Supporting information

Enhancing remarkable adsorption of Pb²⁺ in a series of sulfonic-functionalized Zr-based MOF: a combined theoretical

and experimental study for elucidating adsorption mechanism

Cuong C. Tran,^a Hieu C. Dong,^{b,c} Vy T. N. Truong,^d Thinh T. M. Bui,^a Hung N. Nguyen,^a Tuyet A. T. Nguyen,^a Nam N. Dang^c and My V. Nguyen^{*,a}

^aFaculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, 700000, Vietnam.

^bFuture Materials and Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam.

^cFaculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam.

^dRoyal Melbourne Institute of Technology (RMIT) University, Ho Chi Minh City 700000, Vietnam.

*To whom correspondence should be addressed: <u>mynv@hcmue.edu.vn</u>

Keywords: SO₃-functionalized Zr-MOFs, uptake of Pb^{2+} , Adsorption mechanism of heavy metal ion.

Table of Contents

Section S1	Synthesis of materials	S 3
Section S2	¹ H-NMR analysis of H ₃ SNDC, H ₄ SNDC, digested H ⁺ \subset VNU-17, and digested H ⁺ \subset VNU-23	S4-S7
Section S3	Fourier transform infrared (FT-IR) analysis	S8-S9
Section S4	Powder X-ray diffraction patterns (PXRD)	S10-S12
Section S5	Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC) curves	S13-S15
Section S6	N ₂ adsorption measurement	S16
Section S7	Scanning electron microscopy (SEM) and energy-dispersive X-ray mapping (EDX-mapping) analysis	S17-S20
Section S8	Transmission electron microscopy (TEM) analysis	S21
Section S9	Adsorption studies	S22-S30
Section S10	The stability of $H^+ \subset VNU$ -23 during the adsorption and desorption process of Pb^{2+}	S31-S32

Section S1. Synthesis of materials

Synthesis of Zr-bcu-NDC

A mixture of ZrOCl₂·8H₂O (400 mg, 1.246 mmol) and H₂NDC (130 mg, 0.602 mmol) was introduced into a 20 mL Pyrex vial containing DMF (5 mL) and trifluoroacetic acid (1.1 mL). The mixture was then ultrasonicated in 5 min and heated at 120 °C for 3 days. Continuously, the solid was centrifugated, washed with DMF for 2 days (20 mL per day), and exchanged with MeOH for 2 days (20 mL per day). Finally, the sample was collected, dried, and activated under vacuum at 80 °C for 12 h to obtain a white powder.

Synthesis of acidified VNU-17 (H⁺⊂VNU-17)

A mixture of ZrOCl₂-8H₂O (260 mg, 0.810 mmol) and H₃SNDC (270 mg, 0.915 mmol) was added to a 100 mL glass bottle including 40 mL of DMF and 6.5 mL formic acid. Then, the mixture was ultrasonicated in 10 min and heated for 2 days at 120 °C. The mixture was cooled to room temperature and centrifugated to acquire a white powder, termed pristine VNU-17 (DMA \subset VNU-17). This solid was washed with DMF for 3 days (15 mL per day) to remove the unreacted substances and immersed in a H₂SO₄ solution of 0.3 M for 2 days (5 times per day). Subsequently, the sample was washed with an excess amount of methanol and water solution to pH = 5. The material was exchanged with MeOH for 2 days (20 mL per day), dried, and activated under vacuum at 80 °C for 12 h to acquire a pure solid, namely H⁺ \subset VNU-17.

Synthesis of acidified VNU-23 (H⁺⊂VNU-23)

ZrOCl₂-8H₂O (196 mg, 0.611 mmol) and H₄SNDC (248 mg, 0.660 mmol) was dissolved by a mixture containing 30 mL of DMF and 7.5 mL formic acid in a 100 mL glass bottle. The mixture was then heated at 120 °C for 2 days. After cooling down to room temperature, the white solid was centrifugated, namely pristine VNU-23 (DMA \subset VNU-23). This solid was washed with DMF for 3 days (15 mL per day) to remove the unreacted starting materials and immersed in a 0.3 M of H₂SO₄ solution for 2 days (5 times per day). Next, the product was washed with an excess amount of methanol and water solution to pH = 5. Finally, the product was exchanged with MeOH for 2 days (20 mL per day), dried, and activated under vacuum at 80 °C for 12 h to acquire a pure solid, termed H⁺ \subset VNU-23. Section S2. ¹H-NMR analysis of H₃SNDC, H₄SNDC, digested H⁺ \subset VNU-17, and digested H⁺ \subset VNU-23

Figure S1. ¹H-NMR analysis of the H₃SNDC linker.

