52. *H NMR spectrum (500 MHz, toluene-ds, 298 K, CsFs) of 5-(thiophen-2-ylethynyl)-
2,2'-bipyridine (2b), TMSCF.Br and TBABr before (bottom) and after heating for 2 h at 120 °C
(top).
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Figure S53. F NMR spectrum (471 MHz, CDCls, 298 K, CsFs) of 5-(thiophen-2-ylethynyl)-
2,2'-bipyridine (2b), TMSCF.Br and TBABr before (bottom) and after heating for 2 h at 120 °C

(top).
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Figure S54. *H NMR spectrum (500 MHz, toluene-ds, 298 K, CsFs) of 5-(quinolin-6-ylethynyl)-
2,2'-bipyridine (2¢), TMSCF.Br and TBABr before (bottom) and after heating for 2 h at 120 °C

(top).
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Figure S55. °F NMR spectrum (471 MHz, CDCls, 298 K, C¢Fs) of 5-(quinolin-6-ylethynyl)-
2,2'-bipyridine (2c), TMSCF2Br and TBABr before (bottom) and after heating for 2 h at 120 °C

(top).
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4 Hydrolysis

F Hydrolyms condltlons
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Scheme S3. Hydrolysis of difluorocyclopropenes 3a-c to cyclopropenones la-c under
different conditions.

General hydrolysis conditions A-D: 5 mg of the respective difluorocyclopropene 3a-c was
used for each hydrolysis attempt and the samples were left standing for 24 hours at room
temperature in the dark.

Hydrolysis A: 3 was dissolved in 0.5 mL lab stock CDCls.

Hydrolysis B: 3 was dissolved in 0.7 mL lab stock CDCls and 20 mg silica gel was added. After
standing, the silica gel was filtered off.

Hydrolysis C: 3 was dissolved in 0.5 mL lab stock CDClz; and 20 mg Amberlyst®15 was added.
After standing, the Amberlyst®15 was filtered off.

Hydrolysis D: 3 was dissolved in 1 mL 6 M HCI. After standing for 24 h, the acidic solution was
added dropwise at 0 °C to 5 mL sat. NaxCOs3 solution. The precipitate was extracted with
0.7 mL CDCl; and dried over MgSOa..

As a by-product was observed following hydrolysis of 3¢ with hydrolysis condition D (Figure
S58, D), the hydrolysis conditions were optimised (hydrolysis D.1)

Hydrolysis D.1: 50 mg of 3¢ was dissolved in 2.5 mL 6 M HCI. After standing for 1 h, the acidic
solution was added dropwise to 5 mL sat. Na,COs solution at 0 °C. The precipitate was
extracted with dichloromethane, dried over MgSO, and the solvent was removed under a N
stream.
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Figure S56. 'H NMR spectra (500 MHz, CDCls;, 298 K) of 5-(3,3-difluoro-2-phenylcycloprop-
1-en-1-yl)-2,2"-bipyridine (3a) under hydrolysis conditions A-D. Additional signals to the
difluorocyclopropene and cyclopropenone were observed under hydrolysis condition C.
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Figure S57. 'H NMR spectra (500 MHz, CDCls, 298 K) of 5-(3,3-difluoro-2-(thiophen-2-
yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3b) under hydrolysis conditions A-D. Additional signals
to the difluorocyclopropene and cyclopropenone were observed under hydrolysis condition C.
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Figure S58. 'H NMR spectra (500 MHz, CDCls, 298 K) of 5-(3,3-difluoro-6-(quinolin-2-
yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3c) under hydrolysis conditions A-D.1.
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Figure S59. °F NMR spectra (471 MHz, CDCls, 298 K) of 5-(3,3-difluoro-2-phenylcycloprop-
1-en-1-yl)-2,2'-bipyridine (3a) under hydrolysis conditions A-D.
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Figure S60. °F NMR spectra (471 MHz, CDCl;, 298 K) of 5-(3,3-difluoro-2-(thiophen-2-
yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3b) under hydrolysis conditions A-D. Under conditions
C, additional signals were observed at -124.3, -148.7 and -148.0 ppm.
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Figure S61. ®F NMR spectra (471 MHz, CDCls, 298 K) of 5-(3,3-difluoro-6-(quinolin-2-
yl)cycloprop-1-en-1-yl)-2,2'-bipyridine (3c) under hydrolysis conditions A-D.
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Figure S62. *H NMR spectra (500 MHz, CDCls, 298 K) of 5-(2-cycloprop-2-enone-3-phenyl)-
2,2'-bipyridine (1a) protected from light (bottom), under ambient light over one week (1la/2a
69:31) and reference 5-(phenylethynyl)-2,2'-bipyridine (2a) (top).
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Figure S63. 'H NMR spectra (500 MHz, CDCls, 298 K) of 5-(2-cycloprop-2-enone-3-
(thiophen-2-yl))-2,2'-bipyridine (1b) protected from light (bottom), under ambient light over one
week (1b/2b 75:25) and reference 5-(thiophen-2-ylethynyl)-2,2'-bipyridine (2b) (top).
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Figure S64. *H NMR spectra (500 MHz, CDCls, 298 K) of 5-(2-cycloprop-2-enone-6-(quinolin-
2-yl))-2,2'-bipyridine (1c) protected from light (bottom), under ambient light over one week
(1c/2c 49:51) and reference 5-(quinolin-6-ylethynyl)-2,2'-bipyridine (2c) (top).

6 Ligand Irradiation
6.1 5-(2-Cycloprop-2-enone-3-phenyl)-2,2'-bipyridine (1a)
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Figure S65. *H NMR spectra (500 MHz, CDCls, 298 K) of 5-(2-cycloprop-2-enone-3-phenyl)-
2,2'-bipyridine (1a) without irradiation (bottom) and after irradiation with 365 nm for 1 minute
as well as the reference spectrum of 5-(phenylethynyl)-2,2'-bipyridine (2a) (top).
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Figure S66. *C NMR spectra (126/151 MHz, CDCls, 298 K) of 5-(2-cycloprop-2-enone-3-
phenyl)-2,2'-bipyridine (1a) without irradiation (bottom) and after irradiation with 365 nm for 1
minute as well as the reference spectrum of 5-(phenylethynyl)-2,2'-bipyridine (2a) (top).
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Figure S67. UV/is spectra (CHsCN, 298 K) of 5-(2-cycloprop-2-enone-3-phenyl)-2,2'-
bipyridine (1a) (4.40 uM) without irradiation (black) and after irradiation with 365 nm for 1
minute (red) as well as the reference spectrum of 5-(phenylethynyl)-2,2'-bipyridine (2a) (blue,

4.40 yM) and the UV/vis spectrum of a different sample of 1a (2.20 uM) following irradiation
for 10 s (orange).
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6.2 5-(2-Cycloprop-2-enone-3-(thiophen-2-yl))-2,2'-bipyridine (1b)
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Figure S68. *H NMR spectra (500 MHz, CDCls, 298 K) of 5-(2-cycloprop-2-enone-3-
(thiophen-2-yl))-2,2'-bipyridine (1b) without irradiation (bottom) and after irradiation with
365 nm for 1 minute of as well as reference spectrum of 5-(thiophen-2-ylethynyl)-2,2'-
bipyridine (2b) (top).
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Figure S69. C NMR spectra (126/151 MHz, CDCl;, 298 K) 5-(2-cycloprop-2-enone-3-
(thiophen-2-yl))-2,2'-bipyridine (1b) without irradiation (bottom) and after irradiation with
365 nm for 1 minute as well as the reference spectrum of 5-(thiophen-2-ylethynyl)-2,2'-
bipyridine (2b) (top).
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Figure S70. UV/vis spectra (CH3CN, 298 K) of 5-(2-cycloprop-2-enone-3-(thiophen-2-yl))-2,2'-
bipyridine (1b) (3.15 uM) without irradiation (black) and after irradiation with 365 nm for 1
minute (red) as well as the reference spectrum of 5-(thiophen-2-ylethynyl)-2,2'-bipyridine (2b)
(blue, 3.15 uM).

6.3 5-(2-Cycloprop-2-enone-6-(quinolin-2-yl))-2,2'-bipyridine (1c)
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Figure S71. *H NMR spectra (500 MHz, CDCls, 298 K) of 5-(2-cycloprop-2-enone-6-(quinolin-
2-yl))-2,2'-bipyridine (1c) without irradiation (bottom) and after irradiation with 365 nm for 1
minute as well as the reference spectrum of 5-(quinolin-6-ylethynyl)-2,2'-bipyridine (2c) (top).
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Figure S72. ¥C NMR spectra (126/151 MHz, CDCl;, 298 K) 5-(2-cycloprop-2-enone-6-
(quinolin-2-y1))-2,2'-bipyridine (1c) without irradiation (bottom) and after irradiation with
365 nm for 1 minute as well as the reference spectrum of 5-(quinolin-6-ylethynyl)-2,2'-
bipyridine (2c) (top).
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Figure S73. UV/vis spectra (CH3CN, 298 K) of 5-(2-cycloprop-2-enone-6-(quinolin-2-yl))-2,2'-
bipyridine (1c) (1.86 uM) without irradiation (black) and after irradiation with 365 nm for 1

minute (red) as well as the reference spectrum of 5-(quinolin-6-ylethynyl)-2,2'-bipyridine (2c)
(blue, 2.44 pM).

S48



7 M-CPOnes la-1c
7.1 Fe-CPOne-la

Iron tetrafluoroborate hexahydrate (3.36 mg, 10.0 ymol) and 5-(2-cycloprop-2-enone-3-
phenyl)-2,2'-bipyridine (1a) (8.5 mg, 30.0 ymol) were dissolved in CDsCN (0.5 mL).

IH NMR (600 MHz, CDsCN, 298 K) & (ppm): 8.83-8.78 (t, 3J = 8.2 Hz, 2H, Ha,), 8.77-8.65 (m,
8H, Hagn), 8.59 (dd, 3J = 8.2 Hz, 4J = 1.4 Hz, 2H, Hy), 8.29-8.23 (m, 2H, H.), 8.23-8.18 (m,
2H, He), 8.00 (d, 4 = 0.7 Hz, 1H, H)), 7.95 (d, %J = 1.0 Hz, 1H, H), 7.89 (d, “J = 0.9 Hz, 1H, H)),
7.79 (d, 43 = 1.0 Hz, 1H, H), 7.72-7.67 (M, 2H, Hap), 7.63-7.46 (M, 24H, Hapnop), 7.40 (d,
3] = 5.5 Hz, 1H, Ha).

