Supporting Information

A new rare-earth borate $Ba_3BiPbEuO(BO_3)_4$ and luminescent properties of the $Ba_3BiPbY_{1-x}Eu_xO(BO_3)_4$ phosphors

Xuean Chen^{a,*}, Ruru Bian^a, Weiqiang Xiao^b and Xiaoyan Song^a

^aFaculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, 100124 Beijing, China.

E-mail:<u>xueanchen@bjut.edu.cn</u>

^bBeijing Key Laboratory of Microstructure and Property of Solids, Beijing University of Technology, 100124 Beijing, China

Content

- 1. **Table S1** Atomic coordinates and equivalent isotropic displacement parameters (Å²) for Ba₃BiPbEuO(BO₃)₄.
- 2. Table S2 Selected bond lengths (Å) and angles (°) for Ba₃BiPbEuO(BO₃)₄.
- 3. **Table S3** Le Bail refinement results of Ba₃BiPbY_{1-x}Eu_xO(BO₃)₄ ($0 \le x \le 1$) using the software package TOPAS.
- 4. **Table S4** The spectral data on the Pb^{2+} and Bi^{3+} luminescence in various inorganic hosts.
- 5. Fig. S1 The local environment of each cation site in Ba₃BiPbEuO(BO₃)₄.
- 6. Fig. S2 Le Bail refinements of powder X-ray diffractograms of the Ba₃BiPbY₁. $_{x}Eu_{x}O(BO_{3})_{4}$ solid solutions (x = 0.1, 0.2, 0.4, 0.6 and 0.8).
- 7. Fig. S3 Correlation diagram of the BO₃ internal vibrations in Ba₃BiPbEuO(BO₃)₄, space group $P6_3/mmc$.
- 8. Fig. S4 Infrared (a) and Raman (b) spectra of Ba₃BiPbEuO(BO₃)₄.
- 9. Fig. S5 Survey (a) and core-level spectra of Ba 3d (b), Bi 4f(c), Pb 4f(d), Eu 3d (e), B 1s (f), and O 1s (g) for Ba₃BiPbEuO(BO₃)₄.
- 10. Fig. S6 UV-vis absorption spectrum of $Ba_3BiPbEuO(BO_3)_4$ as compared with that of $Ba_3BiPbYO(BO_3)_4$.
- 11. **Fig. S7** Schematic representation of the energy level scheme of a free ion with ns² configuration (Pb²⁺, Bi³⁺ etc.).
- 12. Fig. S8 PLE spectra of $Ba_3BiPbY_{1-x}Eu_xO(BO_3)_4$ (0.1 $\le x \le 1.0$) phosphors.
- 13. Fig. S9 Excitation line of $BaSO_4$ reference and the PL spectrum of the $Ba_3BiPbEuO(BO_3)_4$ phosphor collected using an integrating sphere ($\lambda_{ex} = 394$ nm).

101 Da3Dh 0Eu0(D03)4.						
Atoms	Wyck	Site	х	у	Z	U _{eq}
	sites	symmetry				
Ba1	4f	C _{3v}	0.6667	0.3333	0.08912(4)	0.0138(3)
Ba2	2d	D_{3h}	0.6667	0.3333	0.2500	0.0213(5)
Bi1/Pb1	4e	C_{3v}	0.0000	0.0000	0.16879(4)	0.0377(4)
Eu1	2a	D_{3d}	0.0000	0.0000	0.0000	0.0074(3)
B1	4f	C_{3v}	0.3333	0.6667	0.0541(9)	0.015(3)
B2	4f	C_{3v}	0.3333	0.6667	0.1722(8)	0.013(3)
O1	12k	C_s	0.1875(11)	0.375(2)	0.0548(4)	0.0208(18)
O2	12k	Cs	0.039(2)	0.5195(12)	0.1720(3)	0.024(2)
O3	2b	D_{3h}	0.0000	0.0000	0.2500	0.021(4)

Table S1Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)for Ba₃BiPbEuO(BO₃)₄.

Note: Bi1/Pb1 has the composition $Bi_{0.5}Pb_{0.5}$. U_{eq} is defined as one third of the trace of the orthogonalized U tensor.

Table S2Selected bond lengths (Å) and angles (°) for $Ba_3BiPbEuO(BO_3)_4$.

