Synthesis, physicochemical characterization and antiproliferative activity of phosphino Ru(II) and Ir(III) complexes.

Urszula K. Komarnicka,^{a†*} Sandra Kozieł,^{a†} Agnieszka Skórska-Stania,^b Agnieszka Kyzioł,^b Francesco Tisato^c

^a Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland

^b Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland

^{c.}ICMATECNR, Corso Stati Uniti4, 35127 Padova, Italy

[†] First Author, *corresponding Author: urszula.komarnicka@chem.uni.wroc.pl

Herein we present the synthesis of new complexes based on ruthenium(II) ($Ru(\eta^6-p)$ cymene) $Cl_2PPh_2CH_2OH$ (RuPOH), Ru(η^6 -p-cymene) $Cl_2P(p-OCH_3Ph)_2CH_2OH$ (RuMPOH)) and iridium(III) (Ir(n⁵-Cp*)Cl₂P(p-OCH₃Ph)₂CH₂OH (IrMPOH), Ir(n⁵-Cp*)Cl₂PPh₂CH₂OH (IrPOH) containing phosphine ligands with/without methoxy motif on phenyl rings (P(p-OCH₃Ph)₂CH₂OH (MPOH) and PPh₂CH₂OH (POH)). The complexes were characterized by mass spectrometry, NMR spectroscopy (1D: ¹H, ¹³C{¹H}, ³¹P{¹H}, 2D: HMQC, HMBC, COSY NMR) and elemental analysis. All the complexes were structurally identified by single-crystal X-ray diffraction analysis. The Ru(II) and Ir(III) complexes have typical pianostool geometry with a η^6 -coordinated arene (Ru^{II}complexes) or η^5 -coordinated (Ir^{III} compunds) and three additional sites of ligation occupied by two chloride ligands and the phosphine ligand. Oxidation of NADH to NAD⁺ with high efficiency was catalyzed by complexes containing P(p-OCH₃Ph)₂CH₂OH (IrMPOH and RuMPOH). The catalytic property might have important future applications in biological and medical fields like production of reactive oxygen species (ROS). Furthermore redox activity of complexes was confirmed by cyclic voltamperometry. Biochemical assays demonstrated the ability of Ir(III) and Ru(II) complexes to induce significant cytotoxicity in various cancerous cell lines. Furthermore we found that RuPOH and RuMPOH selectively inhibit proliferation of skin cancer cells (WM266-4; IC₅₀, after 24h: av.48.3 µM; after 72h: av.10.2 µM) while Ir(III) complexes were found to be moderately active against prostate cancer cells (DU145).

Graphical Abstract

Identification code	RuPOH	IrPOH	RuMPOH	IrMPOH	
Crystal data					
Empirical formula	C23H27Cl2OPRu	C23H28Cl2IrOP	C25H31Cl2O3PRu	C25H32Cl2IrO3P	
Formula weight	522.38	614.52	582.44	674.57	
Temperature [K]	100(2)	293(2)	293(2)	100(2)	
Wavelength [Å]	1.54184	0.71073	0.71073	1.54184	
Crystal system, space group	Monoclinic, P 2 ₁	Monoclinic, P 2 ₁ /n	Monoclinic, P 2 ₁ /n	Monoclinic, P 2 ₁ /n	
a, b, c [Å]	7.6065(1), 13.8332(1), 10.7154(1)	10.5605(1), 17.1832(2), 12.7618(1)	9.6600(1), 11.1867(1), 23.5077(3)	8.5562(2), 20.6545(6), 13.9418(2)	
β [°]	105.490(1)	93.613(1	92.598(1)	92.251(2)	
V [Å ³]	1086.54(2)	2311.19(4)	2537.71(5)	2461.95(10)	
Z	2	4	4	4	
Radiation type	Cu K _a	Μο Κ _α	Μο Κ _α	Cu K _a	
μ [mm ⁻¹]	8.881	6.089	0.916	13.313	
Crystal size [mm]	0.40 x 0.25 x 0.10	0.20 x 0.20 x 0.20	0.50 x 0.30 x 0.20	0.10 x 0.05x 0.01	
Data collection					
Diffractometer	Rigaku (Cu) XtaLAB Synergy-DW VHF with a HyPix-Arc 150 detector	RigakuODSuperNovaDualsource with an Atlasdetector	RigakuODSuperNovaDualsource with an Atlasdetector	Rigaku (Cu) XtaLAB Synergy-DW VHF with a HyPix-Arc 150 detector	
Absorption correction	Multi-scan (<i>CrysAlisPRO</i> ; Rigaku OD, 2020)	Multi-scan (<i>CrysAlis</i> <i>PRO</i> ; Rigaku OD, 2015)	Multi-scan (<i>CrysAlis</i> <i>PRO</i> ; Rigaku OD, 2015)	Multi-scan (<i>CrysAlisPRO</i> ; Rigaku OD, 2020)	
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	9002/8981/3776	35098/6202/5185	37574/6823/5422	27876/5031/4572	
R(int)	0.0360 0.0397		0.0388	0.0482	
Completeness	Completeness 99.7 %		99.8 %	99.6 %	
Refinement					
Data / restraints / parameters	9002 / 1 / 261	6201 / 0 / 270	6823 / 0 / 297	5031 / 0 / 297	
R[F2 > 2σ(F2)], wR(F2), S	0.0191, 0.0497, 1.201	0.0220, 0.0411, 1.075	0.0305, 0.0626, 1.069	0.0394, 0.1008, 1.095	
$\Delta \rho max, \Delta \rho min (e Å-3)$	0.376 and -0.427	0.850 and -0.614	0.350 and -0.470	1.426 and -2.097	