13C NMR (151 MHz, CDsCN, 298 K) & (ppm): 162.4 (Cy), 162.3 (Cf), 162.0 (Cy), 161.9
(C1),159.5 (Ce¢), 159.4 (Ce), 159.2 (Ce), 158.9 (Ce¢), 157.3 (C)), 157.1 (C)), 156.7 (C;j), 156.5 (Ca),
156.3 (Cj), 156.0 (Ca), 155.5 (Ca), 154.8 (Cy), 154.7 (Cy), 154.6 (Cy), 154.2 (C)), 154.0 (Cy),
154.0 (C), 144.3 (Cy), 144.2 (Cy), 144.1 (Cy), 144.0 (Cyx), 141.7 (Cp),141.5 (Ch), 141.4 (Ch),
141.3 (Cy), 140.2 (C¢), 140.2 (C¢), 140.1 (C¢), 134.9 (Cp), 134.8 (Cyp), 134.7 (Cp), 132.6 (Cho),
132.6 (Chpo), 132.5 (Chio), 132.5 (Crio), 130.6 (Crio), 130.4 (Chio), 130.4 (Crio), 129.6 (Cb), 129.4
(Cb), 129.3 (Cp), 129.1 (Cp), 127.0 (Carg), 126.5 (Casg), 125.8 (Cuarg), 125.8 (Carg), 125.4 (Cuyg),
125.4 (Cuyg), 124.1 (Cm), 124.1 (Cw), 124.1 (Cj), 124.0 (Cm), 124.0 (Cw), 123.9 (Ci), 123.7 (C)),
123.5 (C)).

HRMS (ESI, CHsCN) m/z: 454.1092 [Fe-CPOne-1a]?*, 440.1118 [Fe-CPOne-la -COJ?*,
426.1142 [Fe-CPOne-1a -2(CO)]?*, 412.1169 [Fe-CPOne-1a -3(CO)]".

FT-IR: ¥ = 3598.7 (w), 3088.7 (W), 1842.7 (s), 1626.9 (s), 1487.5 (W), 1466.9 (m), 1447.2 (m),
1385.4 (W), 1341.8 (m), 1277.74 (w), 1243.3 (w), 1050.7 (s), 852.5 (m), 792.6 (m), 768.6 (M),
732.4 (m), 687.3 (s), 543.5 (w), 519.8 (m) cm™.
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Figure S74. 'H NMR spectrum (600 MHz, CDsCN, 298 K) of Fe-CPOne-1a. Note: Signals
labelled with * are attributed to free ligand.
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Figure S75. ¥C NMR spectrum (151 MHz, CD3CN, 298 K) of Fe-CPOne-1a.
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Figure S76. *H-'H COSY NMR spectrum (600 MHz, CD3sCN, 298 K) of Fe-CPOne-1a. Note:
Signals labelled with * are attributed to free ligand.
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Figure S77. 'H-B®C HSQC NMR spectrum (600 MHz/151 MHz, CDsCN, 298 K) of
Fe-CPOne-1la.
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Figure S78. 'H-BC HMBC NMR spectrum (600 MHz/151 MHz, CDsCN, 298 K) of
Fe-CPOne-1la.
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Figure S79. High resolution ESI mass spectrum of Fe-CPOne-1a showing in the insets the
distinct fragment pattern upon CO loss as well as the observed and theoretical isotope
patterns.

7.2 Zn-CPOne-la

Zinc trifluoromethanesulfonate (2.94 mg, 8.1 umol) and 5-(2-cycloprop-2-enone-3-phenyl)-
2,2'-bipyridine (1a) (6.9 mg, 24.3 ymol) were dissolved in CD:CN (0.5 mL).

Note: Because of the broadness of the signals, unambiguous assignment of the *H and *C
NMR spectra was not possible and fac/mer isomers could not be distinguished.

HRMS (ESI, CHsCN) m/z: 1065.1632 [Zn-CPOne-1a +OTf ]**, 458.1054 [Zn-CPOne-1a]?*,
444.1080 [Zn-CPOne-1a -COJ?*, 430.1106 [Zn-CPOne-1a -2(CO)J*".

FT-IR: ¥ = 3084.5 (W), 2251.6 (W), 2079.5 (W), 1846.5 (s), 1630.1 (m), 1603.3 (M), 1561.3 (W),
1473.3 (m), 1440.9 (m), 1381.3 (W), 1342.3 (W), 1317.7 (W), 1274.8 (s), 1258.5 (s), 1222.9 (s),
1148.1 (s), 1028.4 (s), 925.0 (w), 858.6 (w), 799.1 (m), 767.1 (s), 751.0 (s), 736.3 (M), 688.2
(m), 658.0 (w), 635.0 (s), 572.6 (m), 542.9 (w), 516.2 (m) cm™,
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Figure S81. *C NMR spectrum (151 MHz, CD3CN, 298 K) of Zn-CPOne-1a.
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Figure S82. 'H-'H COSY NMR spectrum (600 MHz, CDsCN, 298 K) of Zn-CPOne-1a.
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Figure S83. !H-3C HSQC NMR spectrum (600 MHz/151 MHz, CDsCN, 298 K) of
Zn-CPOne-1a.
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Figure S84. High resolution ESI mass spectrum of Zn-CPOne-1a showing in the insets the
distinct fragment pattern upon CO loss as well as the observed and theoretical isotope

patterns.
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Figure S85. Emission spectra (CH3CN, 298 K) with excitation at 365 nm of 5-(phenylethynyl)-

2,2'-bipyridine (2a) (black, 0.20 pM), 5-(2-cycloprop-2-enone-3-phenyl)-2,2'-bipyridine (1a)
(red, 0.20 uM), Zn-2a (blue, 0.02 uyM) and Zn-CPOne-1a (green, 0.02 yM).
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Figure S86. Emission spectra (CHsCN, 298 K) with excitation at 312 nm of 5-(phenylethynyl)-
2,2'-bipyridine (2a) (black, 0.20 uM), 5-(2-cycloprop-2-enone-3-phenyl)-2,2'-bipyridine (1a)
(red, 0.20 uM), Zn-2a (blue, 0.02 uM) and Zn-CPOne-1a (green, 0.02 uM).

7.3 Co-CPOne-la

Cobalt bis(trifluoromethylsulfonyl)imide (6.46 mg, 10.4 ymol) and 5-(2-cycloprop-2-enone-3-
phenyl)-2,2'-bipyridine (1a) (8.9 mg, 31.3 uymol) were dissolved in CDsCN (0.5 mL).

IH NMR (600 MHz, CDsCN, 298 K) & (ppm): 103.4 (br, 1H, Hay), 98.2 (br, 1H, Hay), 96.3 (br,
1H, Haj), 92.0 (s, 1H, Ha1), 91.0 (br, 1H, Hay), 88.1 (s, 1H, Haz), 85.8 (s, 1H, Hq1), 85.7 (s, 1H,
Hatac), 85.2 (br, 1H, Hay), 82.3 (S, 1H, Hgtac), 81.6 (br, 1H, Hay), 81.4 (s, 1H, Has), 79.1 (s, 1H,
Hg2), 75.1 (S, 1H, Hgs), 52.3 (S, 1H, Hi2), 51.6 (S, 1H, Hby), 46.8 (s, 1H, Hps), 45.9 (S, 1H, Hotac),
19.6 (s, 1H, Hc1), 17.7 (s, 1H, Hco), 16.6 (s, 1H, Hn1), 15.0 (S, 1H, Hrtac), 14.6 (S, 1H, Hcrac), 12.8
(s, 1H, Hes), 11.5 (s, 1H, Hny), 10.0 (s, 1H, Hhs), 6.8 (s, 1H, Hp), 6.5 (S, 1H, Hy), 6.5 (s, 1H, Hp),
6.3 (s, 1H, Hp), 6.2 (s, 1H, Hp), 6.1 (s, 1H, Hy), 6.0 (s, 1H, Hy), 5.8 (s, 1H, H»), 2.9 (s, 1H, Ho),
2.8 (S, 1H, Hotac), 1.7 (S, 1H, Ho), 1.3 (s, 1H, Ho).
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Note: While it was possible to assign the proton signals within one spin system (indicated by
numbers) based on the COSY spectrum, the different spin systems within each ligand could
not be correlated to a particular ligand environment. For the signals of the bipyridine, the fac
isomer was, therefore, tentatively assigned based on the integral of the signals. The three
remaining sets of signals corresponding to the mer isomer were arbitrarily labelled with black,
red, and blue labels according to their decreasing chemical shift. Protons corresponding to the
R substituent were tentatively assigned in grey due to the signal overlap in the diamagnetic
region of the spectra.'! Protons a and j are assigned in grey based on related complexes.!!

13C NMR (151 MHz, CDsCN, 298 K) & (ppm): 652.2 (s), 649.5 (s), 648.1 (s), 644.4 (s), 642.9
(S), 609.9 (d, lJCH =182 HZ, Cbl), 605.9 (d, 1JCH =179 HZ, beac), 603.1 (d, lJCH =175 HZ, Cbz),
597.6 (d, lJCH =171 HZ, Cb3), 429.9 (d, lJCH = 163 HZ, Cdl), 428.9 (d, lJCH = 163 HZ, Cgl),
424.6 (d, 1JCH =160 HZ, Cdfac), 423.6 (d, lJCH =158 HZ, ng), 416.7 (d, lJCH =193 HZ, Cgfac),
415.4 (d, YJcn = 172 Hz, Cq2), 410.0 (d, YJcn = 137 Hz, Cgs), 408.9 (d, YJcn = 138 Hz, Cgs),
223.7 (s), 222.3 (s), 219.3 (s), 217.7 (s), 197.0 (d, YJcr = 164 Hz, C.2), 188.8 (d, 1Jcn = 164 Hz,
Cc1), 184.6 (d, YJcn = 168 Hz, Cc3), 176.6 (d, YJcn = 167 Hz, Cerac), 172.3 (d, Jcn = 172 Hz,
Chiac), 171.1-167.1 (overlapping signals), 166.6 (d, Jcy = 167 Hz, Cpn), 159.46 (d,
1Jcn = 166 Hz, Cps), 158.4-153.9 (overlapping signals), 153.71 (d, YJcn = 173 Hz, Chy), 149.8-
135.7 (overlapping signals), 134.3-130.5 (overlapping signals, Cp), 130.4-128.1 (overlapping
signals, C,), 127.2-125.0 (overlapping signals, C,), 126.2-119.4 (overlapping signals), 68.3
(unresolved d, Caj), 66.0 (unresolved d, Caj), 52.0 (unresolved d, Caj), 50.1 (unresolved d,
Caj), 26.1 (unresolved d, Caj), 10.0 (unresolved d, Caj), 6.1 (unresolved d, Caj), -103.0 (s, Cer),
-109.5 (s, Cen), -127.3, (S, Cen), -135.1, (s, Cen), -146.3, (s, Cer), -151.0, (s, Cer), -170.7, (s,
Ce/f), -176.7 (S, Ce/f).

