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Section S1. Synthesis of materials  

Synthesis of Zr-bcu-NDC 

A mixture of ZrOCl2·8H2O (400 mg, 1.246 mmol) and H2NDC (130 mg, 0.602 mmol) was 

introduced into a 20 mL Pyrex vial containing DMF (5 mL) and trifluoroacetic acid (1.1 

mL). The mixture was then ultrasonicated in 5 min and heated at 120 oC for 3 days. 

Continuously, the solid was centrifugated, washed with DMF for 2 days (20 mL per day), 

and exchanged with MeOH for 2 days (20 mL per day). Finally, the sample was collected, 

dried, and activated under vacuum at 80 oC for 12 h to obtain a white powder. 

Synthesis of acidified VNU-17 (H+VNU-17) 

A mixture of ZrOCl2·8H2O (260 mg, 0.810 mmol) and H3SNDC (270 mg, 0.915 mmol) 

was added to a 100 mL glass bottle including 40 mL of DMF and 6.5 mL formic acid. 

Then, the mixture was ultrasonicated in 10 min and heated for 2 days at 120 oC. The 

mixture was cooled to room temperature and centrifugated to acquire a white powder, 

termed pristine VNU-17 (DMAVNU-17). This solid was washed with DMF for 3 days (15 mL 

per day) to remove the unreacted substances and immersed in a H2SO4 solution of 0.3 M for 2 

days (5 times per day). Subsequently, the sample was washed with an excess amount of 

methanol and water solution to pH = 5. The material was exchanged with MeOH for 2 

days (20 mL per day), dried, and activated under vacuum at 80 oC for 12 h to acquire a 

pure solid, namely H+VNU-17. 

Synthesis of acidified VNU-23 (H+VNU-23) 

ZrOCl2·8H2O (196 mg, 0.611 mmol) and H4SNDC (248 mg, 0.660 mmol) was dissolved 

by a mixture containing 30 mL of DMF and 7.5 mL formic acid in a 100 mL glass bottle. 

The mixture was then heated at 120 oC for 2 days. After cooling down to room 

temperature, the white solid was centrifugated, namely pristine VNU-23 (DMAVNU-23). 

This solid was washed with DMF for 3 days (15 mL per day) to remove the unreacted starting 

materials and immersed in a 0.3 M of H2SO4 solution for 2 days (5 times per day). Next, the 

product was washed with an excess amount of methanol and water solution to pH = 5. 

Finally, the product was exchanged with MeOH for 2 days (20 mL per day), dried, and 

activated under vacuum at 80 oC for 12 h to acquire a pure solid, termed H+VNU-23. 
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Section S2. 1H-NMR analysis of H3SNDC, H4SNDC, digested H+VNU-17, 

and digested H+VNU-23 

 

 

Figure S1. 1H-NMR analysis of the H3SNDC linker. 
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Figure S2. 1H-NMR analysis of digested H+VNU-17. 
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Figure S3. 1H-NMR analysis of the H4SNDC linker. 
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Figure S4. 1H-NMR analysis of digested H+VNU-23. 
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Section S3. Fourier transform infrared (FT-IR) analysis 

 

 

 

Figure S5. FT-IR spectrum of Zr-bcu-NDC (black) in comparison with PbZr-bcu-NDC 

(red). 
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Figure S6. FT-IR spectrum of H+VNU-17 (black) in comparison with PbVNU-17 (blue). 
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Section S4. Powder X-ray diffraction patterns (PXRD) 

 

 

 

Figure S7. PXRD patterns of simulated structure with bcu topology (black) in comparison 

with activated Zr-bcu-NDC (red), activated H+VNU-17 (blue), re-solvated H+VNU-17 in 

water (purple), activated H+VNU-23 (green), and re-solvated H+VNU-23 in water 

(orange). 
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Figure S8. PXRD patterns of simulated structure with bcu topology (black) in comparison 

with the materials immersed in water for 8 weeks such as Zr-bcu-NDC (red), H+VNU-17 

(blue), and H+VNU-23 (green). 
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Figure S9. The Rietveld refinements using P1 space group of PbVNU-23: The 

experimental (red), calculated (black), and difference (blue) patterns. The Bragg positions 

are marked as green bars. 
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Section S5. Thermogravimetric analysis (TGA) and Differential scanning 

calorimetry (DSC) curves 

 

 

 

Figure S10. TGA-DSC curves of Zr-bcu-NDC (a), and PbZr-bcu-NDC (b). TGA curves of 

Zr-bcu-NDC (black) in comparison with PbZr-bcu-NDC (blue) (c). Herein, PbZr-bcu-NDC 

sample was collected after adsorption of Pb2+ (20 mg L-1) onto Zr-bcu-NDC in 24 h with 

maximum uptake of Pb2+ about 37%. 
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Figure S11. TGA-DSC curves of DMAVNU-17 (a), H+VNU-17 (b), and PbVNU-17 (c). 

TGA curves of DMAVNU-17 (black) in comparison with H+VNU-17 (blue), and PbVNU-

17 (purple) (d). Herein, PbVNU-17 sample was obtained after adsorption of Pb2+ (20 mg L-1) 

onto H+VNU-17 in 24 h with maximum uptake of Pb2+ about 52%. 
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Figure S12. TGA-DSC curves of DMAVNU-23 (a), H+VNU-23 (b), and PbVNU-23 (c). 

