Sterically shielded primary anilides of the alkalineearth metals of the type (thf)_nAe(NH-Ar*)₂ (Ae = Mg, Ca, Sr, and Ba; Ar* = bulky aryl)

Philipp Schüler,^a Sven Krieck,^a Helmar Görls,^a Phil Liebing,^a and Matthias Westerhausen^{*,a}

^a Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena Humboldtstraße 8, D-07743 Jena, Germany e-mail: m.we@uni-jena.de

Content

1	Ana	alytical data	1
	1.1	$[(thf)_2Mg(NH-C_6H_2(Ph)_3)_2]$ 1b	1
	1.2	[(thf) ₂ Ca(NH-C ₆ H ₂ (Ph) ₃) ₂] 1c	4
	1.3	$[(thf)_3Sr(NH-C_6H_2(Ph)_3)_2]$ 1d	6
	1.4	[(thf) ₃ Ba(NH-C ₆ H ₂ (Ph) ₃) ₂] 1e	8
	1.5	[(thf) ₂ Mg{NH-2,6-(Ph ₂ CH)-4-Me-C ₆ H ₂ }(ⁿ Bu/ ^s Bu)] 2b_{Bu}	. 11
	1.6	[(thf) ₂ Mg{NH-2,6-(Ph ₂ CH)-4-Me-C ₆ H ₂ }(Ph)] 2b_{Ph}	. 14
	1.7	[(thf) ₂ Mg{NH-2,6-(Ph ₂ CH)-4-Me-C ₆ H ₂ } ₂] 2b	. 16
	1.8	[(thf) ₂ Ca{NH-2,6-(Ph ₂ CH)-4-Me-C ₆ H ₂ } ₂] 2c	. 18
	1.9	[(thf) ₂ Sr{NH-2-(Ph ₂ C)-6-(Ph ₂ CH)-4-Me-C ₆ H ₂ }] ₂ 2d'	. 20
	1.10	[(thf) ₂ Sr{NH-2,6-(Ph ₂ CH) ₂ -4-Me-C ₆ H ₂ } ₂] 2d	.21
	1.11	[(thf) ₂ Ba{NH-2-(Ph ₂ C)-6-(Ph ₂ CH)-4-Me-C ₆ H ₂ }] ₂ 2e'	. 24
2	Cry	stallographic data	. 25

1 Analytical data

1.1 $[(thf)_2Mg(NH-C_6H_2(Ph)_3)_2]$ 1b

Figure S 1: ¹H-NMR-Spectrum (400 MHz, [D₈]THF, 297 K) of [(thf)₂Mg(HN-(Ph)₃C₆H₂)₂] **1b**.

Figure S 2: ¹³C{¹H}-NMR -Spectrum (101 MHz, [D₈]THF, 297 K)of [(thf)₂Mg(HN-(Ph)₃C₆H₂)₂ **1b**.

Figure S 3: HSQC-NMR-Spectrum (400 MHz, $[D_8]THF$, 297 K) of $[(thf)_2Mg(HN-(Ph)_3C_6H_2)_2]$ 1b.

Figure S 4: HMBC-NMR-Spectrum (400 MHz, [D₈]THF, 297 K) of [(thf)₂Mg(HN-(Ph)₃C₆H₂)₂] 1b.

Figure S 5: IR spectrum (ATR) of [(thf)₂Mg(HN-(Ph)₃C₆H₂)₂] **1b**.

1.2 [(thf)₂Ca(NH-C₆H₂(Ph)₃)₂] 1c

Figure S 6: ¹H-NMR-Spectrum (400 MHz, [D₈]THF, 297 K) of [(thf)₂Ca(NHC₆H₂(Ph)₃)₂] **1c**.

Figure S 7: ¹³C{¹H}-NMR-Spectrum (101 MHz, [D₈]THF, 297 K) of [(thf)₂Ca(NHC₆H₂(Ph)₃)₂] **1c**.