Note: Quaternary carbons and carbons close to the paramagnetic centre (a and j) could not
be unambiguously assigned due to the lack of HMBC equivalent in the paramagnetic NMR
toolbox. Carbons a, j, e and f are assigned based on related complexes.!

HRMS (ESI, CHsCN) m/z: 455.6076 [Co-CPOne-1a]**, 441.6102 [Co-CPOne-la -COJ*,
427.6130 [Co-CPOne-1a -2(CO)J*, 413.6152 [Co-CPOne-1a -3(CO)J?*.

FT-IR: ¥ = 3080.0 (W), 1848.1 (s), 1633.6 (m), 1601.7 (M), 1562.6 (W), 1471.4 (m), 1441.6 (m),
1382.1 (w), 1345.5 (s), 1471.4 (m), 1175.3 (s), 1131.1 (s), 1051.3 (s), 925.2 (W), 855.4 (w),
795.4 (m), 767.6 (s), 748.8 (s), 736.1 (s), 686.9 (M), 651.5 (M), 598.0 (s), 569.1 (s), 509.7 (S)
cm™.
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Figure S88. *C NMR spectrum (151 MHz, CD3CN, 298 K) of Co-CPOne-1a.

S61



CD,CN

Maj alj &l
‘\'\'I""""'I"""'”\""”"'I""""'I"‘"""\""""‘\""""'I"”""‘\""2‘ ,..‘ T
290 190 180 170 160 150 140 130 129 60
CD,CN

el effefg,%;ff eself

o1 T ’ T T T T T T T T T
300 200 100 0 -100 -200 -300 Ppm

Figure S89. *C NMR spectrum (151 MHz, CDsCN, 298 K) of Co-CPOne-1a.
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Figure S90. 'H-'H COSY NMR spectrum (600 MHz, CDsCN, 298 K) of Co-CPOne-1a.
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Figure S91. 'H-*H COSY NMR spectrum (600 MHz, CDsCN, 298 K) of Co-CPOne-1a.
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Figure S92. 'H-'H NOESY NMR spectrum (600 MHz, CD3CN, 298 K) of Co-CPOne-1a.
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7.4 Fe-CPOne-1b

Iron tetrafluoroborate hexahydrate (3.80 mg, 11.3 ymol) and 5-(2-cycloprop-2-enone-3-
(thiophen-2-yl))-2,2'-bipyridine (1b) (9.80 mg, 33.8 umol) were dissolved in CD3sCN (0.5 mL).
After standing at room temperature over night the solution was added dropwise to diethyl ether
(6 mL) and was centrifuged. The organic layer was decanted and the residue washed twice
with diethyl ether (10 mL) to obtain the product as a purple powdery solid.

IH NMR (500 MHz, CDsCN, 298 K) & (ppm): 8.82 (d, 3J = 8.4 Hz, 1H, Hy), 8.79 (d, 3J = 8.7 Hz,
1H, Hg), 8.76-8.73 (m, 2H, Hy), 8.73-8.67 (m, 3H, Hay), 8.66-8.61 (m, 3H, Hap), 8.54
(overlapping dd, 3J = 8.4 Hz, *J = 1.8 Hz, 2H, Hy), 8.27-8.23 (m, 2H, H.), 8.21-8.16 (m, 2H,
H.), 8.08 (d, J = 1.5 Hz, 1H, H)), 8.06 (d, 4J = 1.2 Hz, 1H, H)), 8.04-8.02 (M, 2H, Hup), 7.99
(dd, 3J = 5.0 Hz, 43 = 0.9 Hz, 1H, Hup), 7.97 (dd, 3J = 5.1 Hz, 4J = 0.8 Hz, 1H, Hup), 7.95 (d,
43 = 1.3 Hz, 1H, Hj), 7.89 (d, 4J = 1.4 Hz, 1H, Hj), 7.66 (dd, 3J = 3.9, 4J = 0.9 Hz, 1H, Huy),
7.65-7.62 (M, 2H, Hup), 7.62-7.58 (M, 2H, Hanp), 7.57-7.44 (M, 6H, Hap), 7.36 (d, 3J = 5.4 Hz,
1H, Ha), 7.35-7.31 (M, 2H, Ho), 7.30-7.26 (m, 2H, Hy).

13C NMR (126 MHz, CD3CN, 298 K) & (ppm): 162.0 (Cy),161.9 (Cj), 161.5 (Cy), 161.4 (Cy),
159.4 (Ce), 159.3 (Ce), 159.0 (Ce), 158.8 (Ce), 156.5 (C)), 156.3 (Ca), 156.0 (C;j), 156.0 (Ca),
155.9 (C)), 155.7 (Cy), 155.3 (Ca), 151.4 (Cy), 151.4 (Cy), 151.2 (Cy), 145.9 (C)), 145.8 (C)),
145.7 (C)), 145.6 (C)), 141.4 (Cy), 141.0 (Cp), 141.0 (Cy), 140.1 (C¢), 140.1 (C¢), 140.0 (Cy),
140.0 (Ce), 138.7 (Cnp), 138.6 (Cnyp), 138.6 (Chyp), 138.4 (Chp), 137.3 (Chpp), 137.1 (Chpp), 136.9
(Crip), 136.1 (Cy), 136.1 (Cy), 135.9 (Cy), 130.6 (Co), 130.6 (Co), 130.5 (Co), 130.5 (Co), 129.4
(Cb), 129.3 (Cp), 129.1 (Cp), 129.1(Cs), 126.9 (Cy), 126.7 (Cu), 126.4 (Cq), 126.3 (Cqg), 125.9
(Cy), 125.7 (Cy), 125.5 (Cy), 125.3(Cm), 125.3 (Cy), 125.2 (Cm), 125.2 (Cm), 125.1 (Cn), 123.8
(C), 123.7(Cy), 123.6 (Cj), 123.5 (Cy).

HRMS (ESI, CHsCN) m/z: 463.0440 [Fe-CPOne-1b]%*, 449.0466 [Fe-CPOne-1b -COJ%,
435.0493 [Fe-CPOne-1b -2(CO)J?*, 421.0517 [Fe-CPOne-1b -3(CO)J".

FT-IR: ¥ = 3443.9 (w), 3110.8 (w), 1842.4 (s), 1619.9 (s), 1487.4 (w), 1466.0 (m), 1440.3 (w),
1406.9 (M), 1384.9 (w), 1361.0 (m), 1315.5 (W), 1279.6 (W), 1243.1 (w), 1033.5 (s), 852.9 (m),
791.1 (m), 749.8 (m), 728.8 (m), 666.3 (w) cm™.
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Figure S96. 13C NMR spectrum (126 MHz, CDsCN, 298 K) of Fe-CPOne-1b.
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Figure S97. 'H-'H COSY NMR spectrum (500 MHz, CDsCN, 298 K) of Fe-CPOne-1b.
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Figure S98.
Fe-CPOne-1b.
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Figure S99. 'H-)C HMBC NMR spectrum (500 MHz/126 MHz, CDsCN, 298 K) of

Fe-CPOne-1b.

[Fe-CPOne-1b?*

N

[Fe-CPOne-1bJ2* [ Observed
463.0440
[Fe-CPOne-1b - 1(CO)**
449.0466
[Fe-CPOne-1b - 2(COJ" T
4350493 S s s s o s
[Fe-CPOne-1b - 3(CO)f"" | P
| )
421.0517 ! Theoretical
; |. |‘ i i iiin
420 440 480
mz 64T i
e 855 o . s :GL: a0k 5

.
J
/
S
h
h
;
h
J
/
;
n b L
T T

J|Ik 1l L

I
200 400

600 800
m/z

T
1000

1
1200

Figure S100. High resolution ESI mass spectrum of Fe-CPOne-1b showing in the insets the
distinct fragment pattern upon CO loss as well as the observed and theoretical isotope

patterns.
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7.5 Zn-CPOne-1b

Zinc trifluoromethanesulfonate (2.94 mg, 8.1 umol) and 5-(2-cycloprop-2-enone-3-phenyl)-
2,2'-bipyridine (1a) (6.9 mg, 24.3 pmol) were dissolved in CDszCN (0.5 mL).

Note: Because of the broadness of the signals, unambiguous assignment of the *H and *C
NMR spectra was not possible and fac/mer isomers could not be distinguished.

HRMS (ESI, CHsCN) m/z: 1083.0349 [Zn-CPOne-1b + OTf]!*, 467.0413 [Zn-CPOne-1b]?,
453.0437 [Zn-CPOne-1b -COJ*, 439.0463 [Zn-CPOne-lb -2(CO)*, 425.0463
[Zn-CPOne-1b -3(CO)J*.

FT-IR: ¥ = 3085.7 (W), 2366.0 (W), 2252.3 (W), 2162.0 (W), 1844.03 (s), 1602.9 (s), 1561.5 (m),
1472.6 (m), 1440.6 (w), 1407.5 (M), 1362.6 (w), 1317.0 (w), 1246.9 (s), 1222.2 (s), 1150.8 (s),
1059.4 (w), 1027.3 (s), 855.7 (w), 798.1 (w) cm-.
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Figure S101. *H NMR spectrum (600 MHz, CD3CN, 298 K) of Zn-CPOne-1b.

S71



CD,CN

155 150 145 140 135 130 125 120 115 PPM

Figure S102. *3C NMR spectrum (151 MHz, CD3CN, 298 K) of Zn-CPOne-1b.
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Figure S103. *H-'H COSY NMR spectrum (600 MHz, CDsCN, 298 K) of Zn-CPOne-1b.
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Figure S104. 'H-3C HSQC NMR spectrum (600 MHz/151 MHz, CDsCN, 298 K) of
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7.6 Co-CPOne-1b

Cobalt bis(trifluoromethylsulfonyl)imide (7.25 mg, 11.7 ymol) and 5-(2-cycloprop-2-enone-3-
(thiophen-2-yl))-2,2'-bipyridine (1b) (10.2 mg, 35.2 pmol) were dissolved in CD3CN (0.5 mL).
After standing at room temperature over night the solution was added dropwise to diethyl ether
(6 mL) and was centrifuged. The organic layer was decanted and the residue washed twice
with diethyl ether (10 mL) to obtain the product as a yellow powdery solid.