Figure S2. ¹H-NMR analysis of digested H⁺⊂VNU-17.

Figure S3. ¹H-NMR analysis of the H₄SNDC linker.

Figure S4. ¹H-NMR analysis of digested H⁺⊂VNU-23.

Section S3. Fourier transform infrared (FT-IR) analysis

Figure S5. FT-IR spectrum of Zr-bcu-NDC (black) in comparison with PbcZr-bcu-NDC (red).

Figure S6. FT-IR spectrum of H⁺⊂VNU-17 (black) in comparison with Pb⊂VNU-17 (blue).

Figure S7. PXRD patterns of simulated structure with bcu topology (black) in comparison with activated Zr-bcu-NDC (red), activated H⁺ \subset VNU-17 (blue), re-solvated H⁺ \subset VNU-17 in water (purple), activated H⁺ \subset VNU-23 (green), and re-solvated H⁺ \subset VNU-23 in water (orange).

Figure S8. PXRD patterns of simulated structure with bcu topology (black) in comparison with the materials immersed in water for 8 weeks such as Zr-bcu-NDC (red), H⁺ \subset VNU-17 (blue), and H⁺ \subset VNU-23 (green).

Figure S9. The Rietveld refinements using P_1 space group of Pb \subset VNU-23: The experimental (red), calculated (black), and difference (blue) patterns. The Bragg positions are marked as green bars.

Section S5. Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC) curves

Figure S10. TGA-DSC curves of Zr-bcu-NDC (a), and Pb \subset Zr-bcu-NDC (b). TGA curves of Zr-bcu-NDC (black) in comparison with Pb \subset Zr-bcu-NDC (blue) (c). Herein, Pb \subset Zr-bcu-NDC sample was collected after adsorption of Pb²⁺ (20 mg L⁻¹) onto Zr-bcu-NDC in 24 h with maximum uptake of Pb²⁺ about 37%.

Figure S11. TGA-DSC curves of DMA \subset VNU-17 (a), H⁺ \subset VNU-17 (b), and Pb \subset VNU-17 (c). TGA curves of DMA \subset VNU-17 (black) in comparison with H⁺ \subset VNU-17 (blue), and Pb \subset VNU-17 (purple) (d). Herein, Pb \subset VNU-17 sample was obtained after adsorption of Pb²⁺ (20 mg L⁻¹) onto H⁺ \subset VNU-17 in 24 h with maximum uptake of Pb²⁺ about 52%.

Figure S12. TGA-DSC curves of DMA \subset VNU-23 (a), H⁺ \subset VNU-23 (b), and Pb \subset VNU-23 (c). TGA curves of DMA \subset VNU-23 (black) in comparison with H⁺ \subset VNU-23 (blue), and Pb \subset VNU-23 (purple) (d). Herein, Pb \subset VNU-23 sample was obtained after adsorption of Pb²⁺ (20 mg L⁻¹) onto H⁺ \subset VNU-23 in 24 h with maximum uptake of Pb²⁺ about 99%.

Section S6. N2 adsorption measurement

Figure S13. N₂ isotherm of H⁺ \subset VNU-17 (red) and H⁺ \subset VNU-23 (black) at 77K. The closed and open circles symbolize the adsorption and desorption branches of the isotherm, respectively.

Section S7. Scanning electron microscopy (SEM) and energy-dispersive X-ray mapping (EDX-mapping) analysis

Figure S14. SEM images of Zr-bcu-NDC at different scale bars of 10.0 μ m, and 5.00 μ m, respectively.

Figure S15. SEM images of H⁺ \subset VNU-17 at different scale bars of 1.00 μ m, and 500 nm, respectively.

Figure S16. SEM images of H⁺ \subset VNU-23 at different scale bars of 1.00 μ m, and 500 nm, respectively.

Figure S17. Elemental mapping by SEM-EDX of H⁺⊂VNU-23.

Figure S18. Elemental mapping by SEM-EDX of Pb⊂VNU-23 (uptake of Pb²⁺ ~ 99%).

Section S8. Transmission electron microscopy (TEM) analysis

Figure S19. TEM images of H⁺⊂VNU-23 before adsorption of Pb²⁺ (a) and after recycling (b) at scale bar of 200 nm.