 Table S1. Crystallographic experimental details.

Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Rigaku OD (2020). *CrysAlis PRO*. Rigaku Oxford Diffraction, Yarnton, England. Sheldrick, G. M. (2015*a*). *Acta Cryst.* A**71**, 3–8

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)				
RuPOH								
C11-H11ACl2	0.99	2.89	3.487(4)	120.0				
011-H11Cl1	0.80(6)	2.30(6)	3.059(3)	159(5)				
IrPOH								
C26-H26Cl1	0.93	2.87	3.640(3)1	40.5				
C32-H32Cl2	0.93	2.96	3.606(3)1	27.6				
O11B_a-H1OB_aCl1	0.82	2.20	2.957(3)1	53.0				
O11A_b-H1OA_bCl2	0.82	2.32	3.099(9)1	59.7				
RuMPOH								
C11-H11ACl1	0.97	2.76	3.336(2)1	18.6				
C11-H11BCl2	0.97	2.78	3.355(2)1	18.4				
C25-H25O34_#1	0.93	2.47	3.313(3)1	50.8				
C27-H27CCl2_#2	0.96	2.97	3.870(3)1	57.5				
C33-H33Cl2_#3	0.93	2.83	3.426(2)1	22.6				
O11-H11OCl1_#2	0.77(3)	2.50(3)	3.259(2)1	71(3)				
Symmetry transformations used to generate equivalent atoms:								
#1 -x-1/2, y+1/2, -z+3/2	#2 -x, -y, -z+1 #3	3 -x+1/2, y+1/2, -:	z+3/2					
IrMPOH								
C23-H23Cl1#1	0.95	2.72	3.444(6)	133.5				
C32-H32Cl1	0.95	2.84	3.667(6)	145.4				
C33-H33Cl2#2	0.95	2.99	3.590(6)	122.6				
011-H11Cl2	0.84	2.39	3.186(5)	157.2				
Symmetry transformation #1 x-1/2,-y+1/2,z+1/2 #	s used to generate 2 x-1/2,-y+1/2,z-1/	equivalent atoms 2	:					

Table S2. Hydrogen-bond geometry (Å, °)

