Supporting Information for

Differences in Chemoselectivity in Olefin Oxidation by a series of Mn^{IV} – oxo Complexes

Priya Singh, ^a Melissa C. Denler, ^a Jaycee R. Mayfield, ^a and Timothy A. Jackson*^a

^a The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.

Figure S1. Plot of the pseudo-first-order rate constant (k_{obs}) against substrate concentration for the reaction between $[Mn^{IV}(O)(2pyN2Q)]^{2+}$ (2) and cyclohexene in TFE for substrate dissolved in CH₂Cl₂.

Figure S2. Electronic absorption spectra showing the reaction of 1.0 mM $[Mn^{IV}(O)(2pyN2Q)]^{2+}$ (2) with 200 µL MeCN (~1740 equiv.) in TFE at 25 °C. Inset: decay of the feature at 1020 nm (k_{obs} = 1.9(3) x 10⁻³ s⁻¹) and the growth of the feature at 620 nm (k_{obs} = 1.5(2) x 10⁻³ s⁻¹).

Figure S3. Electronic absorption spectra of reaction of 1.0 mM $[Mn^{IV}(O)(N2py2Q)]^{2+}$ (2) with 40 equiv. cylcohexene-d₁₀ in TFE. Inset: decay of the feature at 1020 nm (k_{obs} = 7.8(6) × 10⁻³ s⁻¹) and the growth of the feature at 620 nm (k_{obs} = 4.7(2) × 10⁻³ s⁻¹).

Figure S4. ²H NMR spectrum of the product of the reaction of cyclohexene-d₁₀ with $[Mn^{IV}(O)(N2py2Q)]^{2+}$ (2) in CF₃CH₂OH/CH₃CN ($\nu/\nu = 19:1$) at 298 K. The signals have been referenced to CDCl₃. The asterisk indicates excess cyclohexene-d₁₀ and the stars indicate cyclohexene oxide-d₁₀.

Figure S5. Electronic absorption spectra of the reaction of 1.0 mM [Mn^{IV}(O)(N2py2Q)]²⁺ (**2**) and 1.0 mM [Mn^{II}(N2py2Q)]²⁺ in TFE at 298 K. Inset: decay of the feature at 1020 nm (k_{obs} = 1.1(2) $\times 10^{-3}$ s⁻¹) and the growth of the feature at 620 nm (k_{obs} = 1.1(3) $\times 10^{-3}$ s⁻¹).

Figure S6. Comparison of second-order rate constants obtained for the reactions of 9,10-dihydroanthracene (DHA) and Mn^{IV} – oxo adducts in TFE at 298 K.

Figure S7. Comparison of second-order rate constants obtained for the reactions of thioanisole and Mn^{IV} – oxo adducts in TFE at 298 K.

Computational details

The Bordwell equation (main article, equation 3) used to calculate $Mn^{III}O-H$ BDFE for **1-4** consist of the term C_G (free energy constant). This term represents the solvent dependence of the BDFE values as both the reduction potential and p*K*_a terms in the Bordwell equation are highly influenced by the identity of the solvent. Ideally, we would include a C_G value for TFE, which is the solvent used for all the experimental data. However, we are unaware of a C_G value for this solvent. Consequently, while we employed the C_G value for acetonitrile (52.6)¹ to determine absolute BDFEs, we will discuss Δ BDFEs relative to **1**.

The $E_{1/2}$ of Mn^{IV/III} couples was calculated using equation 4 and 5, based on the isodesmic reaction model between Mn^{IV}-oxo complexes and 1 (scheme S1a) where experimental Mn^{IV/III} reduction potential of 1 was used as reference to account for systematic errors. Similarly, experimentally known p K_a of [Mn^{IV}(OH)₂(Me₂EBC)]²⁺ was used as reference to calculate p K_a values of 1-4 for the reaction shown in scheme S1b using the equation 4 and 6. These results have been summarized in Table S1.

$$E_{rxn} = products - reactants$$
 ... Equation 4

$$E_{1/2,calc}(V) = \frac{E_{rxn,2a}}{23.06 V} + E_{1/2,exp}(V) \qquad \dots \text{ Equation 5}$$

$$pK_{a,calc} = \frac{E_{rxn,2b} + pK_{a,exp}(kcal \ mol^{-1})}{1.37} \qquad \dots \text{ Equation 6}$$

Scheme S1. a) Isodesmic reaction between Mn^{IV} -oxo complexes (1-4) and 1 for determination of reduction potential of 1-4; b) Model reaction for determination of pK_a of 1-4 using $[Mn^{IV}(OH)_2(Me_2EBC)]^{2+}$ reference.

