Supporting Information

Copper(II) and Zinc(II) Complexation with *N*-Ethylenehydroxycyclams and Consequences on the Macrocyclic Backbone Configuration

Nancy AlHaddad,^{†,[†]} Evan Lelong,^{†,[†]} Jong-Min Suh,[±] Marie Cordier,^c Mi Hee Lim,[±] Guy Royal,[‡] Carlos Platas-Iglesias,[⊥] Hélène Bernard[†] and Raphaël Tripier[†]

⁺ Univ. Brest, UMR CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France. raphael.tripier@univ-brest.fr

[±] Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. miheelim@kaist.ac.kr

^c Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226 \\ F-35000 Rennes, France. Email: marie.dallon@univ-rennes1.fr

[‡] Univ. Grenoble Alpes, Département de Chimie Moléculaire UMR CNRS 5250, 38000 Grenoble, France. guy.royal@univ-grenoble-alpes.fr

¹ Departamento de Química, Facultade de Ciencias & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain. carlos.platas.iglesias@udc.es

These authors combtribyed equally

Table of contents

S	ynthe	esis and characterization of simple and cross-bridged N-ethylenehydroxy-functionalized	
C	yclan	n ligands	2
	1.	Synthesis of 2-(1,4,8,11-tetraazacyclotetradecan-1-yl)ethan-1-ol [TE1EtOH]	2
	2.	Synthesis of 2-(4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecan-1-yl)ethan-1-ol [TE3MeEtOH]	3
	З.	Synthesis of 2-(1,4,8,11-tetraazabicyclo[6.6.2]hexadecan-4-yl)ethan-1-ol [CB-TE1EtOH]	4
	4.	Synthesis of 4-methyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane iodide [CB-TEMeEtOH]	5
S	ynthe	esis and characterization of cyclam complexes with copper(II) and zinc(II)	8
	5.	Characterization of Copper(II) 2-(1,4,8,11-tetraazacyclotetradecan-1-yl)ethan-1-ol dichloride	
	[Cu((TE1EtOH)]Cl₂	8
	6.	Characterization of Zinc(II) 2-(1,4,8,11-tetraazacyclotetradecan-1-yl)ethan-1-ol dichloride	
	[Zn(TE1EtOH)]Cl₂	8
	7.	Characterization of Copper(II) 2-(4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecan-1-yl)ethan-1-	-ol
	dich	loride [Cu(TE3MeEtOH)]Cl₂	9
	8.	Characterization of Zinc(II) 2-(4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecan-1-yl)ethan-1-ol	
	dich	loride [Zn(TE3MeEtOH)]Cl₂	9
	9.	Characterization of Copper(II) 2-(1,4,8,11-tetraazabicyclo[6.6.2]hexadecan-4-yl)ethan-1-ol	
	dich	loride [Cu(CB-TE1EtOH)]Cl₂	9
	10.	Characterization of Zinc(II) 2-(1,4,8,11-tetraazabicyclo[6.6.2]hexadecan-4-yl)ethan-1-ol	
	dich	loride [Zn(CB-TE1EtOH)]Cl2	10
	11.	Characterization of Copper(II) 2-(4-methyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane	
	iodia	de)ethan-1-ol dichloride [Cu(CB-TEMeEtOH)]Cl₂	10

12.	Characterization of Zinc(II) 2-(4-methyl-1,4,8,11 tetraazabicyclo[6.6.2]hexadecane iodide)eth	nan-
1-ol d	ichloride [Zn(CB-TEMeEtOH)]Cl ₂	11
NMR ch	aracterization of cyclam ligands	12
13.	¹ H and ¹³ C NMR characterization of TE1EtOH	12
14.	¹ H and ¹³ C NMR characterization of TE3MeEtOH	13
15.	¹ H and ¹³ C NMR characterization of CB-TEEtOH	14
16.	¹ H and ¹³ C NMR characterization of CB-TEMeEtOH	15
HR-MS	characterization of cyclam ligands	16
NMR Ch	aracterization of cyclam-Zinc(II) complexes	20
17.	1D and 2D NMR characterization of [Zn(TE1EtOH)]Cl ₂	20
18.	1D and 2D NMR characterization of [Zn.TE3MeEtOH]Cl2	24
19.	1D and 2D NMR characterization of [Zn(CB-TE1EtOH)]Cl ₂	27
20.	1D and 2D NMR characterization of [Zn(CB-TEMeEtOH)]Cl ₂	30
DFT cal	culations and results	48
Visible	spectra of copper complexes of TE1EtOH, TE3MeEtOH, CB-TE1EtOH and CB-TEMeEtOH	1 63
Experim	nental and simulated X band EPR spectra of Copper(II) complexes considering the	
presenc	e of one paramagnetic species in solution.	64
Experim	nental and simulated X-band EPR spectra of [Cu(CB-TEMeEtOH)]Cl ₂ considering the	
presend	e of two paramagnetic species in solution.	66
Study o	f Copper(II) complexes dissociation in acidic media	68
Electro	chemical studies of Copper(II) complexes	69

List of figures

Figure S 1. ¹ H (up) and ¹³ C(down) NMR (300 and 75 MHz, CDCl ₃ , 298 K) spectra of TE1EtOH.	12
Figure S2. NMR ¹ H (up) and ¹³ C Jmod (down) (500 and 125 MHz, CDCI ₃ , 298 K) spectra of	
TE3MeEtOH.	13
Figure S3. ¹ H (up) and ¹³ C (down) NMR (500 and 125 MHz, CDCI ₃ , 298 K) spectra of CB-TE1EtOI	H. 14
Figure S4. ¹ H (up) and ¹³ C Jmod (down) NMR (300 and 75 MHz, CDCI ₃ , 298 K) spectra of CB-	
MeTEEtOH.	15
Figure S5. ESI-MS spectrum of [Cu(TE1EtOH)Cl ₂].	16
Figure S6. ESI-MS spectrum of [Zn(TE1EtOH)Cl ₂].	16
Figure S 7. ESI-MS spectrum of [Cu(TE3MeEtOH)Cl ₂].	17
Figure S8. ESI-MS spectrum of [Zn(TE3MeEtOH)Cl ₂].	17
Figure S9. ESI-MS spectrum of [Zn(CB-TE1EtOH)Cl ₂].	18
Figure S10. ESI-MS spectrum of [Cu(CB-TE1EtOH)Cl ₂].	18
Figure S11. ESI-MS spectrum of [Zn(CB-TEMeEtOH)Cl ₂].	19
Figure S12. ESI-MS spectrum of [Cu(CB-TEMeEtOH)Cl ₂].	19
Figure S13. ¹ H (up) and ¹³ C (down) NMR (500 and 125 MHz, D ₂ O, 298 K) spectra of	
[Zn(TE1EtOH)]Cl ₂ .	20
Figure S14. 2D COSY ¹ H- ¹ H NMR (500 MHz, D ₂ O, 298 K) spectrum of [Zn(TE1EtOH)]Cl ₂ .	21
Figure S15. 2D HMBC ¹ H- ¹³ C NMR (500 MHz, 125 MHz, D ₂ O, 298 K) spectrum of [Zn(TE1EtOH)]C)l₂.
	22
Figure S16. 2D HMQC ¹ H- ¹³ C NMR (500 MHz, 125 MHz, D ₂ O, 298 K) spectrum of [Zn(TE1EtOH)]C	CI₂.
	23
Figure S17. ¹ H (up) and ¹³ C (down) NMR (500 and 125 MHz, D ₂ O, 298 K) spectra of	
[Zn(TE3MeEtOH)]Cl ₂ .	24
Figure S18. 2D COSY ¹ H- ¹ H NMR (500 MHz, D ₂ O, 298 K) spectrum of [Zn(TE3MeEtOH)]Cl ₂ .	25
Figure S19. 2D HMQC 1 H- 13 C NMR (500 MHz, 125 MHz, D ₂ O, 298 K) spectrum of	
[Zn(TE3MeEtOH)]Cl ₂ .	26

Figure S20. 2D HMBC 1 H- 13 C NMR (500 MHz, 125 MHz, D ₂ O, 298 K) spectrum of	
[Zn(TE3MeEtOH)]Cl ₂ .	26
Figure S21. ¹ H (up) and ¹³ C Jmod (down) NMR (500 and 125 MHz, D ₂ O, 298 K) spectra of [Zn(CB-	-
TE1EtOH)]Cl ₂	27
Figure S 22. COSY ¹ H- ¹ H NMR (500 MHz, D ₂ O, 298 K) spectrum of [Zn(CB-TE1EtOH)]Cl ₂ .	28
Figure S 23. 2D HMQC 1 H- 13 C NMR (500 MHz, 125 MHz, D ₂ O, 298 K) spectrum of [Zn(CB-	
TE1EtOH)]Cl₂.	28
Figure S 24. 2D HMBC 1 H- 13 C NMR (500 MHz, 125 MHz, D ₂ O, 298 K) spectrum of [Zn(CB-	
TE1EtOH)]Cl₂.	29
Figure S25. ¹ H (up) and ¹³ C Jmod (down) NMR (500 and 125 MHz, D ₂ O, 298 K) spectra of [Zn(CB-	-
TEMeEtOH)]Cl ₂ .	30
Figure S26. 2D COSY ¹ H- ¹ H NMR (500 MHz, D ₂ O, 298 K) spectrum of [Zn(CB-TEMeEtOH)]Cl ₂ .	31
Figure S27. 2D HMQC 1H-13C NMR (500 MHz, 125 MHz, D_2O , 298 K) spectrum of [Zn(CB-	
TEMeEtOH)]Cl ₂ .	31
Figure S28. 2D HMBC 1 H- 13 C NMR (500 MHz, 125 MHz, D ₂ O, 298 K) spectrum of [Zn(CB-	
TEMeEtOH)]Cl ₂ .	32
Figure S 29. Structures of the different isomers of [Zn(TE1EtOH)] ²⁺ optimized with DFT	
calculations (rtpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).	48
Figure S 30. Structures of the Cu(II) complexes optimized with DFT calculations (utpssh/Def2-	
TZVPP; scrf=(pcm,solvent=water)).	49
Figure S31. Visible spectra of [Cu(TE1EtOH)Cl ₂] (black dashed), [Cu(TE3MeEtOH)Cl ₂] (red dashed	ed),
$[Cu(CB-TE1EtOH)Cl_2]$ (blue) and $[Cu(CB-TE1EtOH)Cl_2]$ (purple) recorded in ultra-pure wate	r at
6 mM for complexes' concentration.	63
Figure S32. Experimental (plain lines) and simulated (dashed lines) X-band EPR spectra ($v = 9.3$	31
GHz) of [Cu(TE1EtOH)] ²⁺ , [Cu(TE3MeEtOH)] ²⁺ , recorded at 20 mM in a frozen solution of	
H ₂ O/DMF (1/1) at a 150-152 K.	64

- Figure S33. Experimental (plain lines) and simulated (dashed lines) X-band EPR spectra (v = 9.31 GHz) of [Cu(CB-TE1EtOH)]²⁺ and [Cu(CB-TEMeEtOH)]²⁺ recorded at 20 mM in a frozen solution of H₂O/DMF (1/1) at a 150-152 K. 65
- Figure S34. Experimental (plain lines) and simulated (dashed lines) X-band EPR spectra (v = 9.31 GHz) of [Cu(CB-TEMeEtOH)]²⁺ recorded at 20 mM in a frozen solution of H₂O/DMF (1/1) at a 150-152 K, considering the presence of two species in solution (A & B).
- Figure S35. Visible spectra of acid-mediated dissociation of $[Cu(TE1EtOH)]^{2+}$, $[Cu(TE3MeEtOH)]^{2+}$ (3 mM in 3 M HCl at 25 °C), $[Cu(CB-TE1EtOH)]^{2+}$ and $[Cu(CB-TEMeEtOH)]^{2+}$ (3 mM in 5 M HCl at 70 °C) with a gap time ranging from 10 to 30 minutes. Arrows indicate the changes in absorbance during the experiment on both sides of isobestic points. Exponential curves corresponding to experimental/model fitting of the function $A_{\lambda max} = f(t)$ made on OriginPro9. R² is the adjusting parameter and A_{∞} the asymptote of the exponential model. 68
- Figure S 36. Cyclic voltammograms of [Cu(TE1EtOH)]Cl₂ in DMF + TBAPF₆ (0.1 M). Scan rate 0.1
 V.s⁻¹. *Signals are attributed to redissolution peaks.
 Figure S 37. Cyclic voltammograms of [Cu(CB-TEEtOH)]Cl₂ in DMF + TBAPF₆ (0.1 M). Scan rate 0.1
- V.s⁻¹. *Signals are attributed to redissolution peaks. 69 Figure S 38. Cyclic voltammograms of [Cu(CB-TEMeEtOH)]Cl₂ in DMF + TBAPF₆ (0.1 M). Scan rate 0.1 V.s⁻¹. *Signals are attributed to redissolution peaks. 70