'H NMR (600 MHz, CDsCN, 298 K) & (ppm): 102.3 (br, 1H, Hay), 98.2 (br, 1H, Hay), 95.5 (br,
1H, Haj), 91.6 (s, 1H, Haz), 90.9 (br, 1H, Haj), 89.9 (br, 1H, Haj), 87.8 (S, 1H, Haz), 86.1 (s, 1H,
Harac), 86.0 (S, 1H, Hg1), 82.9 (s, 1H, Has), 82.4 (s, 1H, Hgrac), 79.9 (S, 1H, Hg2), 78.3 (br, 1H,
Haj), 76.9 (s, 1H, Hgs), 52.3 (s, 1H, Hy2), 51.9 (s, 1H, Hy1), 46.1 (s, 1H, Hys), 45.9 (s, 1H, Hotac),
19.2 (s, 1H, He1), 17.5 (S, 1H, Hez), 16.6 (S, 1H, Hn1), 15.1 (S, 1H, Hitac), 14.7 (S, 1H, Hetac), 13.4
(s, 1H, Hes), 11.8 (s, 1H, Hn2), 10.6 (s, 1H, Hns), 7.0 (s, 1H, Hwop), 6.8 (s, 1H, Huop), 6.3 (S, 1H,
Hn/o/p), 6.1 (S, lH, Hn/o/p), 6.0 (S, lH, Hn/o/p), 59 (S, lH, Hn/o/p), 5.6 (S, lH, Hn/o/p), 54 (S, lH,
Hn/o/p), 4.1 (S, lH, Hn/o/p), 35 (S, lH, Hn/o/p), 3.2 (S, lH, Hn/o/p), 2.6 (S, lH, Hn/o/p).

Note: While it was possible to assign the proton signals within one spin system (indicated by
numbers) based on the COSY spectrum, the different spin systems within each ligand could
not be correlated to a particular ligand environment. For the signals of the bipyridine, the fac
isomer was, therefore, tentatively assigned based on the integral of the signals. The three
remaining sets of signals corresponding to the mer isomer were arbitrarily labelled with black,
red, and blue labels according to their decreasing chemical shift. Protons corresponding to the
R substituent were tentatively assigned in grey due to the signal overlap in the diamagnetic
region of the spectra.'! Protons a and j are assigned in grey based on related complexes.!!

13C NMR (151 MHz, CDsCN, 298 K) d (ppm): 649.1 (s), 648.2 (s), 643.2 (s), 642.9 (s), 608.1
(d, Ycn =179 Hz, Cp1), 605.1 (d, *Jcn = 135 Hz, Cpz), 604.0 (d, *Jch = 138 Hz, Chyac), 601.5 (d,
Jen = 165 Hz, Cpg), 430.2 (d, *Jch = 167 Hz, Cq1), 427.1 (d, *Jcn = 112 Hz, Cq1), 426.0 (d,
lJCH =120 HZ, ng), 4245 (d, lJCH =170 HZ, Cdfac), 417.3 (d, lJCH =172 HZ, Cgfac), 413.8 (d,
lJCH =89 HZ, Cg3), 412.7 (d, lJCH =116 HZ, Cdz), 411.6 (d, lJCH =176 HZ, Cd3), 214.1 (S), 213.0
(s), 209.9 (s), 209.1 (s), 197.9 (d, Ncn = 166 Hz, Cc2), 191.4 (d, 1J = 164.Hz, C.1), 183.3 (d,
1J =167 Hz, Cc), 176.9 (d, 1J = 166 Hz, Cctac), 173.0 (d, 1J = 168 Hz, Chiac), 171.9 (s), 169.5
(s), 168.7 (d, XJ = 169 Hz, Cn1), 160.5 (s), 158.5 (d, 1J = 171 Hz, Chs), 158.4 (s), 154.2 (d,
1J = 169 Hz, Cyy), 137.2-132.1 (overlapping signals, Cnop), 128.1-122.9 (overlapping signals,
Chionp), 68.7 (unresolved d, Cy;), 67.8 (unresolved d, Cgj), 62.4 (unresolved d, Cgj), 39.3
(unresolved d, Caj), 29.5 (unresolved d, Cyj), 24.0 (unresolved d, Caj), 6.8 (unresolved d, Ca),
-104.0 (s, Cer), -110.9 (s, Cer), -125.1 (s, Cer), -133.6 (S, Cer), -143.6 (S, Cer), -148.6 (s, Cen),
-165.9 (S, Ce/f), -172.5 (S, Ce/f).

Note: Quaternary carbons and carbons close to the paramagnetic centre (a and j) could not
be unambiguously assigned due to the lack of HMBC equivalent in the paramagnetic NMR
toolbox. Carbons a, j, e and f are assigned based on related complexes.!
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HRMS (ESI, CH3sCN) m/z: 1209.0049 [Co-CPOne-1b + NTf,]**, 464.5433 [Co-CPOne-1b]?,
450.5458 [Co-CPOne-1b -COJ%*, 436.5484 [Co-CPOne-l1b -2(CO)]%, 422.5509
[Co-CPOne-1b -3(CO)J?*.

FT-IR: ¥ = 3089.7 (W), 1842.7 (s), 1623.0 (s), 1602.7 (M), 1561.7 (W), 1470.7 (M), 1440.9 (w),
1408.3 (M), 1346.9 (s), 1329.1 (s), 1225.1 (m), 1177.3 (s), 1131.6 (s), 1051.8 (s), 854.5 (M),
795.7 (m), 733.5 (s) cm™.
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Figure S107. *H NMR spectrum (600 MHz, CD3CN 3, 298 K) of Co-CPOne-1b.

S76



\ s /"I""I""l/’/' '.'\I""I""I"" i I".'
650 645 64D /S 610 605 600 430 425 420 415 410

T T
650 600 550 500 450 400 ppm
Figure S108. 3C NMR spectrum (151 MHz, CDsCN, 298 K) of Co-CPOne-1b.
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Figure S109. 3C NMR spectrum (151 MHz, CDsCN, 298 K) of Co-CPOne-1b.
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Figure S110. *H-'H COSY NMR spectrum (600 MHz, CD3CN, 298 K) of Co-CPOne-1b.
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Figure S111. 'H-BC HMQC NMR spectrum (600 MHz/151 MHz, CDsCN, 298 K) of

Co-CPOne-1b.
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Figure S112. 'H-3C HMQC NMR spectrum (600 MHz/151 MHz, CDsCN, 298 K) of
Co-CPOne-1b.
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Figure S113. High resolution ESI mass spectrum of Co-CPOne-1b showing in the insets the

distinct fragment pattern upon CO loss as well as the observed and theoretical isotope
patterns.
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7.7 Fe-CPOne-1c

Iron tetrafluoroborate hexahydrate (0.53 mg, 1.57 ymol) and 5-(2-cycloprop-2-enone-6-
(quinolin-2-yl))-2,2'-bipyridine (1c) (1.60 mg, 4.77 ymol) were dissolved in CDsCN (0.5 mL)
and all characterisation was carried out immediately.

Note: The complex interconverts into a dynamic combinatorial library (DCL) within hours as
evidenced by the loss of signals over time (Figure S115). Acquisition of NMR data of sufficient
quality for analysis was not possible because of the interconversion as well as the overlap and
broadness of the signals.

HRMS (ESI, CHsCN,) m/z: 530.6253 [Fe-CPOne-1c]*, 516.6279 [Fe-CPOne-1c -COJ%,
502.6303 [Fe-CPOne-1c -2(CO)]**, 488.6328 [Fe-CPOne-1c -3(CO)]*".
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Figure S114. *H NMR spectrum (600 MHz, CDsCN, 298 K) of Fe-CPOne-1c. Protons j are
tentatively assigned.
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Figure S115. *H NMR spectra (600 MHz, CDsCN, 298 K) of Fe-CPOne-1c directly after
preparation (bottom) and after 1 h, 3 h and 8 h in the dark.
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Figure S116. *H-'H COSY NMR spectrum (600 MHz, CDsCN, 298 K) of Fe-CPOne-1c. Note:

this complex was prepared using iron trifluoromethanesulfonate rather than iron
tetrafluoroborate.
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Figure S117. H-®C HSQC NMR spectrum (600 MHz/151 MHz, CDsCN, 298 K) of

Fe-CPOne-1c.
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Figure S118. High resolution ESI mass spectrum of freshly prepared Fe-CPOne-1c showing
in the insets the distinct fragment pattern upon CO loss as well as the observed and theoretical
isotope patterns.
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7.8 Co-CPOne-1c

mer

Cobalt bis(trifluoromethylsulfonyl)imide (4.68 mg, 7.55 ymol) and 5-(2-cycloprop-2-enone-6-
(quinolin-2-y1))-2,2'-bipyridine (1c¢) (7.6 mg, 22.7 ymol) were dissolved in CDzCN (0.5 mL) and
all characterisation was carried out immediately.

Note: The complex interconverts into a dynamic combinatorial library (DCL) within hours
(Figure S120).

IH NMR (600 MHz, CDCN, 298 K) & (ppm): 104.6 (br, 1H, Hay), 99.5 (br, 1H, Hay), 97.2 (br,
1H, Hag), 92.7 (br, 1H, Hag), 92.1 (s, 1H, Ha1), 91.5 (br, 1H, Hay), 88.1 (s, 1H, Haz), 87.1 (br, 1H,
Ha), 85.7 (S, 2H, Hg1a3), 82.3 (S, 1H, Hg2), 81.5 (S, 1H, Harac), 80.3 (br, 1H, Hay), 78.8 (s, 1H,
Hga), 75.0 (S, 1H, Hgrac), 52.9 (S, 1H, Hpa), 52.0 (S, 1H, Ho), 46.6 (s, 1H, Horac), 46.1 (S, 1H,
Hps), 19.6 (S, 1H, He1), 17.7 (S, 1H, He2), 16.5 (S, 1H, Hn1), 14.9 (s, 1H, Hrz), 14.5 (s, 1H, Hea),
12.8 (S, 1H, Hetac), 11.5 (S, 1H, Hrg), 10.0 (S, 1H, Hitac), 7.5-7.1 (M, 13H, Hn,sq), 6.9 (S, 1H, Hy),
6.5 (s, 1H, Hn), 6.3 (S, 1H, Hy), 5.8 (s, 1H, Hu), 5.7 (s, 1H, Hy), 4.5 (s, 1H, Hy), 4.5 (s, 1H, Hy),
2.0 (s, 3H, Ho), 0.2 (s, 1H, Ho).