Figure S8. DFT computed structures of Mn^{IV} -oxo complexes **1-4** with axial (N_{ax} -Mn-O) angle distortion displayed.

Table S1. DFT calculated free energy of the reaction between Mn^{IV}-oxo species and dimethyl sulfide (DMS).

Complexes	$[Mn^{IV}(O)(N4py)]^{2+}$	$[Mn^{IV}(O)(N2py2Q)]^{2+}$	[Mn ^{IV} (O)(N2py2B)] ²⁺	$[Mn^{IV}(O)(^{DMM}N4py)]^{2+}$
	(1)	(2)	(3)	(4)
ΔG_{DFT}	-19.34	-22.96	-18.86	-14.93

Table S2. DFT calculated values of pK_a , $E_{1/2}$ and $Mn^{III}O-H$ BDFEs.

Complexes	pK _a	$\mathbf{E}_{P,C}$	ABDFE	BDFE
$[Mn^{III}(OH)(N4py)]^{2+}$	18.35	0.80	0.00	98.49
$[Mn^{III}(OH)(N2py2Q)]^{2+}$	17.42	1.05	4.42	102.91
$[Mn^{III}(OH)(^{DMM}N4py)]^{2+}$	18.73	0.71	-1.58	96.91
$[Mn^{III}(OH)(N2py2B)]^{2+}$	20.54	0.55	-2.73	95.75

Table S3. Summary of DFT calculated electronic energies, entropies and free energies of the species discussed in this work.

Complexes	Electronic Energy kcal/mol	Zero Point Energy kcal/mol	ΔH ⁱ = Electronic + ZPE	vib	rot	trans	G
$[Mn^{IV}(O)(N4py)]^{2+}(1)$	-1498773.64	256.58	-1498517.06	21.53	10.56	13.16	-1498562.31
$[Mn^{IV}(O)(N2py2Q)]^{2+}$ (2)	-1691572.90	315.54	-1691257.36	27.34	10.96	13.34	-1691309.00
$[Mn^{IV}(O)(N2py2B)]^{2+}$ (3)	-1713226.36	328.09	-1712898.27	30.55	11.00	13.35	-1712953.17
$[Mn^{IV}(O)(^{DMM}N4py)]^{2+}$ (4)	-1741171.40	365.81	-1740805.59	36.11	11.10	13.36	-1740866.16
$[Mn^{III}(OH)(N4py)]^{2+}$	-1499327.12	261.81	-1499065.31	23.85	10.6	13.16	-1499112.92
$[Mn^{III}(OH)(N2py2Q)]^{2+}$	-1692124.74	321.01	-1691803.73	29.46	10.99	13.34	-1691857.52
$[Mn^{III}(OH)(N2py2B)]^{2+}$	-1713777.93	333.31	-1713444.62	32.89	11.04	13.35	-1713501.90
$[Mn^{III}(OH)(^{DMM}N4py)]^{2+}$	-1741714.81	369.97	-1741344.84	39.85	11.13	13.37	-1741409.19
$[Mn^{II}(TFE)(N4py)]^{2+}$	-1735747.62	289.68	-1735457.94	31.50	10.92	13.31	-1735513.67
[Mn ^{II} (TFE)(N2py2Q)] ²⁺	-1928550.81	348.48	-1928202.33	36.95	11.22	13.47	-1928263.97
[Mn ^{II} (TFE)(N2py2B)] ²⁺	-1950199.97	360.74	-1949839.23	40.08	11.26	13.48	-1949904.05
[Mn ^{II} (TFE)(^{DMM} N4py)] ²⁺	-1978140.37	398.67	-1977741.70	46.55	11.36	13.49	-1977813.10
TFE	-284134.17	35.83	-284098.34	3.08	7.89	11.84	-284121.15
DMSO	-347117.04	49.53	-347067.51	2.73	7.42	11.62	-347089.28
DMS	-299926.75	47.17	-299879.58	2.11	7.03	11.42	-299900.14

 $\label{eq:Angle O-Mn-N_axial} \mbox{Figure S9.} A \mbox{ correlation between } Mn^{IV} \mbox{=} O \mbox{ BDFE and distortion of the axial angle (O-Mn-N_{ax}) from ideal value of 180°.}$

Reference:

1. S. V. Lymar, M. Z. Ertem and D. E. Polyansky, *Dalton Transactions*, 2018, **47**, 15917-15928.