Figure S 8: HSQC-NMR-Spectrum (400 MHz, [D₈]THF, 297 K) of [(thf)₂Ca(NHC₆H₂(Ph)₃)₂] 1c.

Figure S 9: IR spectrum (ATR) of $[(thf)_2Ca(NHC_6H_2(Ph)_3)_2]$ 1c.

1.3 $[(thf)_3Sr(NH-C_6H_2(Ph)_3)_2]$ 1d

Figure S 10: ¹H-NMR-Spectrum (400 MHz, C₆D₆, 297 K) of [(thf)₃Sr{NH-2,4,6-(Ph)₃-C₆H₂] 1d.

Figure S 11: HMBC -NMR-Spectrum (400 MHz, C₆D₆, 297 K) of [(thf)₃Sr{NH-2,4,6-(Ph)₃-C₆H₂] 1d.

Figure S 12: H,H-COSY-NMR-Spektrum (400 MHz, C₆D₆, 297 K) von[(thf)₃Sr{NH-2,4,6-(Ph)₃-C₆H₂] 1d.

Figure S 13: IR spectrum (ATR) of [(thf)₃Sr{NH-2,4,6-(Ph)₃-C₆H₂] 1d.

1.4 $[(thf)_3Ba(NH-C_6H_2(Ph)_3)_2]$ 1e

Figure S 14: ¹H-NMR-Spectrum (400 MHz, C₆D₆, 297 K) of [(thf)₃Ba(NH-C₆H₂(Ph)₃)₂] **1e**.

Figure S 15: ${}^{13}C{}^{1}H$ -NMR-Spectrum (101 MHz, C₆D₆, 297 K) of [(thf)₃Ba(NH-C₆H₂(Ph)₃)₂] **1e**.

Figure S 16: HSQC-NMR-Spectrum (400 MHz, C₆D₆, 297 K) of [(thf)₃Ba(NH-C₆H₂(Ph)₃)₂] **1e**.

Figure S 17: HMBC-NMR-Spectrum (400 MHz, C₆D₆, 297 K) of [(thf)₃Ba(NH-C₆H₂(Ph)₃)₂] **1e**.

Figure S 18: IR spectrum (ATR) of $[(thf)_3Ba(NH-C_6H_2(Ph)_3)_2]$ 1e.

1.5 [(thf)₂Mg{NH-2,6-(Ph₂CH)-4-Me-C₆H₂}($^{n}Bu/^{s}Bu$)] **2b**_{Bu}

Figure S 19: ¹H-NMR-Spectrum (400 MHz, [D₈]Tol, 297 K) of [(thf)₂Mg {NH-2,6-(Ph₂CH)-4-Me-C₆H₂}(ⁿBu/^sBu)] **2b**_{Bu}.

Figure S 20: ${}^{13}C{}^{1}H$ -NMR-Spectrum (101 MHz, [D₈]Tol, 297 K) of [(thf)₂Mg {NH-2,6-(Ph₂CH)-4-Me-C₆H₂}(${}^{n}Bu/{}^{s}Bu$)] **2b**_{Bu}.

Figure S 21: HSQC-NMR-Spectrum (400 MHz, [D₈]Tol, 297 K) of [(thf)₂Mg {NH-2,6-(Ph₂CH)-4-Me-C₆H₂}(ⁿBu/^sBu)] **2b**_{Bu}.

Figure S 22: IR spectrum of [(thf)₂Mg {NH-2,6-(Ph₂CH)-4-Me-C₆H₂}(ⁿBu/^sBu)] **2b**_{Bu}.

1.6 [(thf)₂Mg{NH-2,6-(Ph₂CH)-4-Me-C₆H₂}(Ph)] **2b**_{Ph}

Figure S 23: ¹H-NMR-Spectrum (400 MHz, [D₈]Tol, 297 K) of [(thf)₂Mg {NH-2,6-(Ph₂CH)-4-Me-C₆H₂}(Ph)] **2b**_{Ph}.