Note: While it was possible to assign the proton signals within one spin system (indicated by
numbers) based on the COSY spectrum, the different spin systems within each ligand could
not be correlated to a particular ligand environment. For the signals of the bipyridine, the fac
isomer was, therefore, tentatively assigned based on the integral of the signals. The three
remaining sets of signals corresponding to the mer isomer were arbitrarily labelled with black,
red, and blue labels according to their decreasing chemical shift. Protons corresponding to the
R substituent were tentatively assigned in grey due to the signal overlap in the diamagnetic
region of the spectra.'! Protons a and j are assigned in grey based on related complexes.!!

13C NMR (151 MHz, CDsCN, 298 K) & (ppm): 609.9 (Cb1), 606.6 (Cos), 601.9 (Cbz), 597.7 (Crac),
428.7 (Ca1), 426.7 (Cq1), 423.8 (Cas), 422.4 (Cgs), 415.1 (Cg2), 413.9 (Caz), 409.7 (Cgtac), 409.5
(Cetac), 197.8 (Ce2), 189.5 (Cea), 184.5 (Crac), 176.4 (Ces), 173.2 (Cha), 167.5 (Cha), 159.7 (Chac),
153.8 (Chs), 133.2 (Cu), 132.7 (Co), 127.0 (Co), 125.2 (Co), 136.9-121.9 (Cngu).

Note: Because of the interconversion, overlap and broadness of the signals, acquisition of **C
NMR data of sufficient quality for assignment was not possible. Therefore, the carbons
reported above were assigned through the cross-peaks in the HMQC spectrum (Figure S123).

HRMS (ESI, CHsCN) m/z: 532.1244 [Co-CPOne-1c]*, 518.1270 [Co-CPOne-1c -COJ?*,
504.1294 [Co-CPOne-1c -2(CO)J?*.
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Figure S119. *H NMR spectrum (600 MHz, CD3CN, 298 K) of Co-CPOne-1c.

CHD,CN
H,0

after 14 h in the dark

CHD,CN
H,0

T T T T T T T T T T T T T T T T T T T T
80 60 40 20 0 PPM

Figure S120. *H NMR spectra (600 MHz, CDsCN, 298 K) of Co-CPOne-1c directly after
preparation (bottom) and after 12 h in the dark.

S86



free ligand

H,0
CHD,CN
(o}

ppm

H,O
CHD,CN_©
free ligand -

93

g2
/d
91 Y

F-10

100

T T T T T T T
100 90 80 70 60 50 40

Figure S121. *H-'H COSY NMR spectrum (600 MHz, CDsCN, 298 K) of Co-CPOne-1c.
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Figure S122. 'H-13C HMQC NMR spectrum (600 MHz/151 MHz, CDsCN, 298 K) of
Co-CPOne-1c.
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Figure S123. !H-3C HMQC NMR spectrum (600 MHz/151 MHz, CD3CN, 298 K) of
Co-CPOne-1c.
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Figure S124. High resolution ESI mass spectrum of freshly prepared Co-CPOne-1c showing
in the insets the distinct fragmenting pattern upon CO loss as well as the observed and
theoretical isotope patterns.

8 Complexes M-2a-2c
8.1 Complex Fe-2a

Iron tetrafluoroborate hexahydrate (3.95 mg, 11.7 ymol) and 5-(phenylethynyl)-2,2'-bipyridine
(2a) (9.9 mg, 3.9 umol) were dissolved in CD3CN (0.5 mL). After standing at room temperature
overnight the solution was added dropwise to diethyl ether (6 mL) and centrifuged. The organic
layer was decanted and the residue washed twice with diethyl ether (10 mL) to obtain the
product as a red powdery solid.

IH NMR (500 MHz, CDsCN, 298 K) & (ppm): 8.59-8.51 (m, 8H, Hay), 8.24-8.20 (m, 4H, Hy),
8.18-8.11 (m, 4H, H.), 7.64 (dd, 4J = 1.2 Hz, 5J = 0.6 Hz, 1H, H), 7.57 (dd, “J = 1.3 Hz,
5J = 0.6 Hz, 1H, H), 7.54 (ddd, 3J = 5.0 Hz, 4J = 1.3 Hz, 5J = 0.6 Hz, 1H, Ha), 7.51-7.38 (m,
28H, Hapjnop), 7.33 (ddd, 3J = 5.0 Hz, 43 = 1.3 Hz, 5] = 0.6 Hz, 1H, Ha).

13C NMR (126 MHz, CDsCN, 298 K) & (ppm): 159.8 (C), 159.7 (Ce), 159.7 (Ce), 159.6 (Ce),
159.1 (Cy), 159.0 (C1), 158.9 (Cy), 158.9 (Cy), 157.2 (C)), 157.0 (C)), 156.9 (C)), 156.6 (C)), 155.9
(Ca), 155.6 (Ca), 155.3 (Ca), 141.9 (Ch), 141.9 (C), 141.9 (Cr), 141.8 (Cr), 140.0 (C.), 139.9
(Co), 132.7 (Co), 130.9 (Cy), 129.9 (Cuo), 128.8 (Cy), 128.7 (Cp), 128.7 (Cb), 128.6 (Cy), 125.8
(Ca), 125.6 (Ca), 125.6 (Cy), 125.5 (Ca), 124.9 (Cg), 124.8 (C)), 124.8 (C;, Cy), 124.8 (C), 124.7
(Ci, Cy), 124.6 (Cyg), 122.3 (Cm), 122.3 (Cn), 122.2 (Cm), 97.4 (C)), 97.3 (C)), 97.3 (C)), 97.2 (C),
85.2 (Cy), 85.1 (Cy), 85.1 (Cx), 85.0 (Cy).
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HRMS (ESI, CHsCN) m/z: 412.1168 [Fe-2a]?**, 284.0668 [Fe-2a -1(2a)]?*, 257.1071 [2a +H]".

FT-IR: V=3630.9 (w), 3080.6 (w), 2222.6 (w), 1601.3 (w), 1557.6 (w), 1494.7 (w), 1465.7 (m),
1439.0 (m), 1376.1 (w), 1313.5 (w), 1278.1 (w), 1237.9 (w), 1056.1 (s), 911.8 (w), 853.8 (w),
788.3 (m), 753.2 (s), 730.9 (m), 691.8 (m), 671.9 (w), 573.5 (w), 546.7 (w), 519.8 (m) cm™.
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Figure S125. *H NMR spectrum (500 MHz, CDsCN, 298 K) of Fe-2a.
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Figure S126. *C NMR spectrum (126 MHz, CDsCN, 298 K) of Fe-2a.
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Figure S127. *H-'H COSY NMR spectrum (500 MHz, CDsCN, 298 K) of Fe-2a.
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Figure S128. *H-3C HSQC NMR spectrum (500 MHz/126 MHz, CD3CN, 298 K) of Fe-2a.
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Figure S129. *H-3C HMBC NMR spectrum (600 MHz/126 MHz, CDsCN, 298 K) of Fe-2a.

S94



41211676
R=213483

+ 2=2
[2a + H] 100
Observed
257.1071 g oo 41261805
: - R=209086
3 0] 7
g 1 4\2!\0{:0 ‘
3; R-C;;S;E{A
€ 40 41311968
Rereoss | pp . R202046 | pgnce R=204740. piagy
=2 i =0 220 z=2 =2
,,,,,,,,,,, 530 PR U~ 8
4105 410 ans 4120 4125 4130 4135 4140
100+ 412 11700
Theoretical
2+ 80
[Fe-2a]
5 T0-
412 1168 .‘é V'U: 41261866
- ; 50
§ 40+
g
30
20- 413.120:
10+ 411.11933 = i
] I .malzmw 41212269 -uu;zl.m 41-«]2?8?

.............

T T T
4105 4110 ans 4120 4125 4130 4135 4140

[Fe-2a - 1(2a)]**
284.0668

Lol

I T T T 1 T T T T T T T 1
200 300 400 500 600 700 800 900 1000 1100 1200
m/z

Figure S130. High resolution ESI mass spectrum of Fe-2a showing in the insets the observed
and theoretical isotope patterns.

8.2 Complex Zn-2a

Zinc trifluoromethanesulfonate (3.93 mg, 10.8 ymol) and 5-(2-cycloprop-2-enone-3-phenyl)-
2,2'-bipyridine (1a) (9.20 mg, 32.4 ymol) were dissolved in CDsCN (0.5 mL).

Note: Because of the broadness of the signals, complete and unambiguous assignment of the
!H and *C NMR spectra was not possible and fac/mer isomers could not be distinguished.

HRMS (ESI, CHsCN) m/z: 416.1138 [Zn-2a]?**, 288.0639 [Zn-2a -1(2a)]**, 257.1071 [2a +H]".

FT-IR: ¥ = 3064.9 (w), 2221.6 (w), 1600.1 (w), 1561.1 (w), 1498.1 (w), 1487.4 (w), 1472.0 (m),
1438.8 (m), 1376.1 (w), 1315.0 (w), 1265.5 (s), 1223.9 (m), 1149.9 (s), 1070.9 (w), 1049.5
(W), 1029.1 (s), 925.7 (w), 856.2 (w), 794.1 (m), 751.3 (s), 734.2 (M), 692.6 (M), 665.3 (W),
633.6 (s), 572.1 (M), 543.3 (W), 532.5 (w), 516.1 (m) cm-%.

S95



T T T T T T T T T T T T T T T T T
9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

Ppm
Figure S131. *H NMR spectrum (600 MHz, CD3CN, 298 K) of Zn-2a.
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Figure S132. 13C NMR spectrum (151 MHz, CDsCN, 298 K) of Zn-2a.
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Figure S133. *H-'H COSY NMR spectrum (600 MHz, CDsCN, 298 K) of Zn-2a.
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Figure S134. *H-3C HSQC NMR spectrum (600 MHz/151 MHz, CD3CN, 298 K) of Zn-2a.
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Figure S135. *H-3C HMBC NMR spectrum (600 MHz/151 MHz, CDsCN, 298 K) of Zn-2a.
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Figure S136. High resolution ESI mass spectrum of Zn-2a showing in the insets the observed
and theoretical isotope patterns.

8.3 Complex Co-2a

Cobalt bis(trifluoromethylsulfonyl)imide (7.89 mg, 12.7 ymol) and 5-(phenylethynyl)-2,2'-
bipyridine (2a) (9.8 mg, 38.2 umol) were dissolved in CDzCN (0.5 mL).