Ba1-O2 \times 3	2.798(10)	$Bi1/Pb1-O2 \times 6$	2.7228(8)
Ba1-O1 \times 6	2.869(3)	$Eu1-O1 \times 6$	2.279(10)
$Ba2-O2 \times 6$	2.701(10)	$B1-O1 \times 3$	1.372(11)
Ba2-O3 \times 3	3.1353(1)	$B2-O2 \times 3$	1.384(11)
Bi1/Pb1-O3	2.1399(11)		
O1-Eu1-O1 × 3	180.0(8)	O1-B1-O1 × 3	119.98(6)
O1-Eu1-O1 × 6	84.1(4)	$O2-B2-O2 \times 3$	120.00(2)
O1-Eu1-O1 × 6	95.9(4)		

Table S3 Le Bail refinement results of Ba₃BiPbY_{1-x}Eu_xO(BO₃)₄ ($0 \le x \le 1$) using the software package TOPAS.

Eu ³⁺ content	x=0	x=0.1	x=0.2	x=0.4	x=0.6	x=0.8	x =1.0
Space group	P6 ₃ /mmc	<i>P</i> 6 ₃ / <i>mmc</i>	<i>P</i> 6 ₃ / <i>mmc</i>				
a (Å)	5.41223(14)	5.41512(15)	5.41626(16)	5.42260(13)	5.4262(7)	5.42907(12)	5.42809(17)
c (Å)	26.0981(8)	26.1096(8)	26.1364(8)	26.2276(8)	26.285(3)	26.3217(7)	26.3430(9)
$V(Å^3)$	662.05(4)	663.05(4)	664.01(5)	667.89(4)	670.24(18)	671.89(4)	672.19(5)
R _p , %	3.03	2.99	2.77	3.03	2.69	2.87	2.54
R _{wp} , %	4.95	4.66	4.43	4.75	4.26	4.54	4.09
GOF	2.16	1.99	1.90	2.14	1.83	1.94	1.82

Host	$\lambda_{exc} (nm)$	$\lambda_{ems} \left(nm \right)$	Stokes shift (cm ⁻ 1)	Ref.
SrB_2O_4 :Pb ²⁺	270	363	9489	[S1]
$Sr_6YAl(BO_3)_6:Pb^{2+}$	277	371	9147	[S2]
CaZr(BO ₃) ₂ :Pb ²⁺	250	415	15903	[S3]
LiCaBO ₃ :Pb ²⁺	265	296	3952	[S4]
BaB_2O_4 : Pb^{2+}	240	370	14640	[S5]
CaB_2O_4 : Pb^{2+}	254	325	8600	[S6]
$CaAl_2O_4:Pb^{2+}$	237	360	14416	[S7]
$LiBa_2B_5O_{10}{:}Pb^{2+}$	245	430	17560	[S8]
$Li_4SrCa(SiO_4)_2$:Pb ²⁺	249	290	5678	[S9]
$BaB_8O_{13}{:}Pb^{2+}$	230	360	15700	[S10]
Sr ₆ YAl(BO ₃) ₆ :Bi ³⁺	325	422	7073	[S2]
Li ₄ SrCa(SiO ₄) ₂ :Bi ³⁺	310	380	5942	[S9]
$BaLa_2ZnO_5:Bi^{3+}$	320	410	6860	[S11]
LaInO ₃ :Bi ³⁺	340	420	5602	[S12]
CaZrO ₃ :Bi ³⁺	320	390	5609	[S13]
NaLuGeO ₄ :Bi ³⁺	316	400	6646	[S14]
$MgAl_2O_4:Bi^{3+}$	335	400	4851	[S15]
LaYO ₃ :Bi ³⁺	330	493	10019	[S16]
(Ba,Sr) ₃ Sc ₄ O ₉ :Bi ³⁺	330	526	11292	[S17]
Ca ₃ Bi(PO ₄) ₃ :Bi ³⁺	326	434	7633	[S18]

Table S4 The spectral data on the Pb^{2+} and Bi^{3+} luminescence in various inorganichosts.

Note: the Stokes shift is defined as energy difference between the intensity maxima in the excitation and emission bands.

