Supporting Information for

Differences in Chemoselectivity in Olefin Oxidation by a series of $\mathbf{M n}^{\text {IV }}$ - oxo Complexes

Priya Singh, ${ }^{a}$ Melissa C. Denler, ${ }^{a}$ Jaycee R. Mayfield, ${ }^{a}$ and Timothy A. Jackson* ${ }^{a}$
${ }^{a}$ The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.

Figure S1. Plot of the pseudo-first-order rate constant (kobs) against substrate concentration for the reaction between $\left[\mathrm{Mn}^{\mathrm{IV}}(\mathrm{O})(2 \mathrm{pyN} 2 \mathrm{Q})\right]^{2+}(\mathbf{2})$ and cyclohexene in TFE for substrate dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S2. Electronic absorption spectra showing the reaction of 1.0 mM $\left[\mathrm{Mn}^{\mathrm{IV}}(\mathrm{O})(2 \mathrm{pyN} 2 \mathrm{Q})\right]^{2+}(\mathbf{2})$ with $200 \mu \mathrm{~L} \mathrm{MeCN}(\sim 1740$ equiv.) in TFE at $25^{\circ} \mathrm{C}$. Inset: decay of the feature at $1020 \mathrm{~nm}\left(\mathrm{k}_{\mathrm{obs}}=1.9(3) \times 10^{-3} \mathrm{~s}^{-1}\right)$ and the growth of the feature at $620 \mathrm{~nm}\left(\mathrm{k}_{\mathrm{obs}}=1.5(2) \times 10^{-3} \mathrm{~s}^{-1}\right)$.

Figure S3. Electronic absorption spectra of reaction of 1.0 mM $\left[\mathrm{Mn}^{\mathrm{IV}}(\mathrm{O})(\mathrm{N} 2 \mathrm{py} 2 \mathrm{Q})\right]^{2+}(\mathbf{2})$ with 40 equiv. cylcohexene- d_{10} in TFE. Inset: decay of the feature at $1020 \mathrm{~nm}\left(\mathrm{k}_{\mathrm{obs}}=7.8(6) \times 10^{-3} \mathrm{~s}^{-1}\right)$ and the growth of the feature at $620 \mathrm{~nm}\left(\mathrm{k}_{\mathrm{obs}}=4.7(2) \times 10^{-3} \mathrm{~s}^{-1}\right)$.

Figure S4. ${ }^{2} \mathrm{H}$ NMR spectrum of the product of the reaction of cyclohexene- d_{10} with $\left[\mathrm{Mn}^{\mathrm{IV}}(\mathrm{O})(\mathrm{N} 2 \mathrm{py} 2 \mathrm{Q})\right]^{2+}(2)$ in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{CH}_{3} \mathrm{CN}(v / v=19: 1)$ at 298 K . The signals have been referenced to CDCl_{3}. The asterisk indicates excess cyclohexene- d_{10} and the stars indicate cyclohexene oxide- d_{10}.

Figure S5. Electronic absorption spectra of the reaction of 1.0 $\mathrm{mM}\left[\mathrm{Mn}^{\mathrm{IV}}(\mathrm{O})(\mathrm{N} 2 \mathrm{py} 2 \mathrm{Q})\right]^{2+}(2)$ and $1.0 \mathrm{mM}\left[\mathrm{Mn}^{\mathrm{II}}(\mathrm{N} 2 \mathrm{py} 2 \mathrm{Q})\right]^{2+}$ in TFE at 298 K . Inset: decay of the feature at 1020 nm (kobs $=1.1(2)$ $\left.\times 10^{-3} \mathrm{~s}^{-1}\right)$ and the growth of the feature at $620 \mathrm{~nm}\left(\mathrm{k}_{\mathrm{obs}}=1.1(3) \times\right.$ $10^{-3} \mathrm{~s}^{-1}$).

Figure S6. Comparison of second-order rate constants obtained for the reactions of 9,10 -dihydroanthracene (DHA) and $\mathrm{Mn}^{\mathrm{IV}}$ - oxo adducts in TFE at 298 K .

Figure S7. Comparison of second-order rate constants obtained for the reactions of thioanisole and $\mathrm{Mn}^{\text {IV }}$ - oxo adducts in TFE at 298 K .

Computational details

The Bordwell equation (main article, equation 3) used to calculate $\mathrm{Mn}^{\mathrm{III}} \mathrm{O}-\mathrm{H}$ BDFE for $\mathbf{1 - 4}$ consist of the term C_{G} (free energy constant). This term represents the solvent dependence of the BDFE values as both the reduction potential and $\mathrm{p} K_{\mathrm{a}}$ terms in the Bordwell equation are highly influenced by the identity of the solvent. Ideally, we would include a C_{G} value for TFE, which is the solvent used for all the experimental data. However, we are unaware of a C_{G} value for this solvent. Consequently, while we employed the C_{G} value for acetonitrile (52.6) ${ }^{1}$ to determine absolute BDFEs, we will discuss \triangle BDFEs relative to 1 .