Figure S 24:¹³C{¹H}-NMR-Spectrum (101 MHz, [D₈]Tol, 297 K) of [(thf)₂Mg {NH-2,6-(Ph₂CH)-4-Me-C₆H₂}(Ph)] **2b**_{Ph}.

Figure S 25: HSQC-NMR-Spectrum (400 MHz, [D₈]Tol, 297 K) of [(thf)₂Mg {NH-2,6-(Ph₂CH)-4-Me-C₆H₂}(Ph)] **2b**_{Ph}.

1.7 $[(thf)_2Mg{NH-2,6-(Ph_2CH)-4-Me-C_6H_2}_2]$ 2b

Figure S 26: ¹H-NMR-Spectrum (400 MHz, C_6D_6 , 297 K) of [(thf)₂Mg {NH-2,6-(Ph₂CH)-4-Me-C₆H₂}] **2b**. The sample contains substochiometric amounts of toluene.

Figure S 27: ${}^{13}C{}^{1}H$ -NMR-Spectrum (101 MHz, C₆D₆, 297 K) of [(thf)₂Mg {NH-2,6-(Ph₂CH)-4-Me-C₆H₂}] **2b**. The sample contains substoichiometric amounts of toluene.

Figure S 28: HMBC-NMR-Spectrum (400 MHz, C_6D_6 , 297 K) of [(thf)₂Mg {NH-2,6-(Ph₂CH)-4-Me-C₆H₂}₂] **2b**. The sample contains substochiometric amounts of toluene.

Figure S 29: IR spectrum of [(thf)₂Mg {NH-2,6-(Ph₂CH)-4-Me-C₆H₂ $_2$] **2b**.

1.8 $[(thf)_2Ca{NH-2,6-(Ph_2CH)-4-Me-C_6H_2}_2]$ 2c

Figure S 30: ¹H-NMR-Spectrum (400 MHz, $[D_8]$ THF, 297 K) of $[(thf)_2Ca{NH-2,6-(Ph_2CH)-4-Me-C_6H_2}_2]$ **2c**. The sample contains protonated aniline (#).

Figure S 31: ¹³C{¹H}-NMR-Spectrum (101 MHz, $[D_8]$ THF, 297 K) of $[(thf)_2Ca{NH-2,6-(Ph_2CH)-4-Me-C_6H_2}_2]$ **2c**. The sample contains protonated aniline (#).

Figure S 32: HSQC-NMR-Spectrum (400 MHz, [D₈]THF, 297 K) of [(thf)₂Ca{NH-2,6-(Ph₂CH)-4-Me-C₆H₂}] **2c**. The sample contains protonated aniline (#).

Figure S 33: IR spectrum (ATR) of $[(thf)_2Ca{NH-2,6-(Ph_2CH)-4-Me-C_6H_2}_2]$ 2c.

1.9 [(thf)₂Sr{NH-2-(Ph₂C)-6-(Ph₂CH)-4-Me-C₆H₂}]₂ 2d'

Figure S 34: IR spectrum (ATR) of [(thf)2Sr {NH-2-(Ph₂C)-6-(Ph₂CH)-4-Me-C₆H₂}]₂ 2d'.

 $1.10 [(thf)_2 Sr{NH-2,6-(Ph_2 CH)_2-4-Me-C_6 H_2}_2] 2d$

Figure S 35: ¹H-NMR spectrum ([D₈]THF, 297K, 400 MHz) of [(thf)₂Sr{NH-2,6-(Ph₂CH)₂-4-Me-C₆H₂}₂] **2d**.

Figure S 36: ¹³C{¹H}-NMR spectrum ([D₈]THF, 297K, 101 MHz) of [(thf)₂Sr{NH-2,6-(Ph₂CH)₂-4-Me-C₆H₂}₂] **2d**.