List of Tables

Table S1. Crystallographic data of [Zn(TE1EtOH)CI]CI.	33
Table S2. Cartesian coordinates (Å) of [Zn(TE1EtOH)CI]CI.	35
Table S3. Crystallographic data of [Cu(TE1EtOH)CI]CI.	37
Table S4. Cartesian coordinates (Å) of [Cu(TE1EtOH)CI]CI.	38
Table S5. Crystallographic data of [Zn(TE3MeEtOH)](ZnCl ₄).	41
Table S6. Cartesian coordinates (Å) of [Zn(TE3MeEtOH)](ZnCl₄).	42
Table S7. Crystallographic data of [Cu(TE3MeEtOH)](ClO ₄) ₂ .	43
Table S8. Cartesian coordinates (Å) of [Cu(TE3MeEtOH)](ClO ₄) ₂ .	45
Table S 9. ¹³ C NMR chemical shifts for the central carbon of the propylene units of	
[Zn(TE1EtOH)]Cl ₂ and the values calculated with DFT.	50
Table S 10. Cartesian coordinates of [Zn(TE1EtOH)] ²⁺ (trans-I) optimized with DFT calculations	
(rtpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).	50
Table S 11. Cartesian coordinates of [Zn(TE1EtOH)] ²⁺ (trans-II) optimized with DFT calculations	
(rtpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).	51
Table S 12. Cartesian coordinates of [Zn(TE1EtOH)] ²⁺ (trans-III) optimized with DFT calculations	;
(rtpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).	53
Table S 13. Cartesian coordinates of [Zn(TE1EtOH)] ²⁺ (<i>cis</i> -V) optimized with DFT calculations	
(rtpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).	54
Table S 14. Cartesian coordinates of [Cu(TE1EtOH)] ²⁺ (trans-III) optimized with DFT calculations	3
(utpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).	55
Table S 15. Cartesian coordinates of [Cu(TE3Me1EtOH)] ²⁺ (trans-I) optimized with DFT calculation	ons
(utpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).	56
Table S 16. Cartesian coordinates of [Cu(CB-TE1EtOH)] ²⁺ (<i>cis</i> -V) optimized with DFT calculation	าร
(utpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).	58
Table S 17. Cartesian coordinates of [Cu(CB-TEMeEtOH)] ²⁺ (cis-V) optimized with DFT calculation	ons
(utpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).	59
Table S 1. NMR calculation for EPR-TPSSh of [Cu(CBTE1EtOH)] ²⁺	60

Glossary of the N-ethylene hydroxy-functionalized cyclam series

TE1EtOH: 2-(1,4,8,11-tetraazacyclotetradecan-1-yl)ethan-1-ol

TE3MeEtOH: 2-(4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecan-1-yl)ethan-1-ol

CB-TE1EtOH: 2-(1,4,8,11-tetraazabicyclo[6.6.2]hexadecan-4-yl)ethan-1-ol

CB-TEMeEtOH: 2-(11-methyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecan-4-yl)ethan-1-ol

Synthesis and characterization of simple and cross-bridged *N*-ethylenehydroxyfunctionalized cyclam ligands

1. Synthesis of 2-(1,4,8,11-tetraazacyclotetradecan-1-yl)ethan-1-ol [TE1EtOH]

Compound 2: Bromoethanol (2.25 g, 1.28 mL, 18.0 mmol) was rapidly added to a solution of tri-Boc-cyclam (1.80 g, 3.6 mmol) in CH₃CN (50 mL) with K₂CO₃ (1.00 g, 7.2 mmol) and the mixture was stirred at reflux overnight. The solution was filtered and solvent was removed under reduced pressure. The obtained white foam was dissolved in NaOH solution (4 M, 15 mL) and stirred for 3 hours at room temperature. Aqueous layer was extracted with CHCl₃ (4 x 40 mL). Organic layers were combined, dried over MgSO₄ and evaporated. Compound **2** was then purified on silica column (CH₂Cl₂/AcOEt 50/50 then AcOEt) and was obtained as a white powder (1.76 g, 90 %).

¹³C Jmod NMR (125 MHz, CD₃CN, 343 K): δ = [156.9, 156.8, 156.7] (C_q=O), [80.3, 80.2, 80.1] (<u>C</u>(CH₃)₃), [60.7, 58.7, 55.7, 53.8, 49.1, 48.7, 48.4, 48.3, 47.9, 47.2] (CH₂-α-N, CH₂-α-OH), [29.9, 28.3] (CH₂-β-N), 29.0 ppm (C(<u>C</u>H₃)₃).

¹H NMR (500 MHz, CD₃CN, 298 K): δ = 3.53-3.48 (m, 2H), 3.33-3.27 (m, 10H), 3.22-3.20 (m, 2H), 2.60-2.58 (m, 2H), 2.52-2.49 (m, 2H), 2.45-2.43 (m, 2H), 1.86-1.81 (m, 2H), 1.66-1.63 (m, 2H), 1.43 ppm (s, 27H, C(<u>C</u>H₃)₃).

HRMS (ESI): m/z calcd for C₂₇H₅₃N₄O⁷⁺ [M+H]⁺ 545.3909, found 545.3910.

<u>**TE1EtOH**</u>: Compound **2** (3.70 g, 6.8 mmol) was stirred at reflux 4 h in HCl solution (1 M, 20 mL). After cooling down, aqueous layer was washed with Et_2O to remove organic impurities. At 0 °C, NaOH pellets were added till pH > 12 and aqueous layer was extracted with CHCl₃ (4 x 50 mL). Organic layers were combined, dried over MgSO₄ and evaporated. **TE1EtOH** was obtained as a white solid (1.49 g, 90 %).

¹³**C Jmod NMR (75 MHz, CDCl₃, 298 K)**: δ = [62.5, 58.1, 58.0, 57.5, 51.6, 50.6, 50.4, 49.0, 48.5, 48.1] (CH₂-α-N, CH₂-α-OH), [28.8, 26.6] ppm (CH₂-β-N).

¹H NMR (300 MHz, CDCl₃, 298 K): δ = 3.59-3.56 (m, 2H, CH₂-α-OH), 3.50 (br s, 3H, N-H), 2.81-2.70 (m, 8H), 2.64-2.53 (m, 10H), 1.85-1.69 ppm (m, 4H, CH₂-β-N).

HRMS (ESI): m/z calcd for C₁₂H₂₉N₄O⁺ [M+H]⁺ 245.2336, found 245.2333, calcd for C₁₂H₃₀N₄O²⁺ [M+2H]²⁺ 123.1204, found 123.1202.

 Synthesis of 2-(4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecan-1-yl)ethan-1-ol [TE3MeEtOH]

TE3MeEtOH: **TE1EtOH** (1.00 g, 4.1 mmol) was dissolved in 37 % formaldehyde in water (5.00 mL, 1.50 g, 49.9 mmol) and formic acid (5.00 mL, 6.10 g, 132.0 mmol). The solution was stirred at reflux for 12 days, 1.00 mL of formic acid was added after 4 days and 8 days. The mixture was evaporated under reduced pressure and NaOH solution (4 M, 10 mL) was added. This solution was stirred at reflux for 2 h and alkaline aqueous layer was extracted with CHCl₃ (4 x 40 mL). Organic layers were combined, dried over MgSO₄ and evaporated under reduced pressure.

TE3MeEtOH was purified on silica column (CH₂Cl₂/iPr-NH₂ 98/2 to 96/4) and was obtained as a colorless oil (0.82 g, 70 %).

¹³**C Jmod NMR (125 MHz, CDCl₃, 298 K)**: δ = [61.3, 56.2, 55.9, 55.8, 55.3, 54.7, 52.6, 52.3, 52.2, 50.0] (CH₂-α-N, CH₂-α-OH), [44.0, 43.2, 42.7] (N-CH₃), [25.5, 25.0] ppm (CH₂-β-N).

¹**H NMR (500 MHz, CDCl₃, 298 K)**: δ = 3.46-3.44 (m, 2H, CH₂-α-OH), 2.52-2.32 (m, 18H, CH₂-α-N), 2.17 (s, 3H), 2.13 (s, 3H), 2.12 (m, 3H), 1.64-1.54 ppm (m, 4H, CH₂-β-N).

HRMS (ESI): m/z calcd for C₁₅H₃₅N₄O⁺ [M+H]⁺ 287.2805, found 287.2803, calcd for C₁₅H₃₆N₄O²⁺ [M+2H]²⁺ 144.1439, found 144.1435.

3. Synthesis of 2-(1,4,8,11-tetraazabicyclo[6.6.2]hexadecan-4-yl)ethan-1-ol [CB-TE1EtOH]

<u>**CB-TE1EtOH**</u>: Ethylenehydroxy-tosylate (0.22 g, 1.0 mmol) in CH₃CN (10 mL) was slowly added (20 h with syringe driver) to a solution of **CB-cyclam** (0.23 g, 1.0 mmol) in CH₃CN (200 mL). The mixture was stirred 4 days till all the ethylenehydroxy-tosylate was consumed. Reaction progress was tracked by silica TLC (Thin Layer Chromatography). Solvent was evaporated under reduced pressure, 10 mL of NaOH solution (4 M) was added and aqueous layer was extracted with CHCl₃ (4 x 20 mL). Organic layers were combined, dried over MgSO₄ and solvent was evaporated. **CB-TE1EtOH** was purified (a) on alumina column (CH₂Cl₂/ MeOH 99/1 to 95/5) to obtain beige oil (0.15 mg, 55 %) and (b) by flash chromatography on a C18 column in a mixture of H₂O/CH₃CN (a gradient of 0 to 100% of H₂O) to obtain a beige oil (0.14 mg, 51%).

¹³**C Jmod NMR (75 MHz, CDCl₃, 298 K)**: δ = [61.7, 59.2, 59.0, 55.7, 55.5, 54.9, 53.8, 53.4, 51.9, 51.0, 46.7, 45.0] (CH₂-α-N), [28.7, 22.2] ppm (CH₂-β-N).

¹H NMR (300 MHz, CDCl₃, 298 K): δ = 3.83-3.73 (m, 2H, CH₂-α-OH), 3.54-3.50 (m, 1H), 3.30-3.25 (m, 1H), 2.99-2.37 (m, 22H), 1.90-1.76 (m, 2H), 1.71-1.59 ppm (m, 2H).

HRMS (ESI): m/z calcd for C₁₄H₃₁N₄O⁺ [M+H]⁺ 271.2492, found 271.2493, calcd for C₁₄H₃₂N₄O²⁺ [M+2H]²⁺ 136.1283, found 136.1283.

4. Synthesis of 4-methyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane iodide [CB-TEMeEtOH]

X = Br or Cl or I

<u>Compound 6</u>: To a solution of compound **5** (1.70 g, 2.9 mmol) in ethanol (50 mL), NaBH₄ (1.10 g, 29.2 mmol) was slowly added and the mixture was stirred at reflux 2 days. Solvent was evaporated under reduced pressure and white residue was dissolved in NaOH solution (4 M, 15 mL). The aqueous layer was extracted with CHCl₃ (4 x 40 mL). Organic layers were combined, dried over MgSO₄ and evaporated. Compound **6** was obtained as brown oil (1.35 g, quantitative).

¹³C Jmod NMR (125 MHz, CDCl₃, 298 K): δ = 140.8 (C_q, _{ar}), [128.7, 127.9, 126.3] (CH_{ar}), [59.8, 59.2, 57.7, 56.5, 56.4, 56.0, 55.9, 54.8, 53.9, 52.0, 51.8] (CH₂-α-N), 42.7 (N-CH₃), [27.7, 26.8] ppm (CH₂-β-N).

¹**H NMR (500 MHz, CDCl₃, 298 K):** δ = 7.31-7.22 (m, 5H_{ar}), 4.43 (d, J=14 Hz, 1H), 4.03 (d, J = 14 Hz, 1H), 3.43-3.29 (m, 2H), 3.22-3.14 (m, 1H), 3.10-3.01 (m, 1H), 2.99-2.80 (m, 6H), 2.66-2.57 (m, 2H), 2.50-2.41 (m, 2H), 2.47 (s, 3H), 2.36-2.25 (m, 4H), 2.10-1.97 (m, 3H), 1.81-1.76 (m, 1H), 1.54-1.45 ppm (m, 2H).

HRMS (ESI): *m/z* calcd for C₂₀H₃₅N₄⁺ [M+H]⁺ 331.2856, found 331.2856. m/z calcd for C₁₃H₂₈N₄⁺ [M-Bn+H]⁺ 241.2387, found 241.2386.

<u>**Compound 7**</u>: Compound 6 (1.45 g, 3.2 mmol) was dissolved in methanol (50 mL) with Pd/C 10% (0.80 g, 0.8 mmol). The mixture was stirred at 35 °C under H₂ atmosphere for 7 days. The palladium was removed by filtration on celite and the solvent was evaporated to give compound **7** as brown oil (1.10 g, 95 %).

¹³C Jmod NMR (75 MHz, CDCl₃, 298 K): δ = [58.2, 56.8, 55.4, 54.7, 53.9, 53.4, 51.2, 49.9, 46.4, 44.2] (CH₂-α-N), 44.9 (N-CH₃), [26.7, 22.2] ppm (CH₂-β-N).

¹H NMR (300 MHz, CDCI₃, 298 K): δ = 10.81 (br s, 1H, acidic H), 3.38-3.32 (m, 1H), 3.21-3.16 (m, 1H), 2.97-2.61 (m, 13H), 2.53-2.34 (m, 5H), 2.41 (s, 3H), 1.86-1.50 ppm (m, 4H).

