α -Rhenabenzofuran with nonaromatic T₀ and aromatic S₁ states

Junping Tang, ^a Yilun Wang, ^{a,b} Wei Bai, ^{*a} Yan Zhou, ^c Wenyan Yu, ^a and Yang Li * ^{a,b}

^a State Key Laboratory of Fine Chemicals, Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Liaoning 116024, P.R. China

^b School of Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, P.R.

China

^c School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning, 530008, P.R. China

Supporting Information

Table of Contents

1. NMR spectra and high-resolution mass spectroscopy data	S2-S4	
2. Computational details	S5-S6	
3. X-ray crystallographic study of complex 2	\$7	
4. The Calculated Cartesian Coordinates	S8-S13	
5. Reference	S14	

1. NMR spectra and high-resolution mass spectroscopy data

Figure S1. ¹H NMR spectra of complex **2** at room temperature (above) and -80 °C (below) in CD_2Cl_2 at 400.1 MHz.

Figure S2. HRMS (ALDI-TOF) result of complex 2 [M-Cl]⁺.

Figure S3. HRMS (ALDI-TOF) result of complex 3 [M-Cl]⁺.

Figure S4. HRMS (ALDI-TOF) result of complex 4 [M-Cl]⁺.

Figure S5. HRMS (ALDI-TOF) result of complex 5 [M-Cl]⁺.

2.Computational details

All the optimizations were performed with the Gaussian 16 software package.^[4] All of these structures evaluated were optimized at the B3LYP level of density functional theory (DFT).^[5] DFT/GENECP level had been done by implementing def2-TZVP basis set for Re atom.^[6] On the other hand, 6-311G(2d,p) basis set had been used for the rest of atoms.^[7] Nucleusindependent chemical shift (NICS) values were calculated at the B3LYP-GIAO//6-311G(2d,p)/def2-TZVP level.^[8] The anisotropy of the current density was calculated with the AICD 2.0 program computing the NMR properties using the CSGT method with the Gaussian16 Rev A.03 program with the geometries previously obtained for M.^[9] GIMIC analysis was finished by GIMIC code [10] based on the formatted check point file of Gaussian and rendered by ParaView visualization program.^[11] Current densities were obtained from the wavefunction for GIAO NMR computations for a magnetic field applied perpendicular to the ring plane of the molecules within the context of the Quantum Theory of Atoms in Molecules using AIMAll.^[12] Using RunEDDB script,^[13] electron density of delocalized bond (EDDB)^[14] based on natural atomic orbitals (NAOs) is analyzed. The molecular orbital composition and MO pictures were analyzed using Multiwfn, a multifunctional wavefunction analyzer.^[15] The calculations of HOMA, MCI and $ELF\pi$ were also carried out by Multiwfn package. The MO pictures were drawn using the software of VMD.^[16] VMD was developed by the Theoretical and Computational Biophysics Group in the Beckman Institute for Advanced Science and Technology at the University Illinois Urbana-Champaign of at (http://www.ks.uiuc.edu/Research/vmd/).

Table S1. The positive and negative values of total induced currents contributed by the diatropic and paratropic currents in the singlet and triplet states.

Bond	diatropic contribution(S_1/T_0)	paratropic contribution(S_1/T_0)	Total induced current (S_1/T_0)
1-7	10.220204/6.639485	-5.770334/-7.066479	4.449870/-0.426994
7-10	11.677843/8.198671	-6.848873/-8.365040	4.828970/-0.166369
10-11	12.967212/11.992386	-4.209623/-4.523966	8.757588/7.468421
11-13	14.573696/13.622006	-5.690694/-6.003618	8.883001/7.618389
13-15	14.326973/13.366617	-5.354122/-5.703843	8.972850/7.662775
15-17	14.718166/13.817001	-5.807493/-6.186534	8.910673/7.630467
17-9	13.550121/12.879307	-6.058419/-6.476036	7.491702/6.403271
9-8	11.061803/8.498420	-6.715433/-8.545832	4.346370/-0.047411
8-1	9.421343/6.956005	-5.271217/-6.921324	4.150125/0.034681

3. X-ray crystallographic study of complex 2

	2
CCDC Number	2128119
Empirical formula	$C_{34}H_{31}OP_2Cl_3Re$
Color & habit	brown, block
Crystal size (mm ³)	0.10 x 0.10 x 0.10
Temperature (K)	120K
Crystal system	triclinic
Space group	P-1
a(Å)	9.653(3)
b(Å)	9.994(3)
c(Å)	17.068(5)
α(°)	96.175(11)
β(°)	99.797(11)
γ(°)	95.144(11)
V(Å ³), Z	1603.3(9), 2
D _{cal} (Mg/m ³)	1.678
Abs. coeff.(mm ⁻¹)	4.166
2θ range for data collection (°)	2.44 to 50.854
Reflections collected	20984
Indep. Reflection, R(int)	5785, 0.0552
Completeness of data	97.6 %
Data/ restraints / parameters	5785/0/372
Goodness-of-fit on F ²	1.088
R1 [I>2sigma(I)], wR2	0.0331, 0.0898
R1 (all data), wR2	0.0380, 0.0934
Largest diff. peak and hole ($e \cdot Å^{-3}$)	0.70, -1.29

Table S2. Crystallographic data and refinement details for 2

4. The Calculated Cartesian Coordinates with Electronic Energies

E = -3532.41909865 A.U.