The $E_{1 / 2}$ of $\mathrm{Mn}^{\text {IV/III }}$ couples was calculated using equation 4 and 5 , based on the isodesmic reaction model between $\mathrm{Mn}^{\mathrm{IV}}$-oxo complexes and $\mathbf{1}$ (scheme S 1 a) where experimental $\mathrm{Mn}^{\text {IV/III }}$ reduction potential of $\mathbf{1}$ was used as reference to account for systematic errors. Similarly, experimentally known $\mathrm{p} K_{\mathrm{a}}$ of $\left[\mathrm{Mn}^{\mathrm{IV}}(\mathrm{OH})_{2}\left(\mathrm{Me}_{2} \mathrm{EBC}\right)\right]^{2+}$ was used as reference to calculate $\mathrm{p} K_{\mathrm{a}}$ values of $\mathbf{1 - 4}$ for the reaction shown in scheme S 1 b using the equation 4 and 6. These results have been summarized in Table S1.

$$
\begin{array}{ll}
E_{r x n}=\text { products }- \text { reactants } & \ldots \text { Equation } 4 \\
E_{1 / 2, \text { calc }}(V)=\frac{E_{r x n, 2 a}}{23.06 \mathrm{~V}}+E_{1 / 2, \text { exp }}(\mathrm{V}) & \ldots \text { Equation } 5 \\
p K_{a, \text { calc }}=\frac{E_{r x n, 2 b}+p K_{a, \text { exp }}\left(\text { kcal mol }^{-1}\right)}{1.37} & \ldots \text { Equation } 6
\end{array}
$$

Scheme S1. a) Isodesmic reaction between $\mathrm{Mn}^{\mathrm{IV}}$-oxo complexes (1-4) and 1 for determination of reduction potential of 1-4; b) Model reaction for determination of $\mathrm{p} K_{\mathrm{a}}$ of $\mathbf{1 - 4}$ using $\left[\mathrm{Mn}^{\mathrm{IV}}(\mathrm{OH})_{2}(\mathrm{Me} 2 \mathrm{EBC})\right]^{2+}$ reference.

Figure S8. DFT computed structures of $\mathrm{Mn}^{\mathrm{IV}}$-oxo complexes 1-4 with axial ($\mathrm{Nax}_{\mathrm{ax}}-\mathrm{Mn}-\mathrm{O}$) angle distortion displayed.

Table S1. DFT calculated free energy of the reaction between $\mathrm{Mn}^{\mathrm{IV}}$-oxo species and dimethyl sulfide (DMS).

Complexes	$\left[\mathrm{Mn}^{\mathrm{IV}}(\mathrm{O})(\mathrm{N} 4 \mathrm{py})\right]^{2+}$ $(\mathbf{1})$	$\left[\mathrm{Mn}^{\mathrm{IV}}(\mathrm{O})(\mathrm{N} 2 \mathrm{py} 2 \mathrm{Q})\right]^{2+}$ $(\mathbf{2})$	$\left[\mathrm{Mn}^{\mathrm{IV}}(\mathrm{O})(\mathrm{N} 2 \mathrm{py} 2 \mathrm{~B})\right]^{2+}$ $(\mathbf{3})$	$\left[\mathrm{Mn}^{\mathrm{IV}}(\mathrm{O})\left({ }^{\mathrm{DMM}} \mathrm{N} 4 \mathrm{py}\right)\right]^{2+}$ $\mathbf{(4)}$
$\Delta \mathrm{G}_{\text {DFT }}$	-19.34	-22.96	-18.86	-14.93

Table S2. DFT calculated values of $\mathrm{p} K_{\mathrm{a}}, E_{1 / 2}$ and $\mathrm{Mn}^{\mathrm{III}} \mathrm{O}-\mathrm{H}$ BDFEs.

Complexes	$\mathbf{p} \boldsymbol{K}_{\mathbf{a}}$	$\mathbf{E}_{\boldsymbol{P}, \boldsymbol{C}}$	$\mathbf{\Delta B D F E}$	$\mathbf{B D F E}$
$\left[\mathrm{Mn}^{\text {III }}(\mathrm{OH})(\mathrm{N} 4 \mathrm{py})\right]^{2+}$	18.35	0.80	0.00	98.49
$\left[\mathrm{Mn}^{\text {III }}(\mathrm{OH})(\mathrm{N} 2 \mathrm{py} 2 \mathrm{Q})\right]^{2+}$	17.42	1.05	4.42	102.91
$\left[\mathrm{Mn}^{\text {III }}(\mathrm{OH})\left({ }^{\mathrm{DMM}} \mathrm{N} 4 \mathrm{py}\right)\right]^{2+}$	18.73	0.71	-1.58	96.91
$\left[\mathrm{Mn}^{\text {III }}(\mathrm{OH})(\mathrm{N} 2 \mathrm{py} 2 \mathrm{~B})\right]^{2+}$	20.54	0.55	-2.73	95.75

Table S3. Summary of DFT calculated electronic energies, entropies and free energies of the species discussed in this work.