	POHC ⁴⁰	MPOHC ⁴²	POH ⁴¹	MPOH ⁴²	[Ir(η ⁵ - Cp*)Cl ₂] ₂ ^a	[Ru(η ⁶ -p- cymene)Cl ₂] ₂	IrPOH	IrMPOH	RuPOH	RuMPOH
³¹ P	-11.46	15.23	-9.33	-13.60	. /	v / -1-	-7.15	-9.18	16.74	15.07
H ^{Ph(m)}	7.52-7.21	7.25-7.82	7.60-7.31	7.25-7.82			7.41-7.54 m	7.70 t (9.34)	7.41-7.58 m	7.77 t (9.07)
H ^{Ph(0)}							7.72-7.84 m	6.98 dd (8.80;	7.79-7.93 m	6.98 dd (8.66;
_								1.50)		1.40)
\mathbf{H}^{1}	4.32 d (7.7)	5.03 s	4.42 d (8.39)	4.27 d (9.01)			4.97 d (6.6)	4.86 s	4.64 s	4.54 s
H-OH		not observed	1.80 m	not observed			not observed	not observed	not observed	not observed
Н-оснз		3.87 s		3.74 s				3.85 s		3.86 s
C ^{Ph(i)}	135.65 d	106.89 d	135.65 d	126.28 d				118.82 d (55.4)	132.49 d	123.14 d
	(12.0)	(84.47)	(12.0)	(9.08)					(15.2)	(47.23)
C ^{Ph(o)}	132.91 d	115.63 d	132.91 d	114.41 d			133.80 d (9.9)	113.93 d (10.9)	133.61 d (9.1)	114.15 s
	(17.6)	(7.54)	(17.6)	(7.27)						
C ^{Ph(m)}	128.39 d	135.61 d	128.39 d	134.58 d			128.15 d (9.9)	135.57 d (10.9)	128.55 d (9.1)	135.02 s
	(5.6)	(9.99)	(5.6)	(19.07)						
C ^{Ph(p)}	128.64 s	164.03 s	128.64 s	160.42 s			130.92 s	161.83 s	131.17 s	161.68 s
C1	62.46 d	53.31 d	62.46 d	62.94 d			64.25 d (39.1)	64.87 d (31.06)	63.28 d (40.1)	63.51 d
	(13.0)	(59.04)	(13.0)	(14.53)						(31.79)
C-OCH3		55.86 s		55.23 s				55.35 s		55.39 s
HCp*(CH3)					0.96 s		1.40 d (2.19)	1.40 d (2.19)		
$H^{2,3}$						1.29 d (6.9)			0.93 d (7.0)	0.97 d (6.98)
H^4						2.93 spt (7.0)			2.56 spt (7.0)	2.61 spt (7.00)
H ^{6,7,8,9}						5.42 dd (19.2;			5.27 dd (19.6;	5.25 s
						6.0)			6.2)	
\mathbf{H}^{11}						2.16 s			1.91 s	1.89 s
$C^{Cp*(CH3)}$					9.38 s		8.08 s	8.35 s		
C ^{Cp*}					86.28 s		92.28 d (2.2)	92.34 d (2.72)		
C ^{2,3}						22.12 s			21.73 s	21.60 s
C ⁴						30.63 s			30.34 s	30.18 s
C ⁵						101.22 s			108.84 s	108.76 s
C ^{6,8}						80.54 s			86.42 d (5.4)	86.19 s
C ^{7,9}						81.32 s			89.74 d (3.6)	89.31 s
C ¹⁰						96.75 s			95.60 s	95.14 s
C ¹¹						18.89 s			17.70 s	17.57 s

Table S3. Cumulative NMR data (298 K, δ [ppm], J [Hz]) for ligands (in CDCl₃) and iridium-complexes (in CD₂Cl₂).

Figure S1. ¹H, ¹³C{¹H} and ³¹P{¹H} NMR spectra for IrPOH (298 K, CDCl₃).

Figure S2. HMQC, HMBC, COSY NMR spectra for IrPOH (298 K, CDCl₃).

Figure S3.¹H, ${}^{13}C{}^{1}H$ and ${}^{31}P{}^{1}H$ NMR spectra for IrMPOH (298 K, CDCl₃).

Figure S4. HMQC, HMBC, COSY NMR spectra for IrMPOH (298 K, CDCl₃).

Figure S5.¹H, ${}^{13}C{}^{1}H$ and ${}^{31}P{}^{1}H$ NMR spectra for **RuPOH** (298 K, CDCl₃).

Figure S6. HMQC, HMBC, COSY NMR spectra for RuPOH (298 K, CDCl₃).