Re	-1.08845100	-0.69431600	-1.22195600
Cl	0.10827400	-2.48947600	-2.43138700
Cl	-3.15211400	-1.53162000	-2.09806700
Cl	-0.22756000	0.81464600	-2.84961200
Р	2.95390500	0.04384400	-0.46590100
Р	-2.45649600	1.13746800	-0.42327900
0	-1.45547900	-2.12279800	0.23258400
С	0.21367300	-0.27910300	0.23497600
С	0.10660000	-0.97884300	1.47596800
С	-0.85952600	-2.01634900	1.37922300
С	-1.10224500	-2.87040800	2.47295800
Н	-1.83403700	-3.66212700	2.37342000
С	-0.40560900	-2.66462900	3.64483300
Н	-0.59222000	-3.31026800	4.49577000
С	0.54170100	-1.62820500	3.76360300
Н	1.06902500	-1.48823500	4.69932100
С	0.79800000	-0.79877700	2.69252300
Н	1.52862500	-0.00498100	2.80102500
С	1.33418700	0.72999500	0.09780200
Н	1.54076300	1.22849000	1.04824600
Н	1.10589200	1.50411500	-0.63539700
С	4.18989100	1.34509500	-0.17637400
С	4.23686200	2.01439100	1.05214800
Н	3.54148800	1.76410500	1.84319800
С	5.17920300	3.00937100	1.27306600
Н	5.20493100	3.52069100	2.22737000
С	6.08236100	3.34994900	0.27164200
Н	6.81451000	4.12934900	0.44427600
С	6.04160500	2.69197300	-0.95132200
Н	6.74001200	2.95565400	-1.73583200
С	5.10138400	1.69377400	-1.17658800
Н	5.08162000	1.19563700	-2.13637300
С	2.91341100	-0.34369000	-2.22657900
Н	2.68776300	0.55084000	-2.80448100
Н	2.12121300	-1.07813200	-2.40945600

Н	3.87537900	-0.76680200	-2.51688100
С	3.44175700	-1.46002800	0.41108800
С	4.50790200	-1.46799500	1.31491500
Н	5.06976100	-0.56498600	1.51337700
С	4.85905700	-2.64766200	1.95796500
Н	5.68690100	-2.65140000	2.65644000
С	4.15212600	-3.81721500	1.70263200
Н	4.42681400	-4.73559000	2.20764700
С	3.09589800	-3.81156500	0.79814500
Н	2.54184400	-4.71935900	0.59568400
С	2.73462000	-2.63991400	0.14747900
Н	1.90702200	-2.65634200	-0.55470000
С	-3.77377100	0.81964400	0.83337400
С	-4.11290800	-0.48388100	1.19596400
Н	-3.57935300	-1.31854000	0.76388200
С	-5.14292500	-0.71368900	2.10405700
Н	-5.39598700	-1.73171000	2.37525200
С	-5.84354700	0.35008200	2.65605900
Н	-6.64532600	0.16746500	3.36216300
С	-5.51326400	1.65412700	2.29813800
Н	-6.05615000	2.49040200	2.72321500
С	-4.48681200	1.88662900	1.39351900
Н	-4.23573100	2.90751400	1.13090900
С	-1.52699600	2.54896400	0.31884100
С	-1.03513400	3.58518800	-0.48013300
Н	-1.23722900	3.59570900	-1.54266400
С	-0.27231000	4.60882800	0.07424900
Н	0.09381300	5.40691800	-0.56113100
С	0.01342900	4.61223100	1.43424900
Н	0.59909000	5.41508800	1.86679200
С	-0.46621400	3.58239600	2.23814700
Н	-0.25720000	3.57904400	3.30185700
С	-1.22757100	2.55918800	1.68574600
Н	-1.59791400	1.76812100	2.32524200
С	-3.42723700	1.93601100	-1.77183500
Н	-2.76356900	2.21034900	-2.59017600
Н	-3.95978700	2.81287200	-1.40391200
Н	-4.13720700	1.19687400	-2.13914000