HRMS (ESI): m/z calcd for C₁₃H₂₉N₄⁺ [M+H]⁺ 241.2387, found 241.2386, calcd for C₁₃H₃₀N₄²⁺ [M+2H]²⁺ 121.1229, found 121.1230.

<u>**Compound 8**</u>: A solution of 2-Bromo-1-tert-butyldimethylsilyloxy-ethane (0.24 g, 1.0 mmol) in CH₃CN (10 mL) was slowly added on a solution of **7** (0.20 g, 0.5 mmol) in CH₃CN (20 mL) with K₂CO₃ (0.42 g, 3.0 mmol). Then the solution was stirred at reflux for 3 days. K₂CO₃ was filtered out and solvent was evaporated under reduced pressure. The mixture was purified on silica column (CH₂Cl₂/MeOH.NH₃ (7N) 98/2 to 90/10) to give compound **8** as a brown oil (0.16 g, 73 %).

¹³C Jmod NMR (75 MHz, CDCl₃, 298 K) : δ = [60.1, 58.7, 58.3, 55.9, 55.2, 54.5, 54.2, 54.1, 54.1, 52.3, 50.9, 49.9] (CH₂-α-N, CH₂-α-OH), 42.1 (N-CH₃), 25.7 (C(CH₃)₃), [25.1, 23.3] (CH₂-β-N), 18.1 (Si-C_q), -5.4 ppm (Si-CH₃).

¹H NMR (300 MHz, CDCI₃, 298K) : δ = 3.90-3.82 (m, 1H), 3.78-3.67 (m, 2H), 3.49-3.33 (m, 3H), 3.25-3.20 (m, 1H), 3.17-3.12 (m, 1H), 3.09-3.05 (m, 1H), 3.03-2.92 (m, 7H), 2.86-2.76 (m, 5H), 2.68-2.64 (m, 2H), 2.59-2.55 (m, 1H), 2.34 (s, 3H, CH₃), 1.80-1.77 (m, 2H), 1.64-1.60 (m, 2H), 0.87 (s, 9H, Si-C(CH₃)₃), 0.04 ppm (s, 6H, Si-CH₃).

HRMS (ESI): m/z calcd for $C_{21}H_{47}N_4OSi^+$ [M+H]⁺ 399.3514, found 399.3514, calcd for $C_{21}H_{48}N_4OSi^{2+}$ [M+2H]²⁺ 200.1793, found 200.1798, calcd for $C_{15}H_{32}N_4^{2+}$ [M-OTBDMS]²⁺ 134.1308, found 134.1310.

<u>**CB-TEMeEtOH</u>**: Compound **8** (0.30 g, 0.8 mmol) was dissolved in HCI (3 M, 15 mL) and the mixture was stirred at reflux 2 h. The aqueous layer was washed with Et₂O (3 x 20 mL) and evaporated under reduced pressure. At 0°C, NaOH solution (3 M, 10mL) was added and the aqueous layer was extracted with CHCl₃ (3 x 30mL). Organic layers were combined, dried over MgSO₄ and evaporated under reduce pressure to give **CB-TEMeEtOH** as brown solid (0.16 g, 66 %).</u>

¹³C Jmod NMR (75 MHz, CDCl₃, 298 K): δ = [58.8, 58.7, 57.9, 56.7, 56.4, 54.4, 54.2, 53.5, 53.2, 52.8, 52.3, 51.0] (CH₂-α-N, CH₂-α-OH), 42.2 (N-CH₃), [24.6, 23.7] ppm (CH₂-β-N).

¹H NMR (300 MHz, CDCl₃, 298 K): δ = 3.84-3.63 (m, 3H), 3.34-3.15 (m, 4H), 3.04-2.98 (m, 4H), 2.92-2.87 (m, 2H), 2.81-2.78 (m, 2H), 2.72-2.60 (m, 8H), 2.25 (s, 3H, CH 3), 1.68-1.54 ppm (m, 4H).

HRMS (ESI): m/z calcd for C₁₅H₃₃N₄O⁺ [M+H]⁺ 285.2649, found 285.2651, calcd for C₁₅H₃₄N₄O²⁺ [M+2H]²⁺ 143.1361, found 143.1361.

Synthesis and characterization of cyclam complexes with copper(II) and zinc(II)

 Characterization of Copper(II) 2-(1,4,8,11-tetraazacyclotetradecan-1-yl)ethan-1-ol dichloride [Cu(TE1EtOH)]Cl₂

TE1EtOH (48.9 mg, 0.200 mmol), CuCl₂ (29.6 mg, 0.220 mmol).

Complex was obtained as purple powder (47mg, 60 %).

HRMS (ESI) (positive, H_2O): m/z calcd. for $[C_{12}H_{28}CuN_4O]^{2+}$, 153.5774, found 153.5776 $[Cu(TE1EtOH)]^{2+}$, calcd. for $[C_{12}H_{27}CuN_4O]^+$, 306.1475, found 306.1473 $[Cu(TE1EtOH)-H]^+$.

 Characterization of Zinc(II) 2-(1,4,8,11-tetraazacyclotetradecan-1-yl)ethan-1-ol dichloride [Zn(TE1EtOH)]Cl₂

TE1EtOH (48.9 mg, 0.200 mmol), ZnCl₂ (30.0 mg, 0.220 mmol).

Complex was obtained as white powder (43 mg, 55 %).

HRMS (ESI) (positive, H₂O): *m*/*z* calcd. for [C₁₂H₂₈N₄OZn]²⁺, 154.0772, found 154.0772 [Zn(TE1EtOH)]²⁺, calcd. for [C₁₂H₂₇N₄OZn]⁺, 307.1471, found 307.1408 [Zn(TE1EtOH)-H]⁺.

¹**H NMR (500 MHz, D**₂**O, 298 K)**: complex mixture of 3 forms δ = 4.00-3.83 (mm, 2H, CH₂-α-OH), 3.33-2.43 (m, 18H, CH₂-α-N), 2.0-1.64 ppm (m, 4H, CH₂-β-N).

¹³**C NMR (125 MHz, D₂O, 298 K)**: Isomer 1: δ = [63.0, 61.5, 61.3, 57.5, 53.3, 52.8, 51.8, 50.6, 50.4, 48.4] (CH₂-α-N, CH₂-α-OH), [30.6, 28.2] ppm (CH₂-β-N). Isomer 2: δ = [59.7, 59.0, 57.5, 54.4, 53.7, 52.8, 51.6, 50.8, 48.2, 47.5] (CH₂-α-N, CH₂-α-OH), [27.3, 26.5] ppm (CH₂-β-N). Isomer 3: δ = [59.9, 58.9, 54.5, 54.2, 53.7, 53.5, 51.9, 50.0, 48.7, 48.0] (CH₂-α-N, CH₂-α-OH), [29.9, 26.7] ppm (CH₂-β-N).

 Characterization of Copper(II) 2-(4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecan-1yl)ethan-1-ol dichloride [Cu(TE3MeEtOH)]Cl₂

TE3MeEtOH (57.2 mg, 0.200 mmol), CuCl₂ (29.6 mg, 0.220 mmol).

Complex was obtained as a blue powder (55.4 mg, 64 %).

HRMS (ESI) (positive, H_2O): m/z calcd. for $[C_{15}H_{34}CuN_4O]^{2+}$, 174.6009, found 174.6014 $[Cu(TE3MeEtOH)]^{2+}$, calcd. for $[C_{15}H_{34}CuN_4O]^+$, 349.2023, found 349.2018 $[Cu(TE3MeEtOH)]^+$.

8. Characterization of Zinc(II) 2-(4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecan-1yl)ethan-1-ol dichloride [Zn(TE3MeEtOH)]Cl₂

TE3MeEtOH (57.2 mg, 0.200 mmol), ZnCl₂ (30.0 mg, 0.220 mmol).

Complex was obtained as white powder (61 mg, 70 %).

HRMS (ESI) (positive, H_2O): m/z calcd. for $[C_{15}H_{34}N_4OZn]^{2+}$, 175.1007, found 175.1014 $[Zn(TE3MeEtOH)]^{2+}$, calcd. for $[C_{15}H_{33}N_4OZn]^+$, 349.1940, found 349.1942 $[Zn(TE3MeEtOH)-H]^+$, calcd. for $[C_{15}H_{33}CIN_4OZn]^+$, 385.1707, found 385.1707 $[Zn(TE3MeEtOH)+CI]^+$.

¹**H NMR (500 MHz, D₂O, 298 K)**: δ = 4.15-4.04 (m, 2H, CH₂-α-OH), 3.45 (td, J=13.0, 6.4 Hz, 1H), 3.29-3.20 (m, 7H), 3.12-3.07 (m, 1H), 2.94-2.92 (m, 4H), 2.61 (s, 3H, CH₃), 2.53 (s, 3H, CH₃), 2.51 (s, 3H, CH₃), 2.61-2.51 (m, 5H), 2.43-2.36 (m, 2H, CH₂-β-N), 1.77-1.71 ppm (m, 2H, CH₂-β-N).

¹³**C NMR (125 MHz, D₂O, 298 K)**: δ = [65.0, 64.0, 62.3, 60.1, 59.6, 59.5, 59.1, 53.9, 52.4] (CH₂-α-N), 59.9 (CH₂-α-OH), [48.1, 44.4, 43.6] (N-CH₃), [23.5, 23.1] ppm (CH₂-β-N).

 Characterization of Copper(II) 2-(1,4,8,11-tetraazabicyclo[6.6.2]hexadecan-4-yl)ethan-1-ol dichloride [Cu(CB-TE1EtOH)]Cl₂

CB-TE1EtOH (22 mg, 0.081 mmol), CuCl₂ (13.12 mg, 0.098 mmol).

Complex was obtained as a blue powder (31.3 mg, 95 %).

HRMS (ESI) (positive, H₂O): *m/z* calcd. for [C₁₄H₃₀CuN₄O]²⁺, 166.5852, found 166.5858 [Cu(CB-TE1EtOH)]²⁺, calcd. for [C₁₄H₂₉CuN₄O]⁺, 332.1631, found 332.1635 [Cu(CB-TE1EtOH)-H]⁺, calcd. for [C₁₄H₃₀ClCuN₄O]⁺, 368.1398, found 368.1400 [Cu(CB-TE1EtOH)-Cl]⁺.

10. Characterization of Zinc(II) 2-(1,4,8,11-tetraazabicyclo[6.6.2]hexadecan-4-yl)ethan-1-ol dichloride [Zn(CB-TE1EtOH)]Cl₂

CB-TE1EtOH (16.5 mg, 0.061 mmol), CuCl₂ (10 mg, 0.073 mmol).

Complex was obtained as a beige powder (4.9 mg, 19 %).

HRMS (ESI) (positive, H₂O): m/z calcd. for $[C_{14}H_{30}N_4OZn]^{2+}$, 167.0850, found 167.0856 [Zn(CB-TE1EtOH)]²⁺, calcd. for $[C_{14}H_{29}N_4OZn]^+$, 333.1627, found 333.1629 [Cu(CB-TE1EtOH)-H]⁺, calcd. for $[C_{14}H_{30}CIN_4OZn]^+$, 369.1394, found 369.1397 [Cu(CB-TE1EtOH)-Cl]⁺.

¹H NMR (500 MHz, D_2O , 298 K): $\delta = 4.00-3.93$ (m, 2H), 3.41-3.33 (m, 1H), 3.30-3.24 (m, 1H), 3.14-2.94 (m, 19H), 2.78-2.71 (m, 2H), 2.66-2.62 (dd, 1H), 2.32-2.18 (m, 2H), 1.72-1.67 (m, 1H), 1.62-1.58 (m, 1H) ppm.

¹³**C NMR (125 MHz, D₂O, 298 K)**: δ = [60.9, 59.8, 59.6, 58.6, 58.4, 57.6, 56.9, 51.6, 51.2, 49.2, 48.9, 41.0] (CH₂-α-N and CH₂-α-OH), [23.0, 21.50] ppm (CH₂-β-N).

11. Characterization of Copper(II) 2-(4-methyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane iodide)ethan-1-ol dichloride [Cu(CB-TEMeEtOH)]Cl₂

CB-TEMeEtOH.3HCl (63.5 mg, 0.161 mmol), CuCl₂ (26.0 mg, 0.193 mmol).

Complex was obtained as a blue powder (35.1 mg, 52 %).

HRMS (ESI) (positive, H2O): *m/z* calcd. for [C₁₅H₃₂CuN₄O]²⁺, 173.5931, found 173.5935 [Cu(CB-TEMeEtOH)]²⁺, calcd. for [C₁₅H₃₁CuN₄O]⁺, 346.1788, found 346.1784 [Cu(CB-TEMeEtOH)-H]⁺.

12. Characterization of Zinc(II) 2-(4-methyl-1,4,8,11 tetraazabicyclo[6.6.2]hexadecane iodide)ethan-1-ol dichloride [Zn(CB-TEMeEtOH)]Cl₂

CB-TEMeEtOH.3HCl (63.5 mg, 0.161 mmol), ZnCl₂ (26.4 mg, 0.193 mmol).