IH NMR (600 MHz, CDsCN, 298 K) & (ppm): 104.1 (br, 1H, Haj), 100.7 (br, 1H, Haj), 92.5 (br,
1H, Haj), 90.1 (br, 1H, Hay), 89.7 (s, 1H, Hay), 89.5 (br, 1H, Haj), 87.7 (S, 1H, Haz), 85.9 (s, 1H,
Ha/j), 85.7 (S, 1H, Hgl), 85.6 (S, 1H, deac), 83.9 (S, 1H, ng), 82.9 (S, 1H, Hdg), 81.5 (S, 1H, Hgfac),
80.5 (s, 1H, Hay), 79.1 (s, 1H, Hgs), 78.5 (S, 1H, Hay), 51.9 (S, 1H, Hea), 51.2 (S, 1H, Hio), 46.2
(S, 1H, Hotac), 45.8 (S, 1H, Hes), 18.0 (s, 1H, He), 17.0 (s, 1H, Hez), 15.7 (S, 1H, Hn), 14.9 (s,
1H, Hn2), 14.5 (s, 1H, Hctac), 13.4 (S, 1H, Hcs), 12.4 (S, 1H, Hniac), 11.4 (s, 1H, Hhs), 6.4 (s, 1H,
Hp), 6.2 (s, 1H, Hp), 5.9 (s, 1H, Hp), 5.7 (s, 1H, Hp), 5.0 (S, 4H, Huo), 4.7 (S, 4H, Huo), 3.8 (S,
4H, Hnpo), 3.5 (S, 4H, Hup).

Note: While it was possible to assign the proton signals within one spin system (indicated by
numbers) based on the COSY spectrum, the different spin systems within each ligand could
not be correlated to a particular ligand environment. For the signals of the bipyridine, the fac
isomer was, therefore, tentatively assigned based on the integral of the signals. The three
remaining sets of signals corresponding to the mer isomer were arbitrarily labelled with black,
red, and blue labels according to their decreasing chemical shift. Protons corresponding to the
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R substituent were tentatively assigned in grey due to the signal overlap in the diamagnetic
region of the spectra.'! Protons a and j are assigned in grey based on related complexes.!!

13C NMR (151 MHz, CDsCN, 298 K) & (ppm): 694.9 (s), 693.0 (s), 689.7 (s), 607.2 (d,
Jen =177 Hz, Cpi), 605.3 (overlapping d, Cuac), 604.5 (overlapping d, Cp2), 601.2 (d,
Jen =170 Hz, Cpg), 424.2 (d, Yen = 167 Hz, Cgiac), 421.6 (overlapping d, Cg1/Catac), 420.3
(overlapping d, Cq1), 417.6 (overlapping d, Cg3), 416.2 (overlapping d, Cg), 413.6 (d,
lJCH =164 Hz, Cdz) 413.4 (d, lJCH = 164 Hz, Cd3), 195.8 (d, lJCH =165 Hz, Ccz), 190.8 (d,
3w =167 Hz, Ce), 182.9 (overlapping d, Jcn = 167. Hz, Cc), 182.4 (s), 178.5 (d,
en = 123 Hz, Ciac), 174.0 (d, YJcn = 167 Hz, Chz), 170.0 (d, YJcn = 165 Hz, Chi), 159.9 (d,
Jen = 173 Hz, Chg), 156.2 (d, *Jcn = 170 Hz, Chac), 135.4-134.2 (overlapping signals, Cuo),
130.5-125.5 (overlapping signals, Cy), 73.0 (unresolved d, Cyj), 65.6 (unresolved d, Cy), 35.3
(unresolved d, 2C, Cgj), 28.73 (unresolved d, 2C, Cy), -114.2 (s, 1C, Cex), -115.59 (s,
Cer), -139.8 (s, Cen), -140.2 (s, Cer), -146.0 (S, Cen), -169.0 (s, Cer), -169.5 (S, Cer).

Note: Quaternary carbons and carbons close to the paramagnetic center (a and j) could not
be unambiguously assigned due to the lack of HMBC equivalent in the paramagnetic NMR
toolbox. Carbons a, j, e and f are assigned based on related complexes.!

HRMS (ESI, CHsCN) m/z: 413.6158 [Co-2a]?*, 285.5659 [Co-2a -1(2a)]".

FT-IR: ¥ = 3079.2 (W), 2217.4 (w), 2175.7 (w), 1600.2 (w), 1558.5 (w), 1498.7 (w), 1487.9 (W),
1469.7 (m), 1440.7 (m), 1352.6 (s), 1334.1 (s), 1173.6 (s), 1134.6 (s), 1048.8 (s), 919.2 (w),
850.9 (W), 791.7 (m), 747.9 (m), 733.2 (m), 687.6 (M), 665.8 (W), 639.2 (W), 606.0 (s), 569.1
(s), 543.4 (w), 532.1 (w), 511.0 (s) cm™.
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Figure S137. *H NMR spectrum (600 MHz, CDsCN, 298 K) of complex Co-2a.
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Figure S138. 3C NMR spectrum (151 MHz, CD3CN, 298 K) of complex Co-2a.
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Figure S139. 13C NMR spectrum (151 MHz, CDsCN, 298 K) of complex Co-2a.
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Figure S140. *H-'H COSY NMR spectrum (600 MHz, CD3CN, 298 K) of complex Co-2a.
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Figure S141. *H-*C HMQC NMR spectrum (600 MHz/151 MHz, CDsCN, 298 K) of Co-2a.
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Figure S142. *H-*C HMQC NMR spectrum (600 MHz/151 MHz, CDsCN, 298 K) of Co-2a.

S105



¢ C3 hpe hy ﬂ/o/ n/on/o
o

pPpm

-110
-120
0g¢
- 140
-150
2] -160

[ oxs ] =170
o =180

m F190

200

210

T T T T T T T T T T T T T T T T T T T
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 vppm

Figure S143. *H-1*C HMQC NMR spectrum (600 MHz/151 MHz, CDsCN, 298 K) of Co-2a.
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Figure S144. High resolution ESI mass spectrum of Co-2a showing in the insets the observed
and theoretical isotope patterns.

8.4 Complex Fe-2b

Iron tetrafluoroborate hexahydrate (4.58 mg, 13.7 ymol) and 5-(thiophen-2-ylethynyl)-2,2'-
bipyridine (2b) (10.6 mg, 40.2 ymol) were dissolved in CD3CN (0.5 mL).

IH NMR (500 MHz, CDsCN, 298 K) & (ppm): 8.58-8.47 (m, 8H, Ha,), 8.30-8.08 (M, 7H, Hh.0),
8.01(t, 3J = 7.4 Hz, 1H, H.), 7.66 (s, 1H, H), 7.57-7.29 (m, 18H, Hapjnp), 7.16 (br, 1H, Ha),
7.11-7.03 (M, 4H, Ho).

13C NMR (126 MHz, CDsCN, 298 K) & (ppm): 159.5 (C), 159.4 (Ce), 159.3 (Ce), 158.8 (Cy),
158.7 (Cy), 158.7 (Cy), 158.6 (Cy), 156.4 (C)), 156.3 (C)), 156.1 (C)), 155.5 (Ca), 155.3 (Ca), 155.3
(Ca), 154.9 (Ca), 141.8 (Ch), 141.4 (Cr), 141.3 (Cp), 139.7 (Cc), 135.5 (Cnjp), 135.0 (Cyp), 131.6
(Cop), 131.1 (Cwp), 128.9 (Co), 128.7 (Co), 128.5 (C), 128.5 (Cp), 128.4 (Cp), 128.4 (Cy), 125.6
(Ca), 125.4 (Cq), 125.2 (Ca), 124.9 (Cy), 124.7 (Cy), 124.5 (Cy), 124.5 (C)), 124.3-124.2 (Cig),
121.6 (Cm), 121.5 (Cm), 121.3 (Cn), 121.3 (C).

HRMS (ESI, CHsCN) m/z: 929.1058 [Fe-2b -1(2b) +BFJ]%*, 421.0515 [Fe-2b]?".

FT-IR: ¥ = 3622.9 (W), 3109.4 (W), 2923.9 (w), 2203.1 (m), 1595.1 (W), 1557.7 (w), 1465.9 (m),
1438.3 (w), 1420.1 (m), 1375.3 (w), 1312.4 (w), 1288.5 (w), 1237.9 (w), 1218.4 (w), 1170.8
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(w), 1050.7 (s), 1030.8 (s), 909.6 (w), 852.5 (m), 786.3 (m), 747.4 (m), 725.6 (s), 679.8 (W),
570.2 (w), 543.9 (w), 520.2 (m), 505.8 (w) cm™.
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Figure S145. *H NMR spectrum (500 MHz, CDsCN, 298 K) of Fe-2b.
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Figure S146. 13C NMR spectrum (126 MHz, CDsCN, 298 K) of Fe-2b.
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Figure S147. *H-'H COSY NMR spectrum (500 MHz, CD3CN, 298 K) of Fe-2b.
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Figure S148. *H-1*C HSQC NMR spectrum (500 MHz/126 MHz, CD3sCN, 298 K) of Fe-2b.
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Figure S149. *H-*C HMBC NMR spectrum (500 MHz/126 MHz, CD3CN, 298 K) of Fe-2b.
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Figure S150. High resolution ESI mass spectrum of Fe-2b showing in the insets the observed

and theoretical isotope patterns.

8.5 Complex Zn-2b

Zinc trifluoromethanesulfonate (4.71 mg, 13.0 ymol) and 5-(thiophen-2-ylethynyl)-2,2'-

bipyridine (2b) (10.2 mg, 39.2 ymol) were dissolved in CD3CN (0.5 mL).

Note: Because of the broadness of the signals, unambiguous assignment of the *H and *C
NMR spectra was not possible and fac/mer isomers could not be distinguished.

HRMS (ESI, CHsCN) m/z: 736.9937 [Zn-2b -1(2b) +OTf]**, 425.0489 [Zn-2bJ?*, 294.0207

[Zn-2b -1(2b)J?*.