E = -3532.44215471 A.U.			
Re	-1.04282100	-0.72510100	-1.15557500
CI	0.17798600	-2.52858200	-2.23641000
CI	-3.04039300	-1.40158000	-2.45047200
CI	-0.22322800	0.90017600	-2.74700900
Р	3.06014400	0.06424500	-0.47854400
Р	-2.56596800	1.14001000	-0.42186600
0	-1.63490300	-1.95083200	0.33649200
С	0.32391000	-0.30905400	0.24233400
С	0.15959300	-1.01444200	1.49012300
С	-0.93784400	-1.91496400	1.45429800
С	-1.25776900	-2.70451100	2.56612000
Н	-2.09711100	-3.38559600	2.50467700
С	-0.49357400	-2.58999000	3.71376600
Н	-0.73455500	-3.19754100	4.57870800
С	0.58665500	-1.69674600	3.77657100
Н	1.16982600	-1.62010800	4.68635600
С	0.90795900	-0.91850100	2.67991200
Н	1.74889500	-0.23795200	2.74701500
С	1.44794800	0.69583700	0.14784900
Н	1.67091900	1.16435900	1.11056900
Н	1.20020800	1.49104300	-0.55981300
С	4.26538800	1.40552100	-0.25083100
С	4.35354200	2.07203500	0.97708800
Н	3.71165200	1.79235400	1.80290100
С	5.26755500	3.10188300	1.15180800
Н	5.32582700	3.61072700	2.10602400
С	6.10076100	3.48068200	0.10435400
Н	6.81074300	4.28724100	0.24110700
С	6.01811700	2.82623900	-1.11828600
Н	6.66130600	3.11998300	-1.93851500
С	5.10606400	1.79302600	-1.29749300
Н	5.05185700	1.29900000	-2.25804600
С	2.95584000	-0.33658600	-2.23319400
Н	2.64716400	0.54076400	-2.79938700
Н	2.19402900	-1.10968600	-2.36801900
Н	3.92162500	-0.71081200	-2.57318700
С	3.63305200	-1.41415100	0.39323000

С	4.75593200	-1.38728000	1.22533000
Н	5.31508300	-0.47205700	1.36732600
С	5.16739500	-2.54743000	1.86875000
Н	6.03925500	-2.52347300	2.51103800
С	4.46505500	-3.73300500	1.68465700
Н	4.78733500	-4.63602900	2.18919100
С	3.35190400	-3.76244800	0.85168700
Н	2.80125100	-4.68298800	0.70484700
С	2.93011300	-2.61023900	0.20272300
Н	2.05878600	-2.65215900	-0.44238200
С	-3.96048100	0.72960200	0.70797300
С	-4.42994900	-0.58099700	0.81306800
Н	-3.93495300	-1.37743400	0.27675100
С	-5.53907600	-0.86177600	1.60517500
Н	-5.89483100	-1.88260300	1.67724000
С	-6.18773400	0.15388900	2.29526100
Н	-7.05055700	-0.07065700	2.91157800
С	-5.72716300	1.46273600	2.19165700
Н	-6.22902900	2.26194700	2.72449400
С	-4.62222700	1.74963700	1.40186100
Н	-4.27207800	2.77237700	1.33362400
С	-1.67700500	2.49774700	0.44686900
С	-1.22818800	3.62682900	-0.24185400
Н	-1.43756100	3.74090100	-1.29681300
С	-0.49887900	4.61370500	0.41545700
Н	-0.16324700	5.48538600	-0.13405600
С	-0.20747700	4.48530600	1.76754500
Н	0.35192000	5.25893500	2.28058300
С	-0.64397200	3.35972200	2.46103800
Н	-0.42601200	3.25119300	3.51716500
С	-1.36849500	2.37234000	1.80619500
Н	-1.70124900	1.50279900	2.35874100
С	-3.42074900	1.96943300	-1.81869300
Н	-2.69354200	2.27148700	-2.56987800
Н	-3.99068100	2.82671300	-1.45960500
Н	-4.08548900	1.23276900	-2.26584700

Re	-1.517085325	-0.941436806	0.040779258
CI	-1.432226826	-1.161027818	2.557806565
CI	-3.697517938	-0.079122271	0.426512510
CI	-1.760608850	-3.309841613	-0.161623458
Р	0.854611650	-3.362031951	1.584301881
Р	-1.959499087	-0.701993197	-2.259970869
0	-0.788112152	0.948002463	-0.054402791
С	0.507956045	-1.171561737	-0.039664418
С	1.307717113	0.000000000	0.015952409
С	0.489524319	1.164996081	0.037335542
С	1.057357189	2.449949340	0.112476267
Н	0.410137594	3.317027781	0.134242824
С	2.428267658	2.558030818	0.168574613
Н	2.882084225	3.540176984	0.234395948
С	3.261299619	1.417423743	0.144266971
Н	4.336204158	1.541595799	0.184511261
С	2.714348301	0.158943083	0.069240954
Н	3.372136361	-0.702303085	0.047278512
С	1.226177945	-2.509463385	-0.000582138
Н	2.309993119	-2.433105675	-0.099605244
Н	0.850324682	-3.170075132	-0.781149412
Н	-0.209892226	-2.650989539	2.290646266
Н	-3.303450104	-0.525792109	-2.641927418
Н	0.625325517	-4.724230780	1.370044030
Н	2.023176433	-3.346536131	2.364079380
Н	-1.377454982	0.393240549	-2.933798044
Н	-1.600609876	-1.727253427	-3.162168987