Figure S7.¹H, ${}^{13}C{}^{1}H$ and ${}^{31}P{}^{1}H$ NMR spectra for **RuMPOH** (298 K, CDCl₃).

Figure S8. HMQC, HMBC, COSY NMR spectra for RuMPOH (298 K, CDCl₃).

Figure S9. Confirmation of hydrolysis of **RuMPOH** by ¹H NMR in 20% DMSO- $d_6/80\%$ D₂O (v/v) at 298 K. From bottom to top: ¹H NMR spectrum of an equilibrium solution of **RuMPOH** (1 mM); spectrum recorded 10 min after addition of NaCl (final concentration, 4 mM) to the equilibrium solution of **RuMPOH**; final concentration of NaCl, 23mM; final concentration of NaCl, 104mM – respectivelyThe peaks for the chlorido complex **RuMPOH** (red triangle) increased in intensity while peaks for the aqua complex decreased (blue star).

Figure S10. Confirmation of hydrolysis of **IrMPOH** by ¹H NMR in 20% DMSO-d₆/80% D_2O (v/v) at 298 K. From bottom to top: ¹H NMR spectrum of an equilibrium solution of **IrMPOH** (1 mM); spectrum recorded 10 min after addition of NaCl (final concentration, 4 mM) to the equilibrium solution of **IrMPOH**; final concentration of NaCl, 23mM; final concentration of NaCl, 104mM – respectively. The peaks for the chlorido complex **IrMPOH** (red triangle) increased in intensity while peaks for the aqua complex decreased (blue star).

Figure S11. Full ESI(+)MS spectrum of IrPOH

Figure S12. Comparison of ion peaks (experimental (top traces) vs calculated (bottom traces)) in the 630 - 650 m/z region of **IrPOH**. Note the different profile of the cluster centred at m/z 637 ([Ir(Me₅-Cp)(Cl)₂(Ph₂PCH₂OH) + Na]⁺, containing the IrCl₂ moiety) with respect to that centered at m/z 579 ([Ir(Me₅-Cp)(Cl)(Ph₂PCH₂OH)]⁺, containing the IrCl moiety), and to that centered at m/z 543 ([Ir(Me₅-Cp)(Ph₂PCH₂OH)]⁺, containing the IrCl moiety).

Figure S13. Full ESI(+)MS spectrum of IrMPOH.

Figure S14 Comparison of high abundant cluster ion peaks (experimental vs calculated) in the 690 - 710 m/z region of **IrMPOH**. Note the different profile of the cluster centered at m/z 639 (containing the IrCl moiety) with respect to the other two profiles centered at m/z 603 and 573 (containing Ir only).

Figure S15. Full ESI(+)MS spectrum of RuPOH.

Figure S16. Comparison of the cluster ion peak of RuPOH centered at m/z 545 (experimental (top) vs calculated (bottom)) corresponding to the sodiated $[M + Na]^+$ ion.

Ru PK009 CHCl3 MeOH #1156-1582 RT: 7,02-10,35 AV: 73 NL: 1,36E3 F: ITMS - c ESI Full ms [50,00-1400,00]

Figure S17. Full ESI(+)MS spectrum of RuPOH.

Figure S18. Full ESI(-)MS spectrum of RuMPOH.

Figure S19. Full ESI(-)MS spectrum of RuMPOH.

Figure S20. Cyclic voltammetric trace of **RuPOH**, **RuMPOH**, **IrPOH** and **IrMPOH** (1 mM) as a function of scan rate, recorded with recorded with 0.1 M tetrabutyl ammonium perchlorate (TBAP) as supporting electrolyte in DMF solution. Scan rates 1 - 100 (mV s-1). Potential (V) versus Fc^{0/+}.

Figure S21. CV voltammograms for ferrocene in DMF in the range of potentials from -01 V to 1.2 V. Scan rate: 10 mV s-1.

Figure S22. UV/Vis spectra of NADH (100 μ M) were determined after incubated with **RuPOH**, **RuMPOH**, **IrPOH**, **IrMPOH** (1 μ M) in CH₃OH/H₂O (1 : 9, v/v) at 298 K for 8 h. The arrows show the absorbance change over time.