FT-IR: Vv = 3489.8 (w), 3104.8 (w), 2201.4 (m), 1594.9 (m), 1556.8 (w), 1517.3 (w), 1471.9
(m), 1439.3 (m), 1420.0 (m), 1374.6 (w), 1313.9 (w), 1253.4 (s), 1219.8 (s), 1151.1 (s), 1027.3
(s), 854.1 (m), 793.5 (m), 730.8 (m), 665.2 (w), 636.9 (s), 619.8 (m), 573.3 (m) cm™.
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Figure S152. 13C NMR spectrum (126 MHz, CDsCN, 298 K) of Zn-2b.
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Figure S153. H-'H COSY NMR spectrum (500 MHz, CD3CN, 298 K) of Zn-2b.
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Figure S154. *H-3C HSQC NMR spectrum (500 MHz/126 MHz, CDsCN, 298 K) of Zn-2b.
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Figure S155. High resolution ESI mass spectrum of Zn-2b showing in the insets the observed
and theoretical isotope patterns.

8.6 Complex Co-2b

Cobalt bis(trifluoromethylsulfonyl)imide (8.01 mg, 12.9 ymol) and 5-(thiophen-2-ylethynyl)-
2,2'-bipyridine (2b) (10.1 mg, 38.5 pmol) were dissolved in CDsCN (0.5 mL).

IH NMR (600 MHz, CDsCN, 298 K) & (ppm): 104.5 (br, 1H, Hay), 101.6 (br, 1H, Hay), 91.7 (br,
1H, Haj), 89.5 (s, 1H, Ha1), 89.3 (br, 1H, Hay), 87.6 (s, 1H, Ha), 86.6 (br, 1H, Hay), 85.4 (s, 1H,
Hg1), 85.0 (brs, 2H, Heracigrac), 82.9 (S, 1H, Has), 82.5 (br, 1H, Hay), 81.3 (s, 1H, Hg2), 79.3 (br,
1H, Hay), 78.8 (S, 1H, Hga), 77.5 (br, 1H, Hay), 52.1 (S, 1H, Hb), 51.2 (S, 1H, Hez), 45.6 (s, 1H,
Hps), 45.4 (br, 1H, Homc), 17.9 (S, 1H, Her), 16.9 (s, 1H, He), 15.6 (s, 1H, Hm), 14.3 (s, 1H,
Hetaciiac), 13.8 (S, 1H, Hetacmiac), 13.3 (S, 1H, Hes), 12.2 (S, 1H, Hnz), 11.3 (s, 1H, Hns), 6.5 (s, 1H,
Hup), 6.2 (S, 1H, Hup), 5.9 (S, 1H, Hup), 5.8 (S, 1H, Hup), 5.6 (S, 1H, Hup), 5.5 (S, 1H, Hup), 5.0
(s, 1H, Ho), 3.8 (s, 1H, Ho), 3.6 (s, 1H, Ho).

Note: While it was possible to assign the proton signals within one spin system (indicated by
numbers) based on the COSY spectrum, the different spin systems within each ligand could
not be correlated to a particular ligand environment. For the signals of the bipyridine, the fac
isomer was, therefore, tentatively assigned based on the integral of the signals. However,
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unambiguous assignment of some signals was not possible due to the absence of COSY
cross-peaks, most likely due to the broadness of the signals. The three remaining sets of
signals corresponding to the mer isomer were arbitrarily labelled with black, red, and blue
labels according to their decreasing chemical shift. Protons corresponding to the R substituent
were tentatively assigned in grey due to the signal overlap in the diamagnetic region of the
spectra.!! Protons a and j are assigned in grey based on related complexes.!

13C NMR (151 MHz, CDsCN, 298 K) & (ppm): 607.6 (d, Jch = 169 Hz, Cp), 605.2 (d,
lJCH =171 Hz, Cb2/bfac), 601.4 (d, lJCH =172 Hz, Cbg), 423.9 (d, lJCH = 158 Hz, ng), 421.9 (d,
Jen = 165 Hz, Cq1), 419.9 (d, YJcn = 168 Hz, Ca1), 417.3 (d, YJcn = 161 Hz, Cgs), 414.04
(overlapping d, *Jcy = 114 Hz, Cgs), 412.9 (overlapping d, YJcnh = 114 Hz, Cg4), 195.9 (d,
2Jen = 169 Hz, Cc2), 191.8 (d, *Jcn = 169 Hz, Cc1), 188.8 (s), 188.4 (s), 183.9 (s), 183.4 (s),
182.5 (overlapping d, Jcy = 161 Hz, Ccs), 174.8 (d, YJcnh = 165 Hz, Ceiaciiac), 171.0 (d,
Jen = 171 Hz, Ch), 159.9 (d, YJcn = 173 Hz, Chs), 156.6 (d, YJcn = 170 Hz, Cry), 140.4-135.7
(overlapping signals, Co,) 130.9-123.2 (overlapping signals, Cy, Cp), 74.4 (unresolved d, Cyj),
65.5 (unresolved d, Cgj;), 38.6 (unresolved d, Cy;), 35.3 (unresolved d, Caj), 29.6 (unresolved
d, Ca/j), -114.7 (S, Ce/f), -115.7 (S, Ce/f), -139.3 (S, Ce/f), -140.0 (S, Ce/f), -146.1 (S, Ce/f), -168.9
(S, Ce/f), -169.5 (S, Ce/f).

Note: Quaternary carbons and carbons close to the paramagnetic center (a and j) could not
be unambiguously assigned due to the lack of HMBC equivalent in the paramagnetic NMR
toolbox. Carbons a, j, e and f are assigned based on related complexes.!! The carbon signals
for the fac isomer could not be assigned due to the absence of HMQC cross-peaks, attributed
to the broadness of the signals.

HRMS (ESI, CHsCN) m/z: 862.9632 [Co-2b -1(2b) +NTf,]*, 422.5511 [Co-2b]?*, 291.5228
[Co-2b -1(2b)J?".

FT-IR: ¥ =3109.1 (W), 2201.6 (m), 1595.4 (w), 1557.8 (W), 1517.3 (W), 1470.5 (w), 1440.6 (W),
1420.1 (w), 1347.1 (s), 1330.1 (s), 1280.5 (w), 1172.1 (s), 1130.8 (s), 1050.6 (s), 1015.5 (m),
920.1 (w), 853.9 (m), 789.4 (m), 761.6 (w), 730.5 (s), 651.7 (m), 611.5 (m), 597.9 (s), 568.8
(s), 534.7 (w), 506.6 (s), 469.6 (w), 418.8 (m), 411.6 (m), 405.9 (m) cm™.
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Figure S156. *H NMR spectrum (600 MHz, CDsCN, 298 K) of complex Co-2b.
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Figure S157. *3C NMR spectrum (151 MHz, CDsCN, 298 K) of complex Co-2b.
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Figure S158. 3C NMR spectrum (151 MHz, CDsCN, 298 K) of complex Co-2b.
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Figure S159. *H-'H COSY NMR spectrum (600 MHz, CD3CN, 298 K) of complex Co-2b.
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Figure S160. *H-1*C HMQC NMR spectrum (600 MHz/151 MHz, CDsCN, 298 K) of Co-2b.
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Figure S161. High resolution ESI mass spectrum of Co-2b showing in the insets the observed
and theoretical isotope patterns.

8.7 Complex Fe-2c

Iron tetrafluoroborate hexahydrate (1.99 mg, 5.91 ymol) and 5-(quinolin-6-ylethynyl)-2,2'-
bipyridine (2c) (5.45 mg, 17.7 ymol) were dissolved in CD3sCN (0.5 mL).

IH NMR (500 MHz, CDsCN, 298 K) & (ppm): 8.90 (br, 4H, Hy), 8.66-8.54 (m, 8H, Hay), 8.34-
8.23 (M, 8H, Hn,), 8.22-8.13 (M, 4H, Hy), 8.10-8.07 (m, 4H, H,), 8.05-8.01 (m, 4H, Ho), 7.79-
7.71 (m, 5H, Hny), 7.66 (s, 1H, H;), 7.60-7.41 (m, 13H, Hap,,s), 7.36 (d, 3J = 5.1 Hz, 1H, Ha).

13C NMR (126 MHz, CDsCN, 298 K) & (ppm): 159.7 (Ce), 159.7 (Ce), 159.6 (Ce), 159.6 (Ce),
159.3 (Cy), 159.3 (Cy), 159.2 (Cy), 159.1 (Cy), 157.4 (C)), 157.2 (C)), 157.1 (C)), 156.8 (C)), 155.9
(Ca), 155.7 (Ca), 155.4 (Ca), 152.9 (Cy), 148.7 (C,), 142.2 (Cr), 142.1 (Cy), 142.0 (Ch), 140.1
(Ce), 140.0 (Cv), 137.4 (C,),133.3 (Cu), 132.5 (C»), 130.8 (Co), 129.1, (Cy), 128.9 (Cy), 128.8
(Cb), 128.8 (Cy), 128.8 (Cb), 125.9 (Cu), 125.8 (Ca), 125.6 (Ca), 125.0 (Cg), 124.9 (Cy), 124.8
(Cq), 124.7 (Cy), 124.6 (Ci), 124.6 (C)), 123.5 (Cs), 120.6 (Cm), 120.5 (Cm), 96.9 (C)), 96.8 (C),
96.8 (C)), 96.7 (C)), 86.2 (Cx), 86.2 (Cx), 86.1 (Ci), 86.1 (Cx).
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HRMS (ESI, CHsCN) m/z: 488.6327 [Fe-2c]?*.
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Figure S163. *C NMR spectrum (126 MHz, CDsCN, 298 K) of Fe-2c.
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Figure S164. *H-'H COSY NMR spectrum (500 MHz, CDsCN, 298 K) of Fe-2c.
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Figure S165. *H-13C HSQC NMR spectrum (500 MHz/126 MHz, CDsCN, 298 K) of Fe-2c.
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Figure S166. *H-1*C HMBC NMR spectrum (600 MHz/126 MHz, CDsCN, 298 K) of Fe-2c.

S128



100 L Observed
[Fe-2c]** =
80-
4886327 70: 489,133
60—
5[!:
Aﬂ:
]I);
< 489 6347
20—
1 LTRSS 490,1367 4906385
- - 1 Il . 4916361
487 488 489 490 491 492
100 =sn  Theoretical
S'):
3'):
70 489,1350
£ o
3 s
E 4'3:
)'):
4 489.6367
20—
voj 487 6357 4901384 1005401
T “ T - T T T ) T T T T T
487 488 489 490 491 492
[WR It Il
I ' | i I ! |
m/z

Figure S167. High resolution ESI mass spectrum of Fe-2c showing in the insets the observed
and theoretical isotope patterns.

8.8 Complex Co-2c

mer

n “q
ZoN

Cobalt bis(trifluoromethylsulfonyl)imide (3.58 mg, 5.18 pymol) and 5-(quinolin-6-ylethynyl)-2,2'-
bipyridine (2c) (5.21 mg, 15.5 ymol) were dissolved in CD3sCN (0.5 mL).