E = -2529.28740740 A.U.				
Re	0.285462390	-1.721103627	0.002840599	
Cl	0.431722129	-1.843733321	2.428594897	
Cl	-1.357200771	-3.541829950	-0.075846771	
Cl	2.263384977	-3.101800515	-0.266382753	
Р	3.293276823	-0.495351829	1.817073684	
Р	0.020420828	-2.011763095	-2.421984558	
0	-1.215731906	-0.373655616	-0.003091846	
С	1.300565738	0.000000000	-0.003251300	
С	0.511006502	1.195053917	0.001971972	

С	-0.881302723	0.899705326	0.001530575
С	-1.833183588	1.927921152	0.007295748
Н	-2.885070772	1.672303618	0.009915729
С	-1.398934397	3.239489909	0.021845274
Н	-2.127273428	4.042052836	0.032253083
С	-0.028613664	3.553728560	0.025667484
Н	0.283805207	4.590672320	0.033942817
С	0.914941416	2.547093184	0.016117963
Н	1.966913212	2.811315328	0.007450111
С	2.796298641	0.119781695	0.170696880
Н	3.195207717	1.135935583	0.094717705
Н	3.341393524	-0.526647339	-0.522951794
Н	3.157278848	-1.874249054	1.957228117
Н	0.163687369	-3.325151113	-2.890996192
Н	4.652572804	-0.191360459	2.000114737
Н	2.629098237	0.152182700	2.857292686
Н	-1.239193143	-1.669005152	-2.940904269
Н	0.852341538	-1.324976014	-3.330710846

References

[1] W. A. Skupiński, J. C. Huffman, J. W. Bruno and K. G. Caulton, *J. Am. Chem. Soc.* 1984, **106**, 8128-8136.

[2] S. Verma, M. Kumar and A. K. Verma, Org. Lett. 2020, 22, 130-134.

[3] S. Chan, R. Lauchli, M. Leivers, S. Liehr, S. Pham, T. Ton and A. Villa, *PCT Int. Appl.* 2010, WO 2010081149 A1 20100715.

[4] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 16, Revision A.03*, Gaussian, Inc., Wallingford CT, 2016.

[5] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) B. Miehlich, A. Savin, H. Stoll and
H. Preuss, Chem. Phys. Lett. 1989, 157, 200-206; c) C. Lee, W. Yang and R. G, Parr. Phys. Rev. B. 1988, 37, 785-789.

[6] a) F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297–3305; b) F. Weigend, *Phys. Chem. Chem. Phys.* 2006, **8**, 1057-1065.

[7] P. J. Hay and W. R. Wadt, J. Chem. Phys. 1985, 82, 299-310.

[8] a) P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J. R. v. E. Hommes, *J. Am. Chem. Soc.* 1996, **118**, 6317-6318; b) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta and P. v. R. Schleyer, *Chem. Rev.* 2005, **105**, 3842-3888; c) H. Fallah-Bagher-Shaidaei, C. S. Wannere, C. Corminboeuf, R. Puchta and P. v. R. Schleyer, *Org. Lett.* 2006, **8**, 863-866.

[9] a) R. Herges and D. Geuenich, J. Phys. Chem. A. 2001, 105, 3214-3220. b) D. Geuenich,
K. Hess, F. Kçhler and R. Herges, Chem. Rev. 2005, 105, 3758-3772.

[10] J. W. Storer, D. J. Giesen, C. J. Cramer and D. G. Truhlar, *J. Comput.-Aided Mol. Des.* 1995, **9**, 87-110.

[11] C. M. Breneman and K. B. Wiberg, J. Comput. Chem. 1990, 11, 361-373.

[12] T. A. Keith, *AIMAll*, Gristmill Software, Overland Park KS, USA, 2017.

[13] D. W. Szczepanik, *RunEDDB*, available at: http://eddb.pl/ runeddb/.

[14] D. W. Szczepanik, M. Andrzejak, K. Dyduch, E. Zak, M. Makowski, G. Mazur and J. Mrozek, *Phys. Chem. Chem. Phys.* 2014, **16**, 20514-20523.

[15] a) T. Lu and F. Chen, *Acta Chim. Sinica* 2011, **69**, 2393-2406; b) T. Lu, F. Chen, *J. Comput. Chem.* 2012, **33**, 580-592.

[16] W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graphics. 1996, 14, 33-38.