References

- [S1] İ. Pekgözlü, H. Karabulut, Synthesis and Photoluminescence of Pb²⁺ Doped SrB₂O₄, *Inorg. Mater.*, 2009, **45**, 61–64.
- [S2] R. Sankar, G.V.S. Rao, Luminescence studies on doped borates, A₆MM'(BO₃)₆, J. Alloys. Compd., 1998, 281, 126–136.
- [S3] G. Blasse, S.J.M. Sas, W.M.A. Smit, Luminescent materials with dolomite structure, *Mater. Chem. Phys.*, 1986, 14, 253–258.
- [S4] İ. Pekgözlü, E. Erdoğmuş, S. Çubuk, A.S. Başak, Synthesis and photoluminescence of LiCaBO₃:M (M:Pb²⁺ and Bi³⁺) phosphor, *J. Lumin.*, 2012, 132, 1394–1399.
- [S5] A.B. Gawande, R.P. Sonekar, S. K. Omanwar, Photoluminescence Properties of Combustion Synthesized BaB₂O₄:Pb²⁺ Phosphor, *Combust. Sci. Technol.*, 2014, 186, 1928–1935.
- [S6] H. Witzmann, J. Buhrow, K. Müller, Zum emissionsvermogen bleimanganaktivierter kalziumboratphosphore (CaO·B₂O₃-Pb, Mn), *Naturwissenschaften*, 1964, **51**, 103.
- [S7] C.P. Joshi, S.V. Moharil, Luminescence of Pb²⁺ in some aluminates prepared by combustion synthesis, *Phys. Stat. Sol. (b)*, 2000, **220**, 985–989.
- [S8] G.J. Dirksen, G. Blasse, Luminescence in the Pentaborate LiBa₂B₅O₁₀, J. Solid State Chem., 1991, 92, 591–593.
- [S9] İ. Pekgözlü, E. Erdoğmuş, M. Yılmaz, Synthesis and photoluminescence properties of Li₄SrCa(SiO₄)₂: M (M: Pb²⁺ and Bi³⁺), *J. Lumin.*, 2015, 161, 160– 163.
- [S10] E. Erdoğmuş, E. Korkmaz, V.E. Kafadar, Luminescence of a novel near-UV emitting phosphor BaB₈O₁₃:Pb²⁺, *J. Appl. Spectrosc.*, 2014, **80**, 945–949.

- [S11] Y.S. Chang, Blue emitting phosphors of BaLa₂ZnO₅ activated by Bismuth ions, J. Electrochem. Soc., 2011, 158, J115–J119.
- [S12] L.I. van Steensel, S.G. Bokhove, A.M. van de Craats, J. de Blank, G. Blasse, The luminescence of Bi³⁺ in LaInO₃ and some other perovskites, *Mater. Res. Bull.*, 1995, **30**, 1359-1362.
- [S13] H. Witzmann, H. Anderson, D. Walther, Zur Lumineszenz wismutaktivierter Zirkondioxid-Calciumoxid-Phasen, *Zeitschrift für Physikalische Chemie*, 1968, 239, 243-251.
- [S14] W.X. Wang, Z.Y. Sun, X.Y. He, Y.D. Wei, Z.H. Zou, J.C. Zhang, Z.F. Wang, Z.Y. Zhang, Y.H. Wang, How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO₄: Bi³⁺, Eu³⁺ phosphor, *J. Mater. Chem. C*, 2017, **5**, 4310-4318.
- [S15] W.A.I. Tabaza, H.C. Swart, R.E. Kroon, Optical properties of Bi and energy transfer from Bi to Tb in MgAl₂O₄ phosphor, *J. Lumin.*, 2014, 148, 192–197.
- [S16] D.R. Taikar, Sumedha Tamboli, S.J. Dhoble, Synthesis and photoluminescence properties of red, green and blue emitting LaYO₃:M (M = Eu³⁺, Tb³⁺, Sm³⁺,Bi³⁺, Pb²⁺) phosphors, *Optik*, 2017, **142**, 183-190.
- [S17] P.P. Dang, S.S. Liang, G.G. Li, H.Z. Lian, M.M. Shang, J. Lin, Broadly color tuning of Bi³⁺/Eu³⁺-doped (Ba, Sr)₃Sc₄O₉ solid solution compounds *via* crystal field modulation and energy transfer, *J. Mater. Chem. C*, 2018, 6, 9990–9999.
- [S18] M.K. Sahu, M. Jayasimhadri, Conversion of blue emitting thermally stable Ca₃Bi(PO₄)₃ host as a color tunable phosphor via energy transfer for luminescent devices, *J. Lumin.*, 2020, 227, 117570.

Fig. S1 The local environment of each cation site in $Ba_3BiPbEuO(BO_3)_4$ (the numbers correspond to the oxygen atom designations). Ba: black balls; Bi/Pb: blue balls; Eu: magenta balls; B: cyan balls; O: red balls.

Fig. S2 Le Bail refinements of powder X-ray diffractograms of the Ba₃BiPbY₁₋ _xEu_xO(BO₃)₄ solid solutions (x = 0.1, 0.2, 0.4, 0.6 and 0.8).