Complex was obtained as beige powder (40.0 mg, 59 %).

HRMS (ESI) (positive, H₂O): *m/z* calcd. for [C₁₅H₃₂N₄OZn]²⁺, 174.0928, found 174.0930 [Zn(CB-TEMeEtOH)]²⁺, calcd. for [C₁₅H₃₁N₄OZn]⁺, 347.1784, found 347.1779 [Zn(CB-TEMeEtOH)-H]⁺, calcd. for [C₁₅H₃₂ClN₄OZn]⁺, 383.1551, found 383.1555 [Zn(CB-TEMeEtOH)+Cl]⁺.

¹**H NMR (500 MHz, D**₂**O, 298 K)**: δ = 3.96-3.93 (m, 2H, CH₂-α-OH), 3.37-3.31 (m, 2H), 3.25-3.21 (m, 2 H), 3.12-2.74 (m, 12H), 2.70 (dd, J=13.0, 4.1 Hz, 1H), 2.63 (dd J=15.4, 5.3 Hz, 1H), 2.51 (s, 3H, CH₃), 2.41 (dd, J=15.2, 4.5 Hz, 1H), 2.31-2.22 (m, 2H, CH₂-β-N), 1.72-1.68 (m, 2H, CH₂-β-N).

¹³**C NMR (125 MHz, D₂O, 298 K)**: δ = [63.7, 63.4, 62.6, 62.0, 61.5, 60.8, 58.4, 54.3, 53.8, 53.7, 52.0] (CH₂-α-N), 60.8 (CH₂-α-OH), 51.3 (N-CH₃), [25.8, 25.7] ppm (CH₂-β-N).

NMR characterization of cyclam ligands

Figure S 1. ^1H (up) and $^{13}\text{C}(\text{down})$ NMR (300 and 75 MHz, CDCI₃, 298 K) spectra of TE1EtOH.

14. ¹H and ¹³C NMR characterization of TE3MeEtOH

Figure S2. NMR 1 H (up) and 13 C Jmod (down) (500 and 125 MHz, CDCl₃, 298 K) spectra of TE3MeEtOH.

Figure S3. ^1H (up) and ^{13}C (down) NMR (500 and 125 MHz, CDCl_3, 298 K) spectra of CB-TE1EtOH.

16. ¹H and ¹³C NMR characterization of CB-TEMeEtOH

Figure S4. ^1H (up) and ^{13}C Jmod (down) NMR (300 and 75 MHz, CDCI₃, 298 K) spectra of CB-MeTEEtOH.

HR-MS characterization of cyclam ligands

~	4	
$\overline{}$	Ξ	

Fédération de Recherche Physique et Chimie du Vivant (FR2708 : CBM/ICOA) Plate-forme de Spectrométrie de Masse Haute Résolution

	Analysis Info				Acquisition Date	02/09/2020 10:43:46
	Sample Name	CuTMCNE			Instrument / Ser#	maXis 255552.00086
	Analysis Name	X057278CYC.d			Method	Positif.m
	Acquisition Par	ameter				
	Source Type Scan Begin Scan End	ESI 50 m/z 3000 m/z	Ion Polarity Set Capillary Set Collision Cell	Positive 4500 V RF 1800.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas	0.6 Bar 200 °C 7.0 I/min
Intens. x10 ⁵			0		+MS, 0.31min #18, E	Background Subtracted (#6-8)
	-		2+ 174,6014			
2.5						
2.0						
1.5	-					
1.0	-				349 <mark>,2</mark> 018	
0.5		121.9661	Ť	20	1 0050	384.1690
0.0	1 <u>N</u>	ا الم الم الم الم الم الم		30	1.2300	· · · · · · · · · · · · · · · · · · ·
4	50 10	0 150	200	250	300 350	400 m/z

Figure S 7. ESI-MS spectrum of [Cu(TE3MeEtOH)Cl₂].

Figure S8. ESI-MS spectrum of [Zn(TE3MeEtOH)Cl₂].

0	4	-		-
П		Õ	E	
u		$\overline{}$	-	

Fédération de Recherche Physique et Chimie du Vivant (FR2708 : CBM/ICOA) Plate-forme de Spectrométrie de Masse Haute Résolution

	Analysis Info Sample Name Analysis Name	Cl2 X061724CYC.d			Acquisition Date Instrument / Ser# Method	07/07/2021 17:08:12 maXis 255552.00086 Positif.m
	Acquisition Par	rameter				
	Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.6 Bar
	Scan Begin	50 m/z	Set Capillary	4500 V	Set Dry Heater	200 °C
	Scan End	3000 m/z	Set Collision Cell RF	1800.0 Vpp	Set Dry Gas	7.0 l/min
Intens	1			+	AS, 0.22-0.24min #13-14, B	ackground Subtracted (#5-6)
x10 ⁵	2				1+	
2.0	-				332.1635	
	-					

Figure S10. ESI-MS spectrum of [Cu(CB-TE1EtOH)Cl₂].

Analysis Info Sample Name Analysis Name	CI2 X062771CYC_7545.c	1		Acquisition Date Instrument / Ser# Method	13/10/2021 19:09:25 maXis 255552.0008 Positif.m
Acquisition Pa	rameter				
Source Type Scan Begin Scan End	ESI 50 m/z 3000 m/z	lon Polarity Set Capillary Set Collision Cell RF	Positive 4500 V 1800.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas	0.6 Bar 200 °C 7.0 I/min
ns.			+N	IS, 0.24-0.26min #14-15, B	ackground Subtracted (#7-8
05	2+	6			
2.0-	107,005	0		1- 369 <mark>.1</mark>	397
-					
1.5-					
1.5				1+ 333 .1 629	
1.5				333 <mark>4</mark> 629	1
1.5				1+ 333 . 1629	

Figure S9. ESI-MS spectrum of [Zn(CB-TE1EtOH)Cl₂].

Fédération de Recherche Physique et Chimie du Vivant (FR2708 : CBM/ICOA) Plate-forme de Spectrométrie de Masse Haute Résolution

HRAM

Figure S12. ESI-MS spectrum of [Cu(CB-TEMeEtOH)Cl₂].

NMR Characterization of cyclam-Zinc(II) complexes

Figure S13. ¹H (up) and ¹³C (down) NMR (500 and 125 MHz, D₂O, 298 K) spectra of [Zn(TE1EtOH)]Cl₂.

Figure S14. 2D COSY $^{1}H^{-1}H$ NMR (500 MHz, D₂O, 298 K) spectrum of [Zn(TE1EtOH)]Cl₂.

Figure S15. 2D HMBC 1 H- 13 C NMR (500 MHz, 125 MHz, D₂O, 298 K) spectrum of [Zn(TE1EtOH)]Cl₂.

Figure S16. 2D HMQC 1 H- 13 C NMR (500 MHz, 125 MHz, D₂O, 298 K) spectrum of [Zn(TE1EtOH)]Cl₂.

18. 1D and 2D NMR characterization of [Zn.TE3MeEtOH]Cl₂

Figure S17. ¹H (up) and ¹³C (down) NMR (500 and 125 MHz, D_2O , 298 K) spectra of [Zn(TE3MeEtOH)]Cl₂.

Figure S18. 2D COSY $^{1}H^{-1}H$ NMR (500 MHz, D₂O, 298 K) spectrum of [Zn(TE3MeEtOH)]Cl₂.

Figure S19. 2D HMQC $^{1}H^{-13}C$ NMR (500 MHz, 125 MHz, D₂O, 298 K) spectrum of [Zn(TE3MeEtOH)]Cl₂.

Figure S20. 2D HMBC $^{1}H^{-13}C$ NMR (500 MHz, 125 MHz, D₂O, 298 K) spectrum of [Zn(TE3MeEtOH)]Cl₂.

19. 1D and 2D NMR characterization of [Zn(CB-TE1EtOH)]Cl₂

Figure S21. ^1H (up) and ^{13}C Jmod (down) NMR (500 and 125 MHz, D₂O, 298 K) spectra of [Zn(CB-TE1EtOH)]Cl_2

Figure S 22. COSY $^1\text{H-}{}^1\text{H}$ NMR (500 MHz, D2O, 298 K) spectrum of [Zn(CB-TE1EtOH)]Cl2.

Figure S 23. 2D HMQC $^{1}H^{-13}C$ NMR (500 MHz, 125 MHz, D₂O, 298 K) spectrum of [Zn(CB-TE1EtOH)]Cl₂.

Figure S 24. 2D HMBC 1 H- 13 C NMR (500 MHz, 125 MHz, D₂O, 298 K) spectrum of [Zn(CB-TE1EtOH)]Cl₂.

Figure S25. ¹H (up) and ¹³C Jmod (down) NMR (500 and 125 MHz, D_2O , 298 K) spectra of [Zn(CB-TEMeEtOH)]Cl₂.

Figure S26. 2D COSY ¹H-¹H NMR (500 MHz, D_2O , 298 K) spectrum of [Zn(CB-TEMeEtOH)]Cl₂.

Figure S27. 2D HMQC 1H-13C NMR (500 MHz, 125 MHz, D₂O, 298 K) spectrum of $[Zn(CB-TEMeEtOH)]Cl_2$.

Figure S28. 2D HMBC $^{1}H^{-13}C$ NMR (500 MHz, 125 MHz, D₂O, 298 K) spectrum of [Zn(CB-TEMeEtOH)]Cl₂.

Empirical formula	$C_{12}H_{28}Cl_2N_4OZn$
Formula weight	380 [°] 65 g/mol
Temperature	150(2) K
Radiation type	Mo-Kalpha
Wavelength	0°71073 Å
Crystal system	monoclinic, P 21/n
Unit cell dimensions	a = 6 [°] 8923(4) Å, b = 14 [°] 6166(10) Å, c = 17 [°] 0777(9)
	Å, β = 92 [°] 962(2)°
Volume	1718 [°] 14(18) Å ³
Z, Calculated density	4,1°472 g°cm ⁻³
Absorption coefficient	1°742 mm ⁻¹
F(000)	800
Crystal size	0°350 x 0°210 x 0°130 mm
Crystal color	colorless
Crystal description	prism
θ range for data collection	2°388 to 27°513 °
(sinθ/λ)max (Å-1)	0 [°] 650
h_min, h_max	-8, 8
k_min, k_max	-16, 18
I_min, I_max	-19, 22
Reflections collected / unique	12108 / 3884 [R(int) = 0°0778]
Reflections [I>2sigma(I)]	3066

Table S2. Crystallographic data of [Zn(TE1EtOH)CI]CI.

Completeness to θ max	0 [°] 987
Absorption correction type	multi-scan
Max [°] and min [°] transmission	0°797, 0°520
Refinement method	Full-matrix least-squares on F ²
H-atom treatment	H-atom parameters treated by a mixture of
	independent and constrained refinement
Data / restraints / parameters	3884 / 1 / 184
Goodness-of-fit	1 [°] 067
Final R indices [I>2sigma(I)]	R1 = 0°0708
R indices (all data)	R1 = 0°0901
Largest diff [°] peak and hole	1 [°] 302 and -0 [°] 617 e [°] Å ⁻³

Zn1	0 [°] 49515(8)	0 [°] 29968(4)	0 [°] 15625(3)
Cl1	0 [°] 75344(17)	0 [°] 39979(8)	0°14499(8)
01	0 [°] 5448(8)	0 [°] 3123(3)	0 [°] 4612(3)
H10	0 [°] 551(13)	0 [°] 346(6)	0 [°] 512(3)
N1	0 [°] 4666(7)	0 [°] 2893(3)	0 [°] 2851(3)
N2	0 [°] 2459(6)	0 [°] 3821(3)	0 [°] 1607(2)
H2	0 [°] 130974	0 [°] 34222	0 [°] 147455
N3	0 [°] 4194(6)	0 [°] 2839(3)	0°0337(3)
НЗ	0 [°] 29439	0°249133	0°028655
N4	0 [°] 6394(7)	0 [°] 1759(3)	0°1410(3)
H4	0°780901	0°191376	0 [°] 14388
C1	0 [°] 5800(11)	0 [°] 3846(5)	0 [°] 4081(4)
H1A	0°693575	0 [°] 42065	0 [°] 42824
H1B	0 [°] 465953	0 [°] 425811	0 [°] 40436
C2	0 [°] 6185(9)	0 [°] 3476(4)	0 [°] 3273(4)
H2A	0 [°] 644002	0 [°] 400494	0 [°] 293116
H2B	0°739884	0 [°] 311303	0 [°] 332081
СЗ	0 [°] 2669(9)	0 [°] 3269(4)	0 [°] 2930(3)
НЗА	0 [°] 249553	0°34314	0 [°] 348447
НЗВ	0°169827	0°279466	0°277549
C4	0 [°] 2322(8)	0 [°] 4115(4)	0°2418(3)
H4A	0°102041	0°437417	0 [°] 249784

Table S3. Cartesian coordinates (Å) of [Zn(TE1EtOH)CI]CI.

