Electronic Supplementary Information

N-Hydroxy – N-oxide photoinduced tautomerization and excitation wavelength dependent luminescence of ESIPT-capable zinc(II) complexes with a rationally designed 1-hydroxy-2,4-di(pyridin-2-yl)-1*H*-imidazole ESIPT-ligand

Nikita A. Shekhovtsov, *^a Katerina A. Vinogradova,^a Sofia N. Vorobyova,^a Alexey S. Berezin,^a Victor F. Plyusnin,^b Dmitry Yu. Naumov,^a Natalia V. Pervukhina,^a Elena B. Nikolaenkova,^c Alexsei Ya. Tikhonov ^c and Mark B. Bushuev *^a

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad.
Lavrentiev Ave., Novosibirsk, 630090, Russia. E-mail addresses: shekhovtsov@niic.nsc.ru (Nikita A.
Shekhovtsov), bushuev@niic.nsc.ru (Mark B. Bushuev). Fax: +7 383 330 94 89; Tel: +7 383 316 51 43.
^b Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, 3, Institutskaya str., Novosibirsk, 630090, Russia

^c N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.

Table of contents

Table S15
Figure S16
Figure S26
Figure S36
Figure S47
Figure S57
Figure S67
Figure S77
Figure S88
Figure S98
Figure S108
Figure S118
Figure S129
Figure S139
Figure S1410
Figure S1511
Figure S1611
Figure S1711
Figure S1812
Figure S1912
Figure S2013
Table S2a14
Table S2b14
Figure S2115
Figure S2215
Figure S2316
Figure S2416
Figure S2517
Table S317
Table S4
Table S5
Table S6
Table S7
Table S8

Table S9	21
Table S10.	22
Table S11.	23
Table S12.	24
Table S13	24
Table S14	25
Table S15.	26
Table S16.	26
Table S17.	27
Table S18.	28
Table S19.	29
Table S20.	29
Table S21	31
Table S22.	31
Figure S26	33
Figure S27	33
Table S23.	33
Table S24.	34
Table S25	35
Table S26.	36
Table S27.	37
Table S28.	37
Table S29.	
Table S30.	40
Table S31.	41
Table S32.	42
Table S33.	43
Table S34.	44
Table S35.	45
Table S36.	46
Table S37.	48
Table S38.	49
Table S39.	50
Table S40.	51
Table S41.	53
Table S42.	53
Table S43.	54

54
55
55
56
56

Complex	1	2	3
Empirical formula	$C_{14}H_{12}CI_2N_4OZn$	$C_{14}H_{12}Br_2N_4OZn$	$C_{14}H_{12}I_2N_4OZn$
Formula weight	388.55	477.47	571.45
Crystal system		Monoclinic	
Space group, Z		P21/c, 4	
<i>a</i> (Å)	11.4076(3)	11.6350(3)	12.0424(9)
<i>b</i> (Å)	7.9255(2)	7.9633(3)	8.1386(6)
<i>c</i> (Å)	16.5642(3)	16.9065(5)	17.4214(15)
β(°)	91.408(1)	91.484(1)	91.506(2)
V(Å ³)	1497.13(6)	1565.91(9)	1706.9(2)
d _{Calc} (g/cm ³)	1.724	2.025	2.224
μ (mm ⁻¹)	2.003	6.677	5.062
F(000)	784	928	1072
Crystal size (mm)	0.250 x 0.120 x 0.080	0.250 x 0.120 x 0.080	0.250 x 0.150 x 0.050
Theta range for data	2.460 - 26.019	2.410 - 26.021	2.339 - 26.022
collection (°)			
Index ranges	$-14 \le h \le 13$	$-14 \le h \le 14$	$-11 \le h \le 14$
	$-9 \le k \le 9$	$-9 \le k \le 9$	$-10 \le k \le 9$
	-16 ≤ I ≤ 20	$-20 \le I \le 20$	-21 ≤ I ≤ 21
Reflections collected	10188	11925	11233
Independent reflections	2951 (<i>R</i> _{int} = 0.0363)	3079 9 (<i>R</i> _{int} = 0.0357)	3346 (<i>R</i> _{int} = 0.0498)
(R _{int})			
Completeness to theta =	99.9 %	99.8 %	99.8 %
25.500°			
Data / restraints /	2951/0/210	3079 / 0 / 210	3346 / 0 / 210
parameters			
Goodness-of-fit on F ²	1.032	1.072	1.163
Final <i>R</i> indices (<i>I</i> >2 σ_1)	$R_1 = 0.0280, wR_2 =$	$R_1 = 0.0321, wR_2 =$	$R_1 = 0.0493, wR_2 =$
	0.0712	0.0710	0.1234
R indices (all data)	$R_1 = 0.0308, wR_2 =$	$R_1 = 0.0390, wR_2 =$	$R_1 = 0.0541, wR_2 =$
	0.0723	0.0729	0.1257
Largest diff. peak and hole (e/ų)	0.542 and -0.333	0.870 and -0.450	2.288 and -1.513

Table S1. Crystal data and structure refinement for 1 - 3.