TGA curves of DMAVNU-23 (black) in comparison with H+VNU-23 (blue), and PbVNU-

23 (purple) (d). Herein, PbVNU-23 sample was obtained after adsorption of Pb2+ (20 mg L-1) 

onto H+VNU-23 in 24 h with maximum uptake of Pb2+ about 99%. 
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Section S6. N2 adsorption measurement 

 

 

 

Figure S13. N2 isotherm of H+VNU-17 (red) and H+VNU-23 (black) at 77K. The closed 

and open circles symbolize the adsorption and desorption branches of the isotherm, 

respectively. 
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Section S7. Scanning electron microscopy (SEM) and energy-dispersive X-

ray mapping (EDX-mapping) analysis 

 

 

 

 

Figure S14. SEM images of Zr-bcu-NDC at different scale bars of 10.0 µm, and 5.00 µm, 

respectively. 

 

 

 

Figure S15. SEM images of H+VNU-17 at different scale bars of 1.00 µm, and 500 nm, 

respectively. 
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Figure S16. SEM images of H+VNU-23 at different scale bars of 1.00 µm, and 500 nm, 

respectively. 
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Figure S17. Elemental mapping by SEM-EDX of H+VNU-23. 
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Figure S18. Elemental mapping by SEM-EDX of PbVNU-23 (uptake of Pb2+
 ~ 99%). 
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Section S8. Transmission electron microscopy (TEM) analysis 

  

 

 

 
 

Figure S19. TEM images of H+VNU-23 before adsorption of Pb2+ (a) and after recycling (b) 

at scale bar of 200 nm. 
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Section S9. Adsorption studies 

Adsorption isotherms 

The four adsorption isotherm models of Langmuir, Freundlich, Temkin, and Dubinin-

Radushkevich are displayed in the equations (1), (2), (3), and (4): 

m L e
e

L e

q .K .C
q =

1 + K .C
                                   (1) 

1/n
e F eq =K .C                                    (2) 

T
RT

q = ln(k C )e e
b

                             (3)        

  
2

DR-K .ε
e mq = q .e                            (4) 

Where Ce (mg L-1) and qe (mg g-1) are the Pb2+ concentration and adsorption capacity at 

equilibrium, respectively, qm (mg g-1) is the theoretical maximum capacity of the Pb2+ 

adsorption. KL (L mg-1), KF (mg g−1 (L g−1)1/n), KT (L mg-1), and KDR (mg g-1) symbolize the 

constants of Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models, 

respectively. 1/n value illustrates the adsorption capacity index of Freundlich isotherm. b, 

R, T are the constant of adsorption heat, gas, and temperature in Kelvin, respectively. ε 

is a constant. 

The separation factor RL is also employed by eqn (5): 

L
oL

1
R =

1 + K C
                                  (5) 

Where Co and KL are the initial concentration of Pb2+ and the constant of Langmuir, 

respectively. 

Adsorption kinetics 

The pseudo first order, pseudo second order, and intra-particle diffusion models obey the 

equations (6), (7), and (8): 

1-k t
t eq = q .(1 - e )                              (6) 

2
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q qk q
                                 (7) 

1/2
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S23 
 

Where qt (mg g-1) and qe (mg g-1) are the Pb2+
 uptake amounts at t and equilibrium time, 

respectively. k1 (min-1), k2 (g mg−1 min−1), and ki (g mg−1 min−1) are the rate constants of 

pseudo first order, pseudo second order, and intra-particle diffusion models, and c is the 

constant indicating the thickness of the boundary layer. 

 

 

 

 

Figure S20. The relationship between the absorbed intensity (red dots) of Pb2+ and 

different concentrations of 0 - 20 mg L-1 by linear fitting. 
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The adsorption of Pb2+ onto H+VNU-17 

 

 

 

Figure S21. Effect of initial concentration on the adsorption capacity of Pb2+ onto 

H+VNU-17 [m = 30 mg, V = 100 mL, Co: 50 - 500 mg L-1, pH = 5.5, t = 24 h] (a). Data 

fitting with the adsorption isotherm models: Langmuir (b), Freundlich (c), Temkin (d). 
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Figure S22. Data fitting with the Dubinin-Radushkevich adsorption isotherm model of the 

Pb2+ adsorption onto H+VNU-17. 
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Figure S23. The kinetic curve for the adsorption of Pb2+ on H+VNU-17 [m = 5 mg, V = 

50 mL, Co = 40 mg L-1, pH = 5] (a). Data fitting with the adsorption kinetic models: pseudo 

first order (b), pseudo second order (c), and intra-particle diffusion model (d). 
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The adsorption of Pb2+ onto H+VNU-23 

 

 

 

Figure S24. Data fitting with the Dubinin-Radushkevich adsorption isotherm model of the 

Pb2+ adsorption onto H+VNU-23. 
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Figure S25. Data fitting with the pseudo first order kinetic model of the Pb2+ adsorption 

onto H+VNU-23. 
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Figure S26. Data fitting with the intra-particle diffusion model of the Pb2+ adsorption onto 

H+VNU-23. 
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Figure S27. (a) Effect of low initial concentrations on the adsorption capacity of Pb2+ onto 

H+VNU-23 [m = 30 mg, V = 100 mL, Co: 10 - 50 mg L-1, pH = 5.5, t = 24 h]; (b) The 

kinetic curve for the adsorption of Pb2+ at low concentrations onto H+VNU-23 [m = 5 mg, 

V = 50 mL, Co = 10 mg L-1 and 10 mg L-1, pH = 5]. 
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Section S10. The stability of VNU-23 during the adsorption and desorption 

process of Pb2+ 

 

 

 

Figure S28. PXRD pattern of H+VNU-23 before adsorption of Pb2+ (black), and 

PbVNU-23 (red) as compared to the experimental pattern from the subjecting H+VNU-

23 after desorption of Pb2+. 
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Figure S29. FT-IR spectrum of VNU-23 before adsorption of Pb2+ (red) in comparison 

with FT-IR spectrum of VNU-23 after desorption of Pb2+ (blue). 

 