Fig. S3 Correlation diagram of the BO₃ internal vibrations in Ba₃BiPbEuO(BO₃)₄, space group $P6_3/mmc$

It is well-known that the free BO_3 unit with D_{3h} symmetry has 12 vibrational degrees of freedom, and its irreducible representations of the normal modes can be written as follows: $\Gamma_{BO3} = 1A_1' + 1A_2' + 2A_2'' + 3E' + 1E''$, where $1A_2'' + 1E'$ are translational modes, $1A_2' + 1E''$ are rotational modes, and the rest $(1A_1' + 1A_2'' + 2E')$ are internal modes.⁴⁶ Ba₃BiPbEuO(BO₃)₄ crystallizes in the hexagonal space group $P6_3/mmc$ (D_{6h}⁴, no. 194), and its primitive cell comprises eight BO₃ units. Each B atom is surrounded by three oxygen atoms of the same type, so the BO_3 group is an equilateral triangle with site symmetry C_{3v} (see Table S1 and Fig. S1). In this case, the factor group analysis (see the correlation diagram in Fig. S3) predicts that the internal modes of the BO₃ units give rise to 48 lattice vibrations $(4A_{1g} + 4A_{2u} + 4B_{1g} + 4B_{2u} + 4E_{2u} + 4E_{2g$ $4E_{1u} + 4E_{1g}$). Similarly, we can deduce that 24 lattice vibrations $(2A_{1g} + 2A_{2u} + 2B_{1g})$ $+2B_{2u}+2E_{2u}+2E_{2g}+2E_{1u}+2E_{1g}$) originate from the translational modes of the BO₃ units, and 24 lattice vibrations $(2A_{1u} + 2A_{2g} + 2B_{1u} + 2B_{2g} + 2E_{2u} + 2E_{2g} + 2E_{1u} + 2E_{2g} + 2E_{1u} + 2E_{2g} +$ $2E_{1g}$ from the rotational modes. The Ba atoms occupy two structure positions: 4f and 2d with C_{3v} and D_{3h} site symmetry, respectively. The disordered (Bi/Pb) and Eu atoms occupy positions 4e and 2a with C_{3v} and D_{3d} site symmetry, respectively. The O3 atom, that is an oxygen not bonded to B atoms, is located at the 2b Wyckoff site also with D_{3h} site symmetry. These atoms contribute totally with $2A_{1g} + 5A_{2u} + 4B_{1g} +$

 $3B_{2u} + 3E_{2u} + 4E_{2g} + 5E_{1u} + 2E_{1g}$ translational modes. Summing all these modes and subtracting the acoustic modes ($A_{2u} + E_{1u}$), one gets the following optical vibrational modes of the crystal: $\Gamma_{opt} = 8A_{1g} + 2A_{1u} + 2A_{2g} + 10A_{2u} + 10B_{1g} + 2B_{1u} + 2B_{2g} + 9B_{2u} + 11E_{2u} + 12E_{2g} + 12E_{1u} + 10E_{1g}$, in which the $10A_{2u} + 12E_{1u}$ modes are IR-active, the $8A_{1g} + 12E_{2g} + 10E_{1g}$ modes are Raman-active, while the rest of the modes ($2A_{1u} + 2A_{2g} + 10B_{1g} + 2B_{1u} + 2B_{2g} + 9B_{2u} + 11E_{2u} + 10B_{1g} + 2B_{1u} + 2B_{2g} + 9B_{2u} + 11E_{2u}$) are silent.

Furthermore, the internal vibrations of BO₃ units can be subdivided into: $v_1(2A_{1g} + 2A_{2u} + 2B_{1g} + 2B_{2u})$ – symmetric stretching, $v_2(2A_{1g} + 2A_{2u} + 2B_{1g} + 2B_{2u})$ – outof-plane bending, $v_3(2E_{2u} + 2E_{2g} + 2E_{1u} + 2E_{1g})$ – antisymmetric stretching, and $v_4(2E_{2u} + 2E_{2g} + 2E_{1u} + 2E_{1g})$ – in-plane bending modes. Thus, the analysis shows that one expects to observe 12 modes in Raman and 8 modes in IR spectra for the BO₃ units, with the modes: $v_1(2A_{1g}) + v_2(2A_{1g}) + v_3(2E_{2g} + 2E_{1g}) + v_4(2E_{2g} + 2E_{1g})$ and $v_1(2A_{2u}) + v_2(2A_{2u}) + v_3(2E_{1u}) + v_4(2E_{1u})$, respectively. Here, E_{2g} , E_{1g} , and E_{1u} are twofold degenerated and often considered as one mode.