H4B	0 [°] 331161	0 [°] 458794	0 [°] 255184
С5	0 [°] 2411(7)	0 [°] 4584(3)	0 [°] 1030(3)
H5A	0 [°] 362623	0 [°] 494282	0 [°] 109731
Н5В	0°131164	0 [°] 499592	0°113227
C6	0 [°] 2192(8)	0 [°] 4237(4)	0 [°] 0200(4)
H6A	0 [°] 194125	0 [°] 476773	-0°01511
Н6В	0°10307	0 [°] 383861	0 [°] 015504
C7	0 [°] 3915(9)	0 [°] 3704(4)	-0°0096(3)
H7A	0 [°] 36845	0 [°] 357292	-0°066178
Н7В	0°510728	0 [°] 408022	-0°002953
C8	0 [°] 5731(9)	0 [°] 2245(4)	0 [°] 0049(4)
H8A	0 [°] 696808	0 [°] 258801	0°003843
H8B	0 [°] 536989	0 [°] 203338	-0°048916
C9	0 [°] 5964(8)	0°1432(4)	0 [°] 0600(4)
H9A	0 [°] 47546	0 [°] 106591	0 [°] 057798
Н9В	0 [°] 703587	0°103696	0°043536
C10	0 [°] 6168(9)	0°1024(4)	0 [°] 1992(4)
H10A	0 [°] 712994	0°053599	0 [°] 190591
H10B	0 [°] 485469	0°075354	0 [°] 191572
C11	0 [°] 6445(9)	0°1372(4)	0 [°] 2817(4)
H11A	0°76175	0°176345	0 [°] 285136
H11B	0°669604	0 [°] 084188	0 [°] 316907
C12	0 [°] 4757(9)	0°1914(4)	0 [°] 3119(4)

H12A	0 [°] 352908	0 [°] 160641	0 [°] 294496
H12B	0 [°] 484991	0 [°] 190239	0 [°] 369885
Cl2	0 [°] 10871(19)	0 [°] 15072(10)	0 [°] 13962(9)

Table S4. Crystallographic data of [Cu(TE1EtOH)CI]CI.

Empirical formula	$C_{12}H_{31}Cl_2CuN_4O_2$ 50
Formula weight	405 [°] 85 g/mol
Temperature	150 K
Wavelength	0°71073 Å
Crystal system	monoclinic, C 2/c
Unit cell dimensions	a = 17 [°] 5231(10) Å, b = 9 [°] 0433(5) Å, c = 23 [°] 9772(13) Å,
	$\alpha = 90^{\circ}, \beta = = 105^{\circ}052(2)^{\circ}, \gamma = 90^{\circ}$
Volume	3669°2(4) Å ³
Z, Calculated density	8, 1 [°] 469 g [°] cm ⁻³
Absorption coefficient	1 [°] 494 mm ⁻¹
F(000)	1712
Crystal size	0 [°] 360 x 0 [°] 280 x 0 [°] 100 mm
Crystal color	violet
Crystal description	prism
$\boldsymbol{\theta}$ range for data collection	2°407 to 27°505 °
(sinθ/λ)max (Å-1)	0°65
h_min, h_max	-22, 22
k_min, k_max	-11, 10

I_min, I_max	-31, 31
Reflections collected / unique	24504 / 4151 [R(int) = 0°0705]
Reflections [I>2sigma(I)]	3827
Completeness to θ_max	0°985
Absorption correction type	multi-scan
Max. and min. transmission	0 [°] 861
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4151 / 5 / 215
Goodness-of-fit	1°064
Final R indices [I>2sigma(I)]	R1 = 0°0442
R indices (all data)	R1 = 0°0475
Largest diff. peak and hole	0°520 and -1°197 e°Å ⁻³

Table S5. Cartesian coordinates (Å) of [Cu(TE1EtOH)CI]CI.

Cu1	0.22085(2)	0.02511(3)	0.10689(2)
Cl1	0 [°] 16857(4)	0 [°] 07920(7)	-0 [°] 01050(2)
01	0 [°] 25976(12)	-0°0216(2)	0 [°] 21044(8)
H10	0 [°] 3015(14)	0°032(3)	0 [°] 2346(13)
N1	0 [°] 13955(13)	-0 [°] 1381(2)	0 [°] 10071(9)
H1	0 [°] 143454	-0°174329	0 [°] 14076
N2	0 [°] 15516(13)	0 [°] 1847(2)	0 [°] 13477(9)
N3	0 [°] 30131(13)	0 [°] 1855(2)	0 [°] 10716(9)
НЗ	0 [°] 292745	0 [°] 217199	0°066034

N4	0 [°] 28792(14)	-0°1318(3)	0°08182(10)
H4	0 [°] 27784	-0°119564	0°039076
C1	0 [°] 05577(16)	-0°0963(3)	0°07495(12)
H1A	0°021571	-0°182967	0°075772
H1B	0°049041	-0°068068	0°034064
C2	0 [°] 02946(17)	0 [°] 0315(4)	0 [°] 10681(14)
H2A	0°039669	0 [°] 005082	0 [°] 148161
H2B -	0°028275	0°044849	0 [°] 091492
СЗ	0°07022(16)	0 [°] 1780(3)	0 [°] 10197(13)
НЗА	0°066395	0 [°] 197462	0°060699
НЗВ	0°041377	0 [°] 258048	0 [°] 115988
C4	0 [°] 19083(17)	0 [°] 3265(3)	0 [°] 12016(11)
H4A	0°173811	0 [°] 41022	0°140663
H4B	0°172469	0 [°] 345399	0°078127
C5	0 [°] 28028(17)	0 [°] 3140(3)	0 [°] 13803(11)
H5A	0 [°] 304602	0 [°] 405106	0 [°] 127506
H5B	0°299313	0 [°] 299453	0°180295
C6	0 [°] 38611(16)	0 [°] 1484(3)	0 [°] 12785(12)
H6A	0 [°] 39836	0 [°] 121698	0 [°] 169271
Н6В	0 [°] 418026	0 [°] 236338	0°124052
C7	0 [°] 40893(18)	0°0202(4)	0°09402(14)
Н7А	0°391651	0°043596	0°052299
Н7В	0°467228	0°011125	0°104677

C8	0 [°] 37380(18)	-0 [°] 1275(4)	0 [°] 10418(15)
H8A	0 [°] 397414	-0 [°] 206398	0°085372
H8B	0 [°] 387714	-0 [°] 148157	0°146165
С9	0 [°] 25327(19)	-0 [°] 2776(3)	0°09000(13)
Н9А	0 [°] 268395	-0 [°] 305685	0°13132
Н9В	0 [°] 272454	-0 [°] 354862	0°067721
C10	0 [°] 16392(18)	-0 [°] 2617(3)	0°06851(12)
H10A	0 [°] 148671	-0 [°] 240447	0°026563
H10B	0°137702	-0 [°] 354458	0°07528
C11	0 [°] 16372(17)	0 [°] 1795(3)	0 [°] 19885(11)
H11A	0°11208	0 [°] 20377	0 [°] 206157
H11B	0 [°] 201861	0 [°] 256548	0°217702
C12	0 [°] 19134(18)	0°0314(3)	0 [°] 22660(11)
H12A	0 [°] 203983	0°041583	0 [°] 269128
H12B	0°148105	-0°041712	0°21473
CI2	0 [°] 10664(4)	0 [°] 63306(7)	0 [°] 19944(3)
02	0	0 [°] 4019(4)	0°25
H2O	0°032(2)	0 [°] 467(4)	0 [°] 2351(18)
03	0	0 [°] 8625(4)	0°25
НЗО	0°038(2)	0 [°] 806(5)	0 [°] 238(2)
04	-0°0634(4)	0°1280(6)	0°2033(3)
H4O	-0 [°] 042(6)	0°041(6)	0 [°] 223(4)
Н5О	-0°038(5)	0°215(6)	0 [°] 220(4)

Empirical formula	$C_{15}H_{38}CI_4N_4O_3Zn_2$
Formula weight	595 [°] 03 g/mol
Temperature	150(2) К
Wavelength	0°71073 Å
Crystal system	Orthorhombic, Pbca
Unit cell dimensions	a = 14°919(2) Å, b = 17°057(2) Å, c = 19°439(2) Å
Volume	4946 [°] 7(10) Å ³
Z, Calculated density	8, 1°598 mg/m³
Absorption coefficient	2°394 mm ⁻¹
F(000)	2464
Crystal description	Plate // (1 0 0)
Crystal color	Colorless
Crystal size	0°23 x 0°21 x 0°04 mm
θ range for data collection	3°44 to 26°37°
Limiting indices	-18<=h<=11, -20<=k<=21, -24<=l<=15
Reflections collected / unique	17758 / 5059 [R(int) = 0 [°] 0512]
Completeness to θ = 26.37	99 [°] 80%
Absorption correction	Analytical
Max. and min. transmission	0°9103 and 0°6089
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5059 / 17 / 260
Goodness-of-fit on F ²	1°049

Table S6. Crystallographic data of [Zn(TE3MeEtOH)](ZnCl₄).

Final R indices [I>2sigma(I)]	R1 = 0°0629
R indices (all data)	R1 = 0°0930
Largest diff. peak and hole	0 [°] 894 and -1 [°] 221 e [°] Å ⁻³

Table S7. Cartesian coordinates (Å) of [Zn(TE3MeEtOH)](ZnCl₄).

C1	0.2018(6)	0.2824(5)	0.2299(4)
C2	0 [°] 2985(5)	0 [°] 2552(5)	0 [°] 2161(4)
СЗ	0 [°] 4045(5)	0 [°] 2194(4)	0 [°] 1272(4)
C4	0 [°] 4289(6)	0 [°] 2040(5)	0 [°] 0558(5)
C5	0 [°] 3728(6)	0 [°] 1397(5)	0°0211(4)
C6	0 [°] 2299(6)	0 [°] 0854(5)	-0°0146(4)
C7	0 [°] 1916(5)	0 [°] 0418(4)	0°0452(4)
C8	0 [°] 1116(5)	0 [°] 0527(4)	0 [°] 1533(3)
С9	0 [°] 0618(5)	0 [°] 0979(5)	0 [°] 2051(4)
C10	0 [°] 1154(6)	0 [°] 1639(5)	0 [°] 2389(4)
C11I	0 [°] 0501(12)	0 [°] 2698(12)	0 [°] 1815(11)
C12I	0 [°] 0657(11)	0 [°] 3266(9)	0 [°] 1178(7)
C11J	0 [°] 2789(10)	0 [°] 2253(9)	-0 [°] 0410(8)
C12J	0 [°] 1783(10)	0 [°] 2574(10)	-0°0431(7)
C13	0 [°] 3187(5)	0 [°] 3416(4)	0 [°] 1179(5)
C14I	0 [°] 2561(11)	0 [°] 2150(9)	-0°0507(7)
C14J	0 [°] 0571(12)	0 [°] 2849(11)	0°1775(11)
C15	0 [°] 0452(5)	0 [°] 1058(4)	0°0491(3)

N1	0 [°] 1337(4)	0 [°] 2295(4)	0 [°] 1933(3)
N2	0 [°] 3150(3)	0 [°] 2575(3)	0°1413(3)
N3	0 [°] 2774(4)	0°1624(4)	0 [°] 0082(3)
N4	0 [°] 1306(3)	0 [°] 0940(3)	0°0874(2)
011	0 [°] 1133(6)	0 [°] 2858(5)	0 [°] 0657(5)
01J	0 [°] 1485(7)	0 [°] 2758(6)	0 [°] 0246(5)
Zn1	0 [°] 2010(1)	0 [°] 1998(1)	0 [°] 0981(1)
Cl1	0 [°] 3545(1)	0°0217(1)	0 [°] 1948(1)
Cl2	0 [°] 3213(1)	0°1022(1)	0 [°] 3719(1)
CI3	0 [°] 1849(1)	-0 [°] 0631(1)	0 [°] 3083(1)
Cl4	0 [°] 4307(1)	-0 [°] 0956(1)	0 [°] 3445(1)
Zn2	0 [°] 3256(1)	-0 [°] 0091(1)	0 [°] 3078(1)
02	0 [°] 5347(5)	0 [°] 0199(6)	0°1074(3)
031	0 [°] 1457(8)	0 [°] 3957(7)	-0 [°] 0308(6)
O3J	0 [°] 0928(8)	0 [°] 4193(7)	0 [°] 0216(5)

Table S8. Crystallographic data of [Cu(TE3MeEtOH)](ClO₄)₂.