Complexes	Electronic Energy kcal/mol	Zero Point Energy kcal/mol	$\Delta \mathbf{H}^{\dagger}=$ Electronic $+\mathbf{Z P E}$	vib	rot	trans	G
$\left[\mathrm{Mn}^{\mathrm{IV}}(\mathrm{O})(\mathrm{N} 4 \mathrm{py})\right]^{2+}(\mathbf{1})$	-1498773.64	256.58	-1498517.06	21.53	10.56	13.16	-1498562.31
$\left[\mathrm{Mn}^{\text {IV }}(\mathrm{O})(\mathrm{N} 2 \mathrm{py} 2 \mathrm{Q})\right]^{2+}$ (2)	-1691572.90	315.54	-1691257.36	27.34	10.96	13.34	-1691309.00
$\left[\mathrm{Mn}^{\mathrm{IV}}(\mathrm{O})(\mathrm{N} 2 \mathrm{py} 2 \mathrm{~B})\right]^{2+}$ (3)	-1713226.36	328.09	-1712898.27	30.55	11.00	13.35	-1712953.17
$\left[\mathrm{Mn}^{\mathrm{IV}}(\mathrm{O})\left({ }^{\text {DMM }} \mathrm{N} 4 \mathrm{py}\right)\right]^{2+}(4)$	-1741171.40	365.81	-1740805.59	36.11	11.10	13.36	-1740866.16
$\left[\mathrm{Mn}^{\text {III }}(\mathrm{OH})(\mathrm{N} 4 \mathrm{py})\right]^{2+}$	-1499327.12	261.81	-1499065.31	23.85	10.6	13.16	-1499112.92
$\left[\mathrm{Mn}^{\text {III }}(\mathrm{OH})(\mathrm{N} 2 \mathrm{py} 2 \mathrm{Q})\right]^{2+}$	-1692124.74	321.01	-1691803.73	29.46	10.99	13.34	-1691857.52
$\left[\mathrm{Mn}^{\text {III }}(\mathrm{OH})(\mathrm{N} 2 \mathrm{py} 2 \mathrm{~B})\right]^{2+}$	-1713777.93	333.31	-1713444.62	32.89	11.04	13.35	-1713501.90
$\left[\mathrm{Mn}^{\text {III }}(\mathrm{OH})\left({ }^{\mathrm{DMM}} \mathrm{N} 4 \mathrm{py}\right)\right]^{2+}$	-1741714.81	369.97	-1741344.84	39.85	11.13	13.37	-1741409.19
$\left[\mathrm{Mn}^{\mathrm{II}} \text { (TFE)(N4py) }\right]^{2+}$	-1735747.62	289.68	-1735457.94	31.50	10.92	13.31	-1735513.67
$\left[\mathrm{Mn}^{\text {II }} \text { (TFE)(N2py2Q) }\right]^{2+}$	-1928550.81	348.48	-1928202.33	36.95	11.22	13.47	-1928263.97
$\left[\mathrm{Mn}{ }^{\text {II }} \text { (TFE)(N2py2B) }\right]^{2+}$	-1950199.97	360.74	-1949839.23	40.08	11.26	13.48	-1949904.05
$\left[\mathrm{Mn}^{\text {II }} \text { (TFE) }\left({ }^{\text {DMM }} \mathrm{N} 4 \mathrm{py}\right)\right]^{2+}$	-1978140.37	398.67	-1977741.70	46.55	11.36	13.49	-1977813.10
TFE	-284134.17	35.83	-284098.34	3.08	7.89	11.84	-284121.15
DMSO	-347117.04	49.53	-347067.51	2.73	7.42	11.62	-347089.28
DMS	-299926.75	47.17	-299879.58	2.11	7.03	11.42	-299900.14

Figure S9. A correlation between $\mathrm{Mn}^{\mathrm{IV}}=\mathrm{O}$ BDFE and distortion of the axial angle ($\mathrm{O}-\mathrm{Mn}-\mathrm{N}_{\mathrm{ax}}$) from ideal value of 180°.

Reference:

1. S. V. Lymar, M. Z. Ertem and D. E. Polyansky, Dalton Transactions, 2018, 47, 15917-15928.