Section S9. Adsorption studies

Adsorption isotherms

The four adsorption isotherm models of Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich are displayed in the equations (1), (2), (3), and (4):

$$q_e = \frac{q_m K_L C_e}{1 + K_L C_e}$$
(1)

$$q_e = K_F \cdot C_e^{1/n}$$
 (2)

$$q_{e} = \frac{RT}{b} \ln(k_{T}C_{e})$$
 (3)

$$q_{e} = q_{m} \cdot e^{-K_{DR} \cdot \varepsilon^{2}}$$
 (4)

Where C_e (mg L⁻¹) and q_e (mg g⁻¹) are the Pb²⁺ concentration and adsorption capacity at equilibrium, respectively, q_m (mg g⁻¹) is the theoretical maximum capacity of the Pb²⁺ adsorption. K_L (L mg⁻¹), K_F (mg g⁻¹ (L g⁻¹)^{1/n}), K_T (L mg⁻¹), and K_{DR} (mg g⁻¹) symbolize the constants of Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models, respectively. 1/n value illustrates the adsorption capacity index of Freundlich isotherm. b, R, T are the constant of adsorption heat, gas, and temperature in Kelvin, respectively. ϵ is a constant.

The separation factor R_{L} is also employed by eqn (5):

$$R_{L} = \frac{1}{1 + K_{L}C_{o}}$$
(5)

Where C_0 and K_L are the initial concentration of Pb^{2+} and the constant of Langmuir, respectively.

Adsorption kinetics

The pseudo first order, pseudo second order, and intra-particle diffusion models obey the equations (6), (7), and (8):

$$q_t = q_e.(1 - e^{-k_1 t})$$
 (6)

$$\frac{\mathrm{t}}{\mathrm{q}_{\mathrm{t}}} = \frac{1}{\mathrm{k}_{2}\mathrm{q}_{\mathrm{e}}^{2}} + \frac{\mathrm{t}}{\mathrm{q}_{\mathrm{e}}} \tag{7}$$

$$q_t = k_i t^{1/2} + c$$
 (8)

Where $q_t (mg g^{-1})$ and $q_e (mg g^{-1})$ are the Pb²⁺ uptake amounts at t and equilibrium time, respectively. $k_1 (min^{-1})$, $k_2 (g mg^{-1} min^{-1})$, and $k_i (g mg^{-1} min^{-1})$ are the rate constants of pseudo first order, pseudo second order, and intra-particle diffusion models, and c is the constant indicating the thickness of the boundary layer.

Figure S20. The relationship between the absorbed intensity (red dots) of Pb^{2+} and different concentrations of 0 - 20 mg L⁻¹ by linear fitting.

Figure S21. Effect of initial concentration on the adsorption capacity of Pb²⁺ onto $H^+ \subset VNU-17$ [m = 30 mg, V = 100 mL, C₀: 50 - 500 mg L⁻¹, pH = 5.5, t = 24 h] (a). Data fitting with the adsorption isotherm models: Langmuir (b), Freundlich (c), Temkin (d).

Figure S22. Data fitting with the Dubinin-Radushkevich adsorption isotherm model of the Pb^{2+} adsorption onto H⁺ \subset VNU-17.

Figure S23. The kinetic curve for the adsorption of Pb^{2+} on $H^+ \subset VNU-17$ [m = 5 mg, V = 50 mL, $C_0 = 40$ mg L⁻¹, pH = 5] (a). Data fitting with the adsorption kinetic models: pseudo first order (b), pseudo second order (c), and intra-particle diffusion model (d).

The adsorption of Pb²⁺ onto H⁺⊂VNU-23

Figure S24. Data fitting with the Dubinin-Radushkevich adsorption isotherm model of the Pb^{2+} adsorption onto H⁺ \subset VNU-23.

Figure S25. Data fitting with the pseudo first order kinetic model of the Pb^{2+} adsorption onto H⁺ \subset VNU-23.

Figure S26. Data fitting with the intra-particle diffusion model of the Pb²⁺ adsorption onto $H^+ \subset VNU$ -23.

Figure S27. (a) Effect of low initial concentrations on the adsorption capacity of Pb²⁺ onto H⁺ \subset VNU-23 [m = 30 mg, V = 100 mL, Co: 10 - 50 mg L⁻¹, pH = 5.5, t = 24 h]; (b) The kinetic curve for the adsorption of Pb²⁺ at low concentrations onto H⁺ \subset VNU-23 [m = 5 mg, V = 50 mL, C_o = 10 mg L⁻¹ and 10 mg L⁻¹, pH = 5].

Section S10. The stability of VNU-23 during the adsorption and desorption process of Pb^{2+}

Figure S28. PXRD pattern of H⁺ \subset VNU-23 before adsorption of Pb²⁺ (black), and Pb \subset VNU-23 (red) as compared to the experimental pattern from the subjecting H⁺ \subset VNU-23 after desorption of Pb²⁺.

Figure S29. FT-IR spectrum of VNU-23 before adsorption of Pb²⁺ (red) in comparison with FT-IR spectrum of VNU-23 after desorption of Pb²⁺ (blue).