Figure S 37: HSQC-DEPT-NMR spectrum ([D₈]THF, 297K, 400 MHz) of [(thf)₂Sr{NH-2,6-(Ph₂CH)₂-4-Me-C₆H₂}₂] **2d**.

Figure S 38: IR spectrum (ATR) of [(thf)₂Sr{NH-2,6-(Ph₂CH)-4-Me-C₆H₂}₂ **2d**.

 $1.11 [(thf)_2Ba{NH-2-(Ph_2C)-6-(Ph_2CH)-4-Me-C_6H_2}]_2 2e'$

Figure S 39: ¹H-NMR-Spectrum (400 MHz, [D₈]THF, 297 K) of [(thf)₂Ba{NH-2-(Ph₂C)-6-(Ph₂CH)-4-Me-C₆H₂}] 2e'.

Figure S 40: Overlay of ¹H-NMR-Spectra (400 MHz, $[D_8]$ THF, 297 K) *in situ* generated [(thf)₂Ba{NH-2-(Ph₂C)-6-(Ph₂CH)-4-Me-C₆H₂}] **2e'** directly prepared (green) and after one hour (red). The compound **2e'** precipitated during this period in red crystals, yielding a intensity loss in ¹H-NMR spectrum.

Figure S 41: ${}^{13}C{}^{1}H$ -NMR-Spectrum (101 MHz, [D₈]THF, 297 K) of [(thf)₂Ba{NH-2-(Ph₂C)-6-(Ph₂CH)-4-Me-C₆H₂}] **2e'**.

Figure S 42: ¹H-HMBC-NMR-Spectrum (400 MHz, [D₈]THF, 297 K) of [(thf)₂Ba{NH-2-(Ph₂C)-6-(Ph₂CH)-4-Me-C₆H₂}] **2e'**.

2 Crystallographic data

Compound	1b	1c	1d	2b _{Bu}	2bph
formula	C60H60MgN2O3	C56H52CaN2O2	$C_{60}H_{60}N_2O_3Sr[*]$	C45H53MgNO2	C47H49MgNO2
fw (g·mol ⁻¹)	881.41	825.07	944.72[*]	664.19	684.18
T∕°C	-140(2)	-140(2)	-140(2)	-140(2)	-140(2)
crystal system	monoclinic	triclinic	Triclinic	monoclinic	monoclinic
space group	$P 2_1/c$	Ρī	Ρī	C 2/c	C 2/c
<i>a</i> / Å	21.6285(5)	9.7673(3)	11.8826(2)	27.9665(5)	28.1647(5)
b/ Å	10.8549(2)	11.2864(4)	20.3808(4)	17.3376(4)	17.8406(4)
<i>c</i> / Å	21.1559(4)	11.3300(3)	23.1208(4)	18.9540(5)	18.1355(3)
$\alpha/^{\circ}$	90	62.604(2)	66.247(1)	90	90
$\beta/^{\circ}$	103.708(1)	82.371(2)	78.218(1)	124.620(1)	124.063(1)
$\gamma^{\prime \circ}$	90	86.915(1)	84.243(1)	90	90
$V/Å^3$	4825.40(17)	1099.06(6)	5016.01(16)	7563.0(3)	7549.1(3)
Ζ	4	1	4	8	8
ρ (g·cm ⁻³)	1.213	1.247	1.251[*]	1.167	1.204
$\mu (\mathrm{cm}^{-1})$	0.85	1.88	11.22[*]	0.85	0.87
measured data	28122	13616	59383	40739	21851
data with $I > 2\sigma(I)$	8168	3995	16074	6309	6510
unique data (R_{int})	10982/0.0562	4987/0.0448	22603/0.0441	8671/0.0497	8616/0.0480
w R_2 (all data, on F^2) ^{a)}	0.1505	0.1617	0.2358	0.2154	0.1400
$R_1 (I > 2\sigma(I))^{a}$	0.0667	0.0698	0.0902	0.0884	0.0651
s ^{b)}	1.075	1.055	1.087	1.079	1.089
Res. dens./e·Å ⁻³	0.366/-0.336	0.381/-0.589	2.276/-1.086	1.362/-0.406	0.658/-0.333
absorpt method	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
absorpt corr T _{min} / _{max}	0.6592/0.7456	0.6891/0.7456	0.6564/0.7456	0.6796/0.7456	0.6895/0.7456
CCDC No.	2152421	2152422	2152423	2152424	2152425

Table S 1: Crystal data and refinement details for the X-ray structure determinations.