Empirical formula	$C_{15}H_{34}Cl_2CuN_4O_9$
Formula weight	548 [°] 9 g/mol
Temperature	150(2) К
Wavelength	0°71073 Å
Crystal system, space group	Orthorhombic, P n a 21

Unit cell dimensions	a = 15°2412(16) Å, b = 14°7907(17) Å, c =		
	10 [°] 0443(13) Å		
Volume	2264 [°] 3(5) Å ³		
Ζ	1 [°] 610 Mg/m^3		
Absorption coefficient	1°254 mm ⁻¹		
F(000)	1148		
Crystal description	Plate // (1 0 -1)		
Crystal color	Blue		
Crystal size	0°23 x 0°15 x 0°03 mm		
Theta range for data collection	3°36 to 26°37°		
Limiting indices	-18<=h<=19, -13<=k<=18, -12<=l<=12		
Reflections collected / unique	13091 / 4480 [R(int) = 0°0887]		
Completeness to θ = 26.37	99 [°] 70%		
Absorption correction	Analytical		
Max. and min. transmission	0°9633 and 0°7613		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4480 / 963 / 275		
Goodness-of-fit on F ²	1°028		
Final R indices [I>2sigma(I)]	R1 = 0°0741		
R indices (all data)	R1 = 0°1278		
Absolute structure parameter	0 [°] 49(6)		
Largest diff. peak and hole	0°940 and -0°501 e° Å ⁻³		

C1I	0.2320(20)	0.0693(18)	0.6140(20)
C2I	0.2815(15)	0.1551(15)	0.5850(30)
C3I	0.3880(20)	0.2108(17)	0.4250(30)
C4I	0.4256(16)	0.2089(18)	0.2930(20)
C5I	0.3660(20)	0.1991(15)	0.1790(30)
C6I	0.2838(15)	0.1090(30)	0.0310(20)
C7I	0.1915(14)	0.1285(18)	0.0670(30)
C8I	0.0774(13)	0.0934(15)	0.2350(20)
C9I	0.0597(17)	0.0440(20)	0.3600(20)
C10I	0.1034(18)	0.0731(19)	0.4840(20)
C11I	0.1856(16)	-0.0701(15)	0.5030(30)
C12I	0.2596(12)	-0.1250(12)	0.4490(20)
C13I	0.4091(17)	0.0660(18)	0.5470(30)
C14I	0.4090(15)	0.423(17)	0.1390(30)
C15I	0.1530(20)	-0.0257(15)	0.1110(30)
N1I	0.1923(12)	0.0263(13)	0.4888(19)
N2I	0.3468(12)	0.1257(16)	0.4749(18)
N3I	0.3355(11)	0.1032(14)	0.1660(20)
N4I	0.1633(12)	0.0640(12)	0.1732(18)
011	0.2916(9)	-0.0846(10)	0.3410(20)
C1J	0.2209(12)	0.0446(14)	0.0631(17)
C2J	0.2756(15)	0.1280(17)	0.0750(30)

Table S9. Cartesian coordinates (Å) of [Cu(TE3MeEtOH)](ClO₄)₂.

СЗЈ	0.3729(15)	0.2178(12)	0.2270(18)
C4J	0.4217(12)	0.2223(15)	0.3518(18)
C5J	0.3677(14)	0.2028(12)	0.4730(19)
C6J	0.2882(10)	0.1020(15)	0.6088(18)
С7Ј	0.1933(10)	0.1204(14)	0.5790(20)
C8J	0.0752(17)	0.0980(20)	0.4290(30)
C9J	0.0364(10)	0.0(11)	0.3093(16)
С10Ј	0.0863(16)	0.0640(20)	0.1860(20)
C11J	0.1654(13)	-0.0788(13)	0.2010(20)
C12J	0.2510(20)	-0.1230(20)	0.2350(50)
С13Ј	0.4207(14)	0.0698(16)	0.1620(30)
C14J	0.4223(12)	0.0512(16)	0.4980(20)
С15Ј	0.1485(18)	-0.0313(13)	0.5280(30)
N1J	0.1739(11)	0.0187(13)	0.1924(16)
N2J	0.3425(12)	0.1244(12)	0.1907(19)
N3J	0.3414(12)	0.1045(14)	0.4790(20)
N4J	0.1636(11)	0.0589(12)	0.4667(17)
01J	0.3074(11)	-0.0741(10)	0.3092(16)
Cu1	0.2627(1)	0.0678(1)	0.3322(3)
021	0.2646(9)	0.3931(14)	0.3220(20)
031	0.1191(8)	0.4430(7)	0.3545(16)
041	0.1531(11)	0.3460(12)	0.1832(12)
051	0.1574(10)	0.2933(9)	0.4007(13)

CI1I	0.1740(7)	0.3691(7)	0.3162(8)
O2J	0.2620(8)	0.3973(14)	0.3370(20)
O3J	0.1147(9)	0.4228(8)	0.2801(14)
O4J	0.1497(12)	0.3580(12)	0.4854(12)
O5J	0.1701(9)	0.2737(7)	0.2931(13)
Cl1J	0.1737(6)	0.3636(6)	0.3474(7)
061	-0.0798(9)	0.2477(13)	0.8190(30)
071	0.0442(12)	0.1581(9)	0.8560(20)
081	0.0461(18)	0.2699(18)	0.6881(19)
091	0.0470(15)	0.3120(13)	0.9160(20)
Cl21	0.0138(10)	0.2488(10)	0.8188(17)
O6J	0.0712(14)	0.3053(15)	0.7570(20)
07J	0.0250(20)	0.1589(12)	0.8000(30)
08J	0.0430(20)	0.2600(20)	0.9771(18)
O9J	-0.0735(10)	0.2786(16)	0.8260(40)
Cl2J	0.0145(7)	0.2518(6)	0.8431(10)
ОбК	-0.0214(12)	0.2091(14)	0.7184(18)
07К	0.1232(10)	0.2135(13)	0.7940(20)
О8К	0.0107(13)	0.1978(13)	0.9477(17)
О9К	0.0305(11)	0.3362(8)	0.8370(30)
CI2K	0.0347(6)	0.2383(5)	0.8226(13)

DFT calculations and results

trans-I

trans-II

trans-III

cis-V

Figure S 29. Structures of the different isomers of [Zn(TE1EtOH)]²⁺ optimized with DFT calculations (rtpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).

[Cu(TE1EtOH)]²⁺ (*trans*-III)

[Cu(TE3MeEtOH)]²⁺ (trans-I)

[Cu(CB-TE1EtOH)]²⁺ (*cis*-V)

[Cu(CB-TEMeEtOH)]²⁺ (cis-V)

Figure S 30. Structures of the Cu(II) complexes optimized with DFT calculations (utpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).

	Exp.	Calcd.	Population / %
trans-III	30.6	32.5	44
	28.2	30.3	
trans-l	29.9	31.6	31
	26.7	30.0	
cis-V	27.3	28.6	25
	26.5	28.0	

Table S 10. ¹³C NMR chemical shifts for the central carbon of the propylene units of $[Zn(TE1EtOH)]Cl_2$ and the values calculated with DFT.

Table S 11. Cartesian coordinates of [Zn(TE1EtOH)]²⁺ (*trans*-I) optimized with DFT calculations (rtpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).

Center Number	Atomic Number	Coor X	Coordinates (Angstroms) X Y Z		
1	7	-1.954451	1.034763	0.161976	
2	7	-0.904893	-1.871793	-0.268297	
3	7	1.763844	-1.080663	0.343343	
4	7	0.801443	1.922970	-0.104086	
5	6	-2.801051	0.589994	-0.977698	
6	1	-2.266609	0.823914	-1.900636	
7	1	-3.728116	1.171443	-0.976136	
8	6	-3.123835	-0.899408	-0.926071	
9	1	-3.930492	-1.082061	-1.639897	
10	1	-3.523367	-1.167102	0.057988	
11	6	-1.971804	-1.824396	-1.302107	
12	1	-2.351552	-2.836117	-1.474813	
13	1	-1.506501	-1.483923	-2.229211	
14	6	0.233515	-2.724088	-0.682125	
15	1	-0.048761	-3.779638	-0.701815	
16	1	0.503817	-2.433771	-1.698243	
17	6	1.404292	-2.519623	0.267896	
18	1	1.129481	-2.842855	1.273031	
19	1	2.258871	-3.118217	-0.059253	
20	6	2.655752	-0.652503	-0.768717	

21	1	2.142050	-0.860881	-1.708826
22	1	3.566267	-1.259359	-0.748116
23	6	3.023027	0.827208	-0.700726
24	1	3.442841	1.073050	0.278923
25	6	1.913865	1.801748	-1.090573
26	1	2.345594	2.795349	-1.256399
27	1	1.468681	1.475149	-2.032179
28	6	-0.330587	2.676877	-0.712843
29	1	-0.464001	2.299035	-1.727415
30	1	-0.094499	3.743428	-0.781066
31	6	-1.612693	2.477032	0.085654
32	1	-1.496552	2.844489	1.105008
33	1	-2.423113	3.044324	-0.379791
34	1	3.835381	0.985602	-1.414387
35	30	-0.103727	-0.001028	0.383771
36	1	2.268268	-0.938459	1.213710
37	1	-1.311409	-2.279484	0.573054
38	1	-2.484254	0.880637	1.016107
39	6	1.250274	2.606083	1.148948
40	1	0.503373	3.352535	1.414841
41	1	2.188932	3.135858	0.970173
42	6	1.422586	1.659366	2.322270
43	1	1.506515	2.231267	3.246871
44	1	2.307067	1.028314	2.222437
45	8	0.235744	0.835269	2.370133
46	1	0.273428	0.245720	3.134585
E (RTPSSh)	= -2547.8884	658 Hartree		
Zero-point	correction	= 0.422766		
Thermal co	rrection to	Energy = 0.441114		
Thermal co	rrection to	Enthalpy = 0.442058		
Thermal co	rrection to	Gibbs Free Energy = 0.37	9084	
Cum of olo	atropia and	For point Energies $= 2$	517 165700	

Sum of electronic and zero-point Energies = -2547.465700Sum of electronic and thermal Energies = -2547.447352Sum of electronic and thermal Enthalpies = -2547.446408Sum of electronic and thermal Free Energies = -2547.509381

Table S 12. Cartesian coordinates of [Zn(TE1EtOH)]²⁺ (trans-II) optimized with DFT calculations (rtpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).

Center Atomic		Coor	Coordinates (Angstroms)		
Number	Number	Х	Y	Z	
1	 1	1.210153	-3.630195	-0.243600	
2	6	-0.749628	-2.715955	-0.279489	
3	1	-0.925098	-2.787138	0.796422	
4	1	0.891053	-2.635156	-1.664392	
5	6	0.741968	-2.705639	-0.585498	
6	1	-1.261915	-1.413290	-1.764477	

7	7	-1.330955	-1.439514	-0.749114
8	6	-2.739290	-1.216434	-0.353472
9	1	1.661076	-1.773139	0.979932
10	7	1.395275	-1.517063	0.031433
11	1	2.363577	-1.032188	-1.751285
12	6	2.636002	-1.129528	-0.698588
13	6	-3.340158	0.008085	-1.053579
14	30	-0.080123	0.023230	0.192986
15	1	3.470921	0.135441	0.857694
16	6	3.258335	0.176651	-0.213103
17	1	4.234325	0.254311	-0.699207
18	6	-2.419483	1.225480	-1.192773
19	7	-1.647089	1.490924	0.046492
20	1	2.201406	1.388815	-1.636376
21	6	2.493612	1.446585	-0.586440
22	7	1.247631	1.696360	0.197171
23	1	3.151898	2.315133	-0.474514
24	6	-0.983297	2.817616	0.085212
25	1	-0.977321	3.147790	1.123409
26	1	0.415356	2.517943	-1.533599
27	6	0.438029	2.757665	-0.469712
28	1	-1.553976	3.554241	-0.486480
29	1	-1.224330	-3.575414	-0.759757
30	1	0.914123	3.736788	-0.357240
31	1	3.369459	-1.937237	-0.620552
32	1	-2.278766	1.434627	0.840013
33	1	-2.746746	-1.087288	0.730704
34	1	-3.347883	-2.096635	-0.580686
35	1	-3.664172	-0.266113	-2.060418
36	1	-4.240909	0.289008	-0.502805
37	1	-1.705618	1.074222	-2.004094
38	1	-3.022353	2.100417	-1.453631
39	6	1.554586	2.082804	1.610268
40	1	0.884583	2.892671	1.892494
41	1	2.575619	2.466237	1.677838
42	6	1.378025	0.946497	2.602950
43	1	1.387028	1.345861	3.617670
44	1	2.157969	0.189266	2.518004
45	8	0.089616	0.347467	2.331953
46	1	-0.080198	-0.369582	2.956551
E (RTPS)	Sh) = -2547.8824	 1995 Hartree		
Zero-p	oint correction	= 0.422295		
Therma	l correction to	Energy = 0.440813		
Therma	l correction to	Enthalpy = 0.441757		
Therma	l correction to	Gibbs Free Energy = 0.37	8376	
Sum of	electronic and	zero-point Energies = -2	547.460204	
Sum of	electronic and	thermal Energies = -2547	.441687	
Sum of	electronic and	thermal Enthalpies = -25	47.440742	
Sum of	electronic and	thermal Free Energies = ·	-2547.504124	

Center Number	Atomic Number	Coor X	dinates (Ang Y	stroms) Z
1	 1			
2	6	0.646862	-2.808080	-0.226601
3	1	0.844563	-2.714334	-1.296196
4	1	-1.077022	-2.904553	1.085302
5	6	-0.857826	-2.819937	0.018893
6	1	3.288974	-2.184049	0.069957
7	1	1.384024	-1.871087	1.427484
8	7	1.276155	-1.636848	0.442359
9	6	2.628553	-1.328500	-0.098780
10	1	2.518752	-1.203000	-1.177643
11	1	-1.309693	-1.512578	-1.474464
12	7	-1.422319	-1.541074	-0.462151
13	1	-2.973550	-1.355126	0.925934
14	6	-2.859773	-1.330208	-0.159957
15	1	4.303049	-0.069286	0.201064
16	6	3.254304	-0.073698	0.508876
17	1	3.273064	-0.140566	1.600064
18	30	-0.107669	-0.030447	0.333002
19	1	-3.218274	0.022671	-1.805945
20	6	-3.369544	-0.001827	-0.720845
21	1	-4.451086	0.019175	-0.568628
22	6	2.666274	1.258297	0.040212
23	1	2.552923	1.231111	-1.044960
24	7	1.328064	1.598993	0.607267
25	1	-2.872689	1.237429	0.993198
26	6	-2.800066	1.273590	-0.095746
27	7	-1.368619	1.474460	-0.442401
28	1	-1.288385	1.453410	-1.457841
29	1	-3.383491	2.132965	-0.440461
30	6	0.714585	2.723666	-0.158182
31	1	0.943557	2.566437	-1.213272
32	1	-1.063844	2.866529	1.082547
33	6	-0.798359	2.755573	0.030098
34	1	1.154473	3.679701	0.140434
35	1	1.097003	-3.741183	0.117898
36	1	3.365072	2.067519	0.279819
37	1	-1.219657	3.604971	-0.513416
38	1	-3.452483	-2.150754	-0.576502
39	6	1.416648	1.961590	2.054545
40	1	2.446466	2.216888	2.316190
41	1	0.807600	2.849795	2.219026
42	6	0.914257	0.863871	2.971070
43	1	0./85160	1.252949	3.981329
44	1	1.585181	0.004289	3.007224

Table S 13. Cartesian coordinates of [Zn(TE1EtOH)]²⁺ (*trans*-III) optimized with DFT calculations (rtpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).