Fig. S4 Infrared (a) and Raman (b) spectra (excited by a 785 nm laser) of Ba₃BiPbEuO(BO₃)₄.

Fig. S5 Survey (a) and core-level spectra of Ba 3d (b), Bi 4f (c), Pb 4f (d), Eu 3d (e),B 1s (f), and O 1s (g) for Ba₃BiPbEuO(BO₃)₄.

Fig. S6 UV–vis absorption spectrum of $Ba_3BiPbEuO(BO_3)_4$ as compared with that of $Ba_3BiPbYO(BO_3)_4$. The insets show the Tauc plots from indirect (left) and direct (right) transitions as well as local magnification of the UV–vis spectrum.

The optical band gap can be determined by the following Tauc formula:⁶⁴

 $\alpha h \nu = A(h \nu - E_g)^n$

where α , hv, A, and E_g stand for the absorption coefficient, photonic energy, proportionality constant, and band gap, respectively. The exponent n denotes the nature of the sample transition, n = 1/2 and 2 corresponding to direct and indirect allowed transitions, respectively. Here, we replace the absorption coefficient α with the absorbance obtained from UV–vis spectra and plot $(\alpha hv)^{1/n}$ as a function of hv. By extrapolating the linear part of the graphics to the axis of the abscissa, the indirect band gap of 3.02 eV and the direct band gap of 3.35 eV were obtained for Ba₃BiPbEuO(BO₃)₄, as shown in the insets of Fig. S6. For comparison, the UV–vis absorption spectrum of Ba₃BiPbYO(BO₃)₄ was also displayed in Fig. S6. It was observed that the optical band gaps of the undoped material, derived from the turning point of the absorption edge in the absorption spectrum, were around 3.00 eV for indirect and 3.32 eV for direct transitions, respectively, which are slightly less than the corresponding ones observed in its Eu-analog.

Fig. S7 Schematic representation of the energy level scheme of a free ion with ns^2 configuration (Pb²⁺, Bi³⁺ etc.).

The ground state of the free Pb²⁺ and Bi³⁺ ions is ¹S₀, while the 6s6p excited states give rise to the triplet levels (³P₀, ³P₁, ³P₂) and the ¹P₁ singlet state in sequence of energy increase (see Fig. S7). The lowest energy ¹S₀ \rightarrow ³P₀ transition is strongly forbidden, but the ¹S₀ \rightarrow ³P₁ and ¹S₀ \rightarrow ³P₂ transitions become more allowed due to spin–orbit coupling and coupling to asymmetrical phonon modes, respectively. The ¹S₀ \rightarrow ¹P₁ transition is parity- and spin-allowed, but the ¹P₁ state has higher energy than the ³P₁ state. The emission from the ³P₁ \rightarrow ¹S₀ transition is usually observed at room temperature, although the highly forbidden ³P₀ \rightarrow ¹S₀ emission is also observed at low temperatures.⁶⁵

Fig. S8 PLE spectra of Ba₃BiPbY_{1-x}Eu_xO(BO₃)₄ (0.1 $\leq x \leq$ 1.0) phosphors. Inset is the variation of 394 nm (⁷F₀ \rightarrow ⁵L₆ of Eu³⁺) excitation intensity.

Fig. S9 Excitation line of BaSO₄ reference and the PL spectrum of the Ba₃BiPbEuO(BO₃)₄ phosphor collected using an integrating sphere ($\lambda_{ex} = 394$ nm); inset shows a local magnification of the PL spectrum.

The quantum yield (QY for short) can be determined by an integrated sphere method based on the following equation:

$$QY = \frac{\int L_S}{\int E_R - \int E_S}$$

Where $\int L_S$ is the integrated intensity of the PL spectrum for the sample, $\int E_R$ and $\int E_S$ are the integrated intensities of the PLE spectra for BaSO₄ powder and the sample, respectively.⁷⁹ The excitation line of white BaSO₄ powder and emission spectrum of the Ba₃BiPbEuO(BO₃)₄ phosphor collected in an integrating sphere ($\lambda_{ex} = 394$ nm) are presented in Fig. S9, where the QY is estimated to be about 26.31%. There are several ways to improve the QY property.⁸⁰ One is to co-dope various sensitizer and activator into the same host to increase the luminescence intensity through the energy transfer process. The other is to control the crystallite size or to explore alternative synthetic routes to reduce defects inducing non-radiative losses. We believe that the obtained QY value could be further enhanced by controlling the particle size, size distribution, morphology, and surface defects through optimization of the preparation conditions

and material compositions.