Compound	2b	2c	2d	2d'	2e'
formula	C ₇₈ H ₈₀ MgN ₂ O ₃	C ₈₆ H ₉₆ CaN ₂ O ₅	$C_{74}H_{72}N_2O_2Sr$	$C_{82}H_{86}N_2O_4Sr_2[*]$	C ₉₆ H ₁₀₂ Ba ₂ N ₂ O ₄
fw (g·mol ⁻¹)	1117.75	1277.72	1108.95	1338.76[*]	1622.47
$^{\circ}C$	-140(2)	-140(2)	-153(2)	-140(2)	-140(2)
crystal system	triclinic	orthorhombic	triclinic	triclinic	triclinic
space group	P ī	F d d 2	P ī	P ī	Ρī
<i>a</i> / Å	11.6149(2)	30.1857(5)	9.7312(13)	11.4529(4)	11.4133(3)
b∕ Å	11.8127(3)	34.5680(5)	12.4502(15)	12.3964(3)	12.6652(3)
<i>c</i> / Å	23.2496(5)	13.7013(2)	13.6436(17)	14.2573(4)	14.4790(3)
$\alpha/^{\circ}$	103.213(1)	90	99.627(5)	76.074(2)	73.278(1)
$eta /^{\circ}$	95.942(1)	90	108.743(6)	83.267(1)	82.423(1)
γ/°	93.433(1)	90	104.168(6)	82.325(2)	81.815(1)
$V/\text{\AA}^3$	3077.27(12)	14296.7(4)	1462.3(3)	1939.45(10)	1974.90(8)
Ζ	2	8	1	1	1
ρ (g·cm ⁻³)	1.206	1.187	1.259	1.146[*]	1.364
μ (cm ⁻¹)	.81	1.42	9.71	14.21[*]	10.45
measured data	33576	45739	18360	23046	10609
data with $I > 2\sigma(I)$	9907	7433	5799	6848	7893
unique data (R_{int})	12477/0.0484	8180/0.0473	7228/0.0437	8773/0.0492	8414/0.0252
w R_2 (all data, on F^2) ^{a)}	0.2582	0.0897	0.1003	0.1410	0.1005
$R_1 (I > 2\sigma(I))^{a}$	0.0956	0.0454	0.0454	0.0696	0.0454
s ^{b)}	1.087	1.078	1.029	1.033	1.083
Res. dens./e·Å ⁻³	0.703/-0.432	0.223/-0.218	0.432/-0.463	1.770/-0.447	1.208/-0.674
Flack-parameter	-	0.17(4)	-	-	-
absorpt method	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
absorpt corr T _{min} /max	0.6305/0.7456	0.6954/0.7391	0.6193/0.7456	0.6625/0.7456	0.6719/0.7456
CCDC No.	2152426	2152427	2161838	2152428	2152429

Contd. Table S 1: Crystal data and refinement details for the X-ray structure determinations.

[*] derived parameters do not contain the contribution of the disordered solvent. a) Definition of the *R* indices: $R_1 = (\Sigma || F_o| - |F_c||)/\Sigma |F_o|$; $wR_2 = \{\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]\}^{1/2}$ with $w^{-1} = \sigma^2(F_o^2) + (aP)^2 + bP$; $P = [2F_c^2 + Max(F_o^2]/3; b) s = \{\Sigma[w(F_o^2 - F_c^2)^2]/(N_o - N_p)\}^{1/2}$.