	45	8				-0.369756	0.456873	2.443707
	46	1				-0.771527	-0.203317	3.023725
E(RT	PSS	h) = -2547.8	884707 H	lartr	ee			
Zer	o-po	oint correct:	ion = 0.	42209	96			
The	rmal	L correction	to Ener	gy =	0.440	712		
The	rmal	L correction	to Enth	alpy	= 0.4	41657		
The	rmal	L correction	to Gibb	s Fre	ee Ene	rgy = 0.37	77894	
Sum	of	electronic a	and zero	-poir	nt Ene	rgies = -2	2547.466375	
Sum	of	electronic a	and ther	mal E	Energi	es = -2547	1.447758	
Sum	of	electronic a	and ther	mal E	Enthal	pies = -25	547.446814	
Sum	of	electronic a	and ther	mal E	Free E	nergies =	-2547.510577	

Table S 14. Cartesian coordinates of [Zn(TE1EtOH)] ²⁺ (<i>cis</i> -V) optimized with DFT
calculations (rtpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).

Center	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Х	Y	Z
1	1	4.064104	0.663398	-1.006960
2	1	3.702931	-1.402805	0.050439
3	1	3.193795	-0.142460	1.167772
4	6	3.008048	0.406149	-0.895126
5	1	2.624128	2.490835	-1.307864
6	6	2.943926	-0.632100	0.225639
7	1	2.380002	2.042817	0.382912
8	1	2.707153	-0.023240	-1.855588
9	6	2.244822	1.706479	-0.646750
10	7	1.626809	-1.313213	0.422922
11	1	1.996964	-3.238164	-0.420103
12	1	1.739213	-1.933718	-1.577983
13	7	0.788546	1.527068	-0.873736
14	1	0.217951	3.085506	0.399790
15	1	0.184290	3.530930	-1.312428
16	1	0.668216	1.292087	-1.857964
17	6	1.398787	-2.345773	-0.627625
18	6	-0.034784	2.730765	-0.601099
19	30	-0.090610	-0.004212	0.253637
20	6	-0.076384	-2.718451	-0.736977
21	1	-0.441213	-3.164059	0.189183
22	6	-1.508646	2.349801	-0.676227
23	1	-0.209374	-3.455988	-1.531922
24	1	-0.725376	-1.210054	-1.951183
25	1	-2.135155	3.223398	-0.483221
26	1	-1.747292	1.985476	-1.675960
27	7	-0.884649	-1.500703	-0.988174

28	7	-1.804419	1.263768	0.297302
29	6	-2.348655	-1.709124	-0.823916
30	1	-2.822625	0.032408	-2.010283
31	1	-2.514496	-2.075776	0.191045
32	6	-3.121433	0.599706	0.069930
33	1	-2.686084	-2.484047	-1.518017
34	1	-3.385483	0.105378	1.005942
35	6	-3.137262	-0.422879	-1.066153
36	1	-3.878386	1.365471	-0.125092
37	1	-4.182957	-0.705271	-1.209557
38	1	-1.853336	1.696803	1.216193
39	6	1.591688	-1.935295	1.775325
40	1	0.860311	-2.742628	1.764934
41	1	2.565719	-2.366842	2.025243
42	6	1.179922	-0.927812	2.826848
43	1	1.058706	-1.420810	3.791680
44	1	1.899693	-0.113236	2.926771
45	8	-0.095156	-0.395107	2.393667
46	1	-0.374145	0.302066	3.000555

```
E(RTPSSh) = -2547.8928807 Hartree
Zero-point correction = 0.422505
Thermal correction to Energy = 0.441130
Thermal correction to Enthalpy = 0.442074
Thermal correction to Gibbs Free Energy = 0.377974
Sum of electronic and zero-point Energies = -2547.470376
Sum of electronic and thermal Energies = -2547.451751
Sum of electronic and thermal Enthalpies = -2547.450807
Sum of electronic and thermal Free Energies = -2547.514907
```

Table S 15. Cartesian coordinates of [Cu(TE1EtOH)]²⁺ (*trans*-III) optimized with DFT calculations (utpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).

Center	Atomic	Coor	Coordinates (Angstroms)		
Number	Number	Х	Y	Z	
1	1	1.288347	3.606739	-0.753114	
2	6	-0.693398	2.755921	-0.616969	
3	1	-0.832203	2.676915	-1.696598	
4	1	0.926524	2.855153	0.806974	
5	6	0.780702	2.768335	-0.270787	
6	1	-3.310767	2.197430	-0.281027	
7	1	-1.387185	1.734452	1.002173	
8	7	-1.318885	1.555327	0.001075	
9	6	-2.694226	1.323963	-0.511543	
10	1	-2.621220	1.243637	-1.597450	
11	1	1.366387	1.469695	-1.726584	
12	7	1.362458	1.474720	-0.706570	
13	1	2.757461	1.276749	0.839850	

14	6	2.762110	1.278657	-0.251366
15	1	-4.374902	0.055078	-0.283033
16	6	-3.338795	0.070191	0.063225
17	1	-3.392713	0.122995	1.153708
18	29	0.027734	0.012222	-0.175551
19	1	3.343698	-0.005511	-1.886843
20	6	3.363198	-0.012422	-0.791864
21	1	4.417125	-0.029824	-0.506415
22	6	-2.701971	-1.233295	-0.402741
23	1	-2.583424	-1.207717	-1.487112
24	7	-1.355087	-1.521529	0.175183
25	1	2.698094	-1.288810	0.826806
26	6	2.723792	-1.290355	-0.264173
27	7	1.324380	-1.459249	-0.734753
28	1	1.331954	-1.447359	-1.754555
29	1	3.311955	-2.154440	-0.586804
30	6	-0.762790	-2.689944	-0.548053
31	1	-0.957789	-2.551327	-1.612167
32	1	0.957169	-2.869749	0.757679
33	6	0.730154	-2.747188	-0.301433
34	1	-1.249398	-3.617317	-0.233605
35	1	-1.185495	3.668956	-0.275352
36	1	-3.361345	-2.073342	-0.160283
37	1	1.176282	-3.585391	-0.841348
38	1	3.364617	2.130347	-0.580827
39	6	-1.448273	-1.842790	1.641000
40	1	-0.826784	-2.716434	1.829857
41	1	-2.477227	-2.114635	1.886633
42	6	-0.985522	-0.726755	2.554442
43	1	-0.933510	-1.107548	3.576400
44	1	-1.665181	0.128178	2.544103
45	8	0.321406	-0.330869	2.102546
46	1	0.675443	0.339855	2.700303
E(UTPSSh) = Zero-point Thermal co Thermal co Sum of ele Sum of ele Sum of ele	-2409.01789 correction = rrection to 1 rrection to 1 rrection to 0 ctronic and 3 ctronic and 3 ctronic and 4	P8 Hartree = 0.423123 Energy = 0.441475 Enthalpy = 0.442419 Gibbs Free Energy = 0.378 zero-point Energies = -24 thermal Energies = -2408 . thermal Enthalpies = -2400	587 08.594775 576423 8.575479	
Sum of ele	ctronic and t	thermal Free Energies = -	2408.639311	

Table S 16. Cartesian coordinates of [Cu(TE3MeEtOH)]²⁺ (*trans*-I) optimized with DFT calculations (utpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).

Center	Atomic	(Coordinates	(Angstroms)
Number	Number	Х	Y	Z

1	7	1.751368	-1.002387	-0.178869
2	7	0.757439	1.920788	-0.328345
3	7	-1.881506	1.069374	0.394579
4	7	-0.992268	-1.764251	-0.477538
5	6	2.542850	-0.522450	-1.354329
6	1	1.974552	-0.782878	-2.248129
7	1	3.476382	-1.094919	-1.380491
8	6	2.860913	0.965173	-1.380658
9	1	3.477818	1.126041	-2.268329
10	1	3.488611	1.260059	-0.538434
11	6	1.653185	1.878077	-1.521390
12	1	1.990254	2.900318	-1.727858
13	1	1.043411	1.551960	-2.366090
14	6	-0.432088	2.749386	-0.674494
15	1	-0.154547	3.807632	-0.706634
16	1	-0.757310	2.462410	-1.674494
17	6	-1.528292	2.521366	0.337253
18	1	-1.206520	2.826311	1.331489
19	1	-2.415403	3.108495	0.084731
20	6	-2.880035	0.790188	-0.683327
21	1	-2.475267	1.183873	-1.616025
22	1	-3.782542	1.364603	-0.447134
23	6	-3.247111	-0.673471	-0.871269
24	1	-3.675858	-1.097918	0.037822
25	6	-2.126410	-1.540659	-1.421556
26	1	-2.524527	-2.520044	-1.710289
27	1	-1.708993	-1.073690	-2.315317
28	6	0.085343	-2.4854/3	-1.213168
29	1	0.200755	-2.003294	-2.184043
30		-0.211/98	-3.524050	-1.388633
31	6	1.3/5315	-2.4264/4	-0.430481
32	1	1.268842	-2.932656	0.526251
33	1	2.1/9013	-2.929480	-0.9/4563
34	1	-4.051667	-0.696596	-1.610341
35	29	-0.0/2621	0.038800	0.071937
30 27	0	-1.445297	-2.399556	1 250206
27	1	-0.625229	-2.760887	1 106120
30	1	-2.230900	-2.100401	1.190139
39	I 6	-1.790234	-3.500109	0.292930
40	1	2 356/13	2.344090	1 06/007
41	1	2.330413	3 567154	0 555752
42	1	1.732192	2 559020	1 6050/1
43	1	0.023920	-0 908484	1 060481
44	1	2.373773	-1 636222	1 016365
75 26	± 1	3 0190300	1.030222 0.082180	1 090717
40 47	-	-2 /127155	0.002100	1 700755
	1	-1 77814/	1 064893	2 5026/3
<u>1</u> 0	÷ 1	-3 303000	1 39875/	1 846043
ユノ 50	± 1	-2 748506	-0 251735	1 81870/
51	÷ .	1 761998	-1 133910	2 21910/
J T	v	T . I O T 2 2 0	T.T.C.C.T.C	2 · J I J I V 4

52	1	1.447731	-2.173993	2.431125
53	1	2.370816	-0.866592	3.184791
54	8	0.607712	-0.278932	2.239689
55	1	0.057762	-0.417168	3.020359

```
E(UTPSSh) = -2526.9681769 Hartree
Zero-point correction = 0.505837 (/Particle)
Thermal correction to Energy = 0.528201
Thermal correction to Enthalpy = 0.529145
Thermal correction to Gibbs Free Energy = 0.458266
Sum of electronic and zero-point Energies = -2526.462340
Sum of electronic and thermal Energies = -2526.439976
Sum of electronic and thermal Enthalpies = -2526.439032
Sum of electronic and thermal Free Energies = -2526.509910
```

Table S 17. Cartesian coordinates of [Cu(CB-TE1EtOH)]²⁺ (*cis*-V) optimized with DFT calculations (utpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).