IH NMR (600 MHz, CDsCN, 298 K) & (ppm): 104.6 (br, 1H, Hay), 101.1 (br, 1H, Hay), 92.8 (br,
1H, Haj), 90.3 (br, 1H, Hay), 89.9 (s, 1H, Ha1), 87.8 (s, 1H, Hay), 86.3 (br, 1H, Haj), 85.6 (s, 2H,
Hguas), 83.7 (S, 1H, Hgz), 82.9 (s, 1H, Harac), 81.3 (S, 1H, Hgs), 80.3 (br, 1H, Hay), 78.8 (s, 1H,
Hgtac), 78.1 (br, 1H, Haj), 52.2 (S, 1H, Ha1), 51.5 (s, 1H, Ha), 46.2 (s, 1H, Has), 45.8 (s, 1H,
Hotac), 18.1 (S, 1H, Het), 17.1 (S, 1H, Hez), 15.8 (s, 1H, Hna), 14.9 (s, 1H, Hnz), 14.5 (s, 1H, Hea),
13.4 (s, 1H, Hetae), 12.3 (S, 1H, His), 11.4 (s, 1H, Hhtac), 7.2-6.2 (M, 2H, Hnw), 5.4 (d, 1H, Hou),
5.0 (d, 1H, Hnw), 4.2 (d, 1H, Ho), 3.9 (d, 1H, Hn.).

Note: While it was possible to assign the proton signals within one spin system (indicated by
numbers) based on the COSY spectrum, the different spin systems within each ligand could
not be correlated to a particular ligand environment. For the signals of the bipyridine, the fac
isomer was, therefore, tentatively assigned based on the integral of the signals. The three
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remaining sets of signals corresponding to the mer isomer were arbitrarily labelled with black,
red, and blue labels according to their decreasing chemical shift. Protons corresponding to the
R substituent were tentatively assigned in grey due to the signal overlap in the diamagnetic
region of the spectra.!

13C NMR (151 MHz, CDsCN, 298 K) d (ppm): 696.1 (s), 694.4 (s), 694.1 (s), 690.8, 607.6 (s)
(unresolved d, Cy1), 605.6 (unresolved d, Cps), 604.9 (unresolved d, Cy,), 601.5 (unresolved
d, Coiac) 424.1 (d, 1J = 167 Hz, Cgs), 421.6 (overlapping d, Cg1,43), 420.3 (overlapping d, Ca1),
417.4 (overlapping d, Cgtac), 415.6 (overlapping d, Cg2), 413.4 (overlapping d, Ca2,dfac), 196.3
(d, 1J = 165 Hz, Cc2), 191.2 (d, 1J = 161 Hz, C,), 185.2 (s), 184.3 (s), 182.6 (d, 1J = 164 Hz,
Cefac), 180.1 (s), 179.5 (s), 178.2 (unresolved d, C¢3), 174.5 (unresolved d, Cpz), 170.5
(unresolved d, Chi1), 160.2 (d, 1J = 163 Hz, Chtac), 156.4 (d, 1J = 169 Hz, Cps), 154.5-142.7
(overlapping signals), 153.2-147.8 (overlapping signals), 131.8-138.4 (overlapping signals,
Ch-u), 135.3-120.4 (overlapping signals, Cn.u), 74.4 (unresolved d, Cy;), 67.0 (unresolved d,
Caj), 35.9 (unresolved d, Ca), 28.3 (unresolved d,Caj), -114.1 (S, Cer), -114.7 (s, Cer), -139.0
(S, Ce/f), -139.6 (S, Ce/f), -146.1 (S, Ce/f), -169.6 (S, Ce/f), -170.1 (S, Ce/f).

Note: Quaternary carbons and carbons close to the paramagnetic center (a and j) could not
be unambiguously assigned due to the lack of HMBC equivalent in the paramagnetic NMR
toolbox. Carbons a, j, e and f are assigned based on related complexes.!

HRMS (ESI, CHsCN) m/z: 1261.1841 [Co-2¢c +NTf]'*, 953.0696 [Co-2¢c -1(2c) +NTf]%,
490.1316 [Co-2c]?*, 336.5760 [Co-2¢ -1(2¢)]2".
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Figure S168. *H NMR spectrum (600 MHz, CDsCN, 298 K) of complex Co-2c.
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Figure S169. C NMR spectrum (151 MHz, CDsCN, 298 K) of complex Co-2c.
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Figure S170. C NMR spectrum (151 MHz, CDsCN, 298 K) of complex Co-2c.
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Figure S171. *H-'H COSY NMR spectrum (600 MHz, CD3CN, 298 K) of complex Co-2c.
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Figure S172. *H-1*C HMQC NMR spectrum (600 MHz/151 MHz, CDsCN, 298 K) of Co-2c.
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Figure S173. *H-1*C HMQC NMR spectrum (600 MHz/151 MHz, CDsCN, 298 K) of Co-2c.
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Figure S174. High resolution ESI mass spectrum of Co-2¢ showing in the insets the observed
and theoretical isotope patterns.
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Figure S175. *H NMR spectra (500 MHz, CDsCN, 298 K) of: Zn-CPOne-1a before (bottom)
and after irradiation with 365 nm for 1 minute (middle); the reference complex Zn-2a (top).

S135



0.9 -
Zn-CPone-1a
Zn-CPone-1a 365 nm
Zn-2a

0.8

0.7 S
0.6
0.5 1

0.4 -

Absorbance (a.u.)

0.3
0.2 S

0.1 1

0.0 , . ;
300 400
Wavelength (nm)

Figure S176. UV/vis spectra (CHsCN, 298 K) of: Zn-CPOne-1a (2.47 uM) before (black) and
after irradiation with 365 nm for 1 minute (red); reference complex Zn-2a (blue, 8.28 uM).

Figure S177. NMR sample of Zn-CPOne-la: a) at the start of and b) after irradiation with
365 nm for 1 min showing the change in fluorescence following irradiation.
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Figure S178. *H NMR spectra (500 MHz, CDsCN, 298 K) of: Zn-CPOne-1b before (bottom)
and after irradiation with 365 nm for 1 minute (middle); reference complex Zn-2b (top).
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Figure S179. UV/vis spectra (CH3CN, 298 K) of: Zn-CPOne-1b (1.62 pM) before (black) and
after irradiation with 365 nm for 1 minute (red); reference complex Zn-2b (blue, 5.43 pM).
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Figure S180. 'H NMR spectra (500/600 MHz, CDsCN, 298 K) of: Fe-CPOne-la before
(bottom) and after irradiation with 365 nm for 1-20 minutes; reference complex Fe-2a (top).
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Figure S181. UV/vis spectra (CH3CN, 298 K) of: Fe-CPOne-1a (2.10 uM) before (black) and
after irradiation with 365 nm for 1 minute (red); reference complex Fe-2a (blue, 5.65 uM).

a) b)

Figure S182. NMR sample of Fe-CPOne-1a: a) before and b) after irradiation at 365 nm for
20 minutes.
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Figure S183. 'H NMR spectra (500/600 MHz, CD3CN, 298 K) of: Fe-CPOne-1b before
(bottom) and after irradiation with 365 nm for 1 and 20 minutes; reference complex Fe-2b

(top).
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Figure S184. UV/vis spectra (CH3CN, 298 K) of: Fe-CPOne-1b (1.66 uM) before (black) and
after irradiation with 365 nm for 1 minute (red); reference complex Fe-2b (blue, 3.89 uM).
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9.5 Fe-CPOne-1c
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Figure S185. 'H NMR spectra (500/600 MHz, CDsCN, 298 K) of: Fe-CPOne-1c measured
immediately after preparation without irradiation (bottom), after standing for 1 d in the dark
before and after irradiation with 365 nm for 20 min (middle spectra); reference complex Fe-2¢
(top). Note: Signals marked with * have been tentatively assigned as free ligand.
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Figure S186. 'H NMR spectra (500/600 MHz, CDsCN, 298 K) of: Fe-CPOne-1c measured
immediately after preparation before (bottom) and after irradiation with 365 nm for 20 min
(middle); reference complex Fe-2c (top).
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Figure S187. UV/vis spectra (CHs:CN, 298 K) of: Fe-CPOne-1c (7.97 pM) measured
immediately after preparation before (black) and after irradiation with 365 nm for 1 minute
(red); reference complex Fe-2c¢ (blue, 3.12 pM).
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9.6 Co-CPOne-la
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Figure S188. 'H NMR spectra (500/600 MHz, CDsCN, 298 K) of: Co-CPOne-la before
(bottom) and after irradiation 365 nm for 1 and 4 minutes; reference complex Co-2a (top).
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Figure S189. UV/vis spectra (CHsCN, 298 K) of: Co-CPOne-la (0.74 pM) measured
immediately after preparation before (black) and after irradiation with 365 nm for 1 minute
(red); reference complex Co-2a (blue, 4.50 uM).
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Figure S190. *H NMR spectra (500/600 MHz, CDsCN, 298 K) of: Co-CPOne-1b before
(bottom) and after irradiation 365 nm for 4 minutes (middle); reference complex Co-2b (top).
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Figure S191. UV/is spectra (CHsCN, 298 K) of: Co-CPOne-1b (3.36 pM) measured
immediately after preparation before (black) and after irradiation with 365 nm for 1 minute
(red); reference complex Co-2b (blue, 3.36 uM).
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fac + mer

365 nm 4 min.___,___J__L_,l_M_L\L¥

after 1 d in the dark

free
ligand
nu

T T T T T T T T T T T T T T T T T T r T T
100 80 60 40 20 [ppmlo

fac + mer

Figure S192. *H NMR spectra (500/600 MHz, CDsCN, 298 K) of: Co-CPOne-1c measured
immediately after preparation without irradiation (bottom), after standing for 1 d in the dark
before and after irradiation with 365 nm for 4 min. (middle); reference complex Co-2c (top).
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Figure S193. *H NMR spectra (500/600 MHz, CDsCN, 298 K) of: Co-CPOne-1c measured
immediately after preparation before (bottom) and after irradiation 365 nm for 4 min. (middle);
reference complex Co-2c (top).
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Figure S194. UVlis spectra (CH3CN, 298 K) of: Co-CPOne-1c (7.45 yM) measured
immediately after preparation before (black) and after irradiation with 365 nm for 1 minute
(red); reference complex Co-2c (blue, 2.14 uM).
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