Center	Atomic	Coor	Coordinates (Angstroms)		
Number	Number	Х	Y	Z	
1	6	-2.897416	-0.115309	-0.671957	
2	1	-3.842601	0.434601	-0.726613	
3	1	-2.885281	-0.828773	-1.495792	
4	6	-2.829110	-0.876773	0.650492	
5	1	-2.783745	-0.199288	1.505020	
6	6	-1.749122	-1.949784	0.743192	
7	1	-1.920299	-2.555177	1.640989	
8	1	-1.834820	-2.610834	-0.121071	
9	6	0.580990	-2.544148	0.402279	
10	1	0.184859	-3.018972	-0.495429	
11	1	0.621247	-3.300959	1.193709	
12	6	1.979686	-2.011132	0.135363	
13	1	2.583094	-2.784787	-0.341248	
14	1	2.482444	-1.742838	1.061839	
15	6	3.040121	0.163632	-0.427460	
16	1	3.983767	-0.388951	-0.420980	
17	1	3.076829	0.878074	-1.251116	
18	6	2.872113	0.897706	0.898273	
19	1	3.809850	1.426792	1.084646	
20	6	1.770112	1.950386	0.921240	
21	1	1.914520	2.629292	0.079259	
22	1	1.850630	2.540894	1.840796	
23	6	-0.531350	2.537580	0.436777	
24	1	-0.072455	3.054082	-0.406834	
25	1	-0.630568	3.259332	1.254789	
26	6	-1.901239	2.009614	0.053713	
27	1	-2.447190	1.667283	0.928479	
28	1	-2.496155	2.808722	-0.394137	

29	6	-0.082429	0.740483	2.054797
30	1	-1.117959	1.023834	2.221716
31	1	0.483088	1.114544	2.912561
32	6	0.031202	-0.795214	2.039227
33	1	1.055566	-1.081660	2.262027
34	1	-0.584442	-1.187032	2.854051
35	7	-1.790629	0.864972	-0.904381
36	7	0.383654	1.423165	0.812778
37	7	-0.354892	-1.441920	0.755489
38	7	1.935684	-0.794314	-0.731530
39	1	2.766982	0.197597	1.729855
40	29	0.073146	0.020708	-0.744539
41	1	-3.786736	-1.394430	0.748467
42	1	2.078682	-1.099819	-1.690614
43	6	-1.842144	1.395839	-2.301237
44	1	-2.863548	1.700060	-2.547892
45	1	-1.203587	2.279074	-2.335315
46	6	-1.341076	0.383254	-3.301788
47	1	-1.986108	-0.491848	-3.379511
48	1	-1.244386	0.845086	-4.284525
49	8	-0.031575	-0.022813	-2.830501
50	1	0.258114	-0.799438	-3.326929
E (UTPSSh) Zero-point Thermal co Thermal co Sum of ele Sum of ele Sum of ele	= -2486.429684 correction = prrection to E prrection to G prection to G ectronic and z ectronic and t	47 Hartree 0.457865 nergy = 0.476942 nthalpy = 0.477886 ibbs Free Energy = 0.413 ero-point Energies = -24 hermal Energies = -2485. hermal Enthalpies = -248 hermal Eree Energies = -	3335 85.971819 952743 85.951798	
Sam OF ETC		normar rree micrgres -	2100.010000	

Table S 18. Cartesian coordinates of [Cu(CB-TEMeEtOH)] ²⁺ (cis-V) o	ptimized with
DFT calculations (utpssh/Def2-TZVPP; scrf=(pcm,solvent=water)).	

Center	Atomic	Coor	Coordinates (Angstroms)			
Number	Number	Х	Y	Ζ		
1	6	2.815812	0.157721	-0.822747		
2	1	3.842044	0.401507	-0.528855		
3	1	2.850003	-0.772927	-1.389019		
4	6	2.266641	1.266030	-1.716894		
5	1	2.171280	2.211398	-1.179065		
6	6	0.981936	0.929932	-2.464463		
7	1	0.796900	1.694494	-3.227856		
8	1	1.107578	-0.025000	-2.977959		
9	6	-1.300689	0.116916	-2.368541		
10	1	-0.860988	-0.778628	-2.808774		

11	1	-1.668133	0.745552	-3.187466
12	6	-2.454232	-0.252454	-1.456713
13	1	-3.168742	-0.874186	-2.000285
14	1	-2.993155	0.634228	-1.134610
15	6	-2.846354	-0.654526	0.939181
16	1	-3.878398	-0.898023	0.664539
17	1	-2.552487	-1.330945	1.744048
18	6	-2.786728	0.786457	1.432325
19	1	-3.602470	0.893284	2.151777
20	6	-1.509693	1.169620	2.164971
21	1	-1.313845	0.433490	2.946346
22	1	-1.644958	2.142065	2.651687
23	6	0.908288	1.232831	2.187383
24	1	0.790974	0.412679	2.896133
25	1	0.971032	2.163406	2.762274
26	6	2.171478	1.051432	1.370310
27	1	2.394139	1.941390	0.788253
28	1	3.023969	0.889168	2.033716
29	6	-0.287928	2.401395	0.391214
30	1	0.711155	2.827490	0.405466
31	1	-0.957607	3.172498	0.780720
32	6	-0.694144	2.107995	-1.066456
33	1	-1.776949	2.135976	-1.150634
34	1	-0.317023	2.922488	-1.690770
35	7	2.038813	-0.102751	0.429028
36	7	-0.295891	1.225799	1.310291
37	7	-0.223088	0.802667	-1.606703
38	7	-1.981604	-0.986921	-0.237906
39	1	-3.013080	1.499564	0.637160
40	29	0.021433	-0.488418	0.080273
41	1	3.031136	1.445906	-2.476846
42	6	2.555129	-1.329362	1.108485
43	1	3.646717	-1.290667	1.167737
44	1	2.157087	-1.333091	2.123486
45	6	2.107356	-2.578883	0.396352
46	1	2.538113	-2.678419	-0.599876
47	1	2.357923	-3.460845	0.985957
48	8	0.667579	-2.464980	0.292003
49	1	0.334999	-3.149520	-0.301622
50	6	-2.125291	-2.446381	-0.487447
51	1	-1.772502	-3.002491	0.378262
52	1	-3.179319	-2.685281	-0.653739
53	1	-1.564684	-2.726484	-1.378865
	=			

E(UTPSSh) = -2525.7466492 Hartree Zero-point correction = 0.485656 Thermal correction to Energy = 0.506014 Thermal correction to Enthalpy = 0.506958 Thermal correction to Gibbs Free Energy = 0.440098 Sum of electronic and zero-point Energies = -2525.260993 Sum of electronic and thermal Energies = -2525.240635 Sum of electronic and thermal Enthalpies = -2525.239691 Sum of electronic and thermal Free Energies = -2525.306551

Table S 19. NMR calculation for EPR-TPSSh of [Cu(CBTE1EtOH)]²⁺

! uks tpssh tightscf Normalprint grid5 def2-TZVPP def2/JK SOMF(1X) RIJK cpcm(water) %pal nprocs 12 end * xyz 2 2 С 2.68644300 0.89820800 0.19204400 0.69594500 Η 3.64878300 0.76128700 Η 2.89108400 1.06559300 -0.86530500 С 1.98326200 2.12671000 0.76622300 1.70885400 1.98296900 Η 1.81278900 С 0.80284900 2.65416400 -0.04293600 Η 0.50869500 3.63506700 0.34840200 Η 1.12016400 2.79410300 -1.07783200 С -1.26341000 2.15069300 -1.21596800 Η -0.623025002.23363700 -2.09419600-1.73029200 3.12739400 -1.04619900 Η С -2.34130500 1.10524100 -1.45444600Η -2.81863100 1.28287600 -2.41902200 -0.69894700 Η -3.12157000 1.16450200 С -0.89297200 -2.74169200-1.28124800Η -3.68398500 -1.16504200 -1.43559400 -2.33828100 -2.26654100 Η -1.13096600 С -3.00071000 -1.16695200 0.60519500 -3.84138300 -1.82806100 0.82929300 Η 1.49808600 С -1.84930300 -1.61425200Η -1.54162900 -2.61760100 1.19921100 Η -2.19473700-1.66900300 2.53656600 С 0.51661400 -1.51586700 2.01672600 0.51512000 -2.49976000 Η 1.54663100 Η 0.39438700 -1.66229300 3.09539800 С 1.82649100 -0.80017000 1.74454400 Η 1.92142100 0.08970800 2.36063800 Η 2.66599200 -1.45010600 2.00122900 С -0.808435000.55303000 2.13070400 Η 0.10670900 0.76887200 2.67512700 Η -1.60193500 0.47224300 2.87858200 С -1.142902001.73631700 1.20362000 Η -2.20267600 1.71611200 0.96386600 Η -0.96882200 2.66109200 1.76126100 Ν 1.92837600 -0.38689000 0.30955100 -0.76001100 1.44437400 Ν -0.63300600 Ν -0.385416001.76601800 -0.07724300 Ν -1.76993900-0.27540100-1.41629600

Н	-3.34310400	-0.16538700	0.87420800	
Cu	0.04733500	-0.28399400	-0.50474800	
Н	2.73115700	2.92369800	0.77517000	
Н	-1.56705400	-0.54631900	-2.37497500	
С	2.61010700	-1.47261700	-0.45994300	
Н	3.67939700	-1.47927400	-0.22922600	
Н	2.18233800	-2.42002300	-0.13061800	
С	2.39580900	-1.32220300	-1.94619800	
Н	2.87495100	-0.43334400	-2.35639700	
Н	2.76878200	-2.20329200	-2.46867600	
0	0.96105700	-1.22551600	-2.13040100	
Н	0.77508600	-0.94550600	-3.03622400	
*				
%cpcm smd tr	ue # turn on SMD			
smdsolvent "	water" # specify the	name of solve	ent from the list	
end				
%method				
SpecialGridA	toms 29			
SpecialGridI	ntAcc 7			
end				
%eprnmr gten	sor true ori CenterO	fElCharge		
Nuclei = all	Cu {aiso,adip,fgrad	}		
end				

Visible spectra of copper complexes of TE1EtOH, TE3MeEtOH, CB-TE1EtOH and CB-TEMeEtOH

Figure S31. Visible spectra of $[Cu(TE1EtOH)Cl_2]$ (black dashed), $[Cu(TE3MeEtOH)Cl_2]$ (red dashed), $[Cu(CB-TE1EtOH)Cl_2]$ (blue) and $[Cu(CB-TE1EtOH)Cl_2]$ (purple) recorded in ultra-pure water at 6 mM for complexes' concentration.

Experimental and simulated X band EPR spectra of Copper(II) complexes considering the presence of one paramagnetic species in solution.

Figure S32. Experimental (plain lines) and simulated (dashed lines) X-band EPR spectra (v = 9.31 GHz) of $[Cu(TE1EtOH)]^{2+}$, $[Cu(TE3MeEtOH)]^{2+}$, recorded at 20 mM in a frozen solution of H₂O/DMF (1/1) at a 150-152 K.

Figure S33. Experimental (plain lines) and simulated (dashed lines) X-band EPR spectra (v = 9.31 GHz) of [Cu(CB-TE1EtOH)]²⁺ and [Cu(CB-TEMeEtOH)]²⁺ recorded at 20 mM in a frozen solution of H₂O/DMF (1/1) at a 150-152 K.

Experimental and simulated X-band EPR spectra of [Cu(CB-TEMeEtOH)]Cl₂ considering the presence of two paramagnetic species in solution.

[Cu(CB-TEMeEtOH)]Cl₂ - Full simulation (A & B)

Figure S34. Experimental (plain lines) and simulated (dashed lines) X-band EPR spectra (v = 9.31 GHz) of [Cu(CB-TEMeEtOH)]²⁺ recorded at 20 mM in a frozen solution of H₂O/DMF (1/1) at a 150-152 K, considering the presence of two species in solution (A & B).

Table S20. EPR parameters for $[Cu(CB-TEMeEtOH)]Cl_2$ reported in this work (Figure S34, 150 K in H2O/DMF (1:1)) considering the presence of two paramagnetic species in solution A & B.

[Cu.CB-TEMeEtOH]Cl ₂	g z	g y	g _x	Az	Ay	Ax
Α	2.209	2.050	2.050	171.6	-	-
В	2.032	2.085	2.214	38.9	56.9	175.2

Study of Copper(II) complexes dissociation in acidic media

Figure S35. Visible spectra of acid-mediated dissociation of $[Cu(TE1EtOH)]^{2+}$, $[Cu(TE3MeEtOH)]^{2+}$ (3 mM in 3 M HCl at 25 °C), $[Cu(CB-TE1EtOH)]^{2+}$ and $[Cu(CB-TEMeEtOH)]^{2+}$ (3 mM in 5 M HCl at 70 °C) with a gap time ranging from 10 to 30 minutes. Arrows indicate the changes in absorbance during the experiment on both sides of isobestic points. Exponential curves corresponding to experimental/model fitting of the function $A_{\lambda max} = f(t)$ made on OriginPro9. R² is the adjusting parameter and A_{∞} the asymptote of the exponential model.

Electrochemical studies of Copper(II) complexes

Figure S 36. Cyclic voltammograms of [Cu(TE1EtOH)]Cl₂ in DMF + TBAPF₆ (0.1 M). Scan rate 0.1 V.s⁻¹. *Signals are attributed to redissolution peaks.

Figure S 37. Cyclic voltammograms of [Cu(CB-TEEtOH)]Cl₂ in DMF + TBAPF₆ (0.1 M). Scan rate 0.1 V.s⁻¹. *Signals are attributed to redissolution peaks.

Figure S 38. Cyclic voltammograms of [Cu(CB-TEMeEtOH)]Cl₂ in DMF + TBAPF₆ (0.1 M). Scan rate 0.1 V.s⁻¹. *Signals are attributed to redissolution peaks.