Figure S1. Packing of **1** (view along the *a* axis).

Figure S2. Packing of 1 (view along the *b* axis).

Figure S3. Packing of 1 (view along the *c* axis).

Figure S4. Molecular structure of the major component of [Zn(HL)Br₂] in the structure of 2.

Figure S5. Packing of 2 (view along the *a* axis).

Figure S6. Packing of 2 (view along the *b* axis).

Figure S7. Packing of 2 (view along the *c* axis).

Figure S8. Molecular structure of the major component of $[Zn(HL)I_2]$ in the structure of 3.

Figure S9. Packing of 3 (view along the *a* axis).

Figure S10. Packing of 3 (view along the *b* axis).

Figure S11. Packing of 3 (view along the *c* axis).

Figure S12. Supramolecular dimeric associates and supramolecular chains in the structure of 1.

Figure S13. C–H…Hal contacts in the structures of 1, 2 and 3.

Figure S14. Intra- and intermolecular hydrogen bonds in the structures of 1, 2 and 3.

Figure S15. X-ray powder diffraction patterns of [Zn(HL)Cl₂].

Figure S16. X-ray powder diffraction patterns of [Zn(HL)Br₂].

Figure S17. X-ray powder diffraction patterns of [Zn(HL)I₂].

Figure S18. X-ray powder diffraction pattern of $[ZnL_2][Zn(OAc)_2]_2 \cdot 2H_2O$.

Figure S19. X-ray powder diffraction pattern of [ZnL₂][ZnCl₂]₂·4H₂O.

Figure S20. IR spectra of HL, $[Zn(HL)Cl_2]$, $[Zn(HL)Br_2]$, $[Zn(HL)I_2]$, $[ZnL_2][Zn(OAc)_2]_2 \cdot 2H_2O$ and $[ZnL_2][ZnCl_2]_2 \cdot 4H_2O$ in KBr (top) and fluorinated oil (bottom).

Compound	Т, К	λ_{ex} , nm ^a	λ_{det} , nm ^b	τ, ns ^c
			575	1.2, 3.5
[7p(HI)Cl_]	300	375	700	1.3, 4.0
			500	1.7, 3.6
	77	375	530	1.9, 3.7
			600	2.0, 4.3
			535	0.7, 1.5
[Zn(HL)Br ₂]	300	375	700	0.9, 1.6
[=(500	2.1, 3.5
	77	375	560	1.5, 3.3
			650	1.6, 3.7
			560	0.2, 1.1
[7n(HI)] ₂]	300	375	700	0.2, 1.0, 2.6
[=(.1=/)2]			500	1.6, 3.3
	77	375	540	1.5, 3.2
			600	1.6, 3.5

a - excitation wavelength

b – detection wavelength

c – emission decay was analyzed with two or three components : $I = \sum_{i} A_i \exp(-t/\tau_i)$

Table S2b. Photoluminescence quantum yields (PLQY) recorded for ZnHLCl₂, ZnHLBr₂ and ZnHLl₂ in the solid state.

Compound	Т, К	$\lambda_{ ext{ex}}$, nm ^a	PLQY, %
	300	300	4
[Zn(HL)Cl ₂]		400	11
	77	300	12
		400	25
	300	300	4
[Zn(HL)Br₂]		400	11
	77	300	9
		400	27
	300	300	3
[Zn(HL)I ₂]		400	8
	77	300	5
		400	13

a - excitation wavelength

Figure S21. Excitation and emission spectra of [ZnL₂][Zn(OAc)₂]₂·2H₂O in the solid state at 300 K.

Figure S22. Excitation and emission spectra of [ZnL₂][ZnCl₂]₂·4H₂O in the solid state at 300 K.

Figure S23. Comparison of the excitation spectra of ESIPT-capable complex **ZnHLCl**₂ with non-ESIPT-capable complexes **[ZnL**₂]**[ZnCl**₂]₂·4H₂**O** and **[ZnL**₂]**[Zn(OAc)**₂]₂·2H₂**O** in the solid state. The absence of the peak at *ca*. 470 nm in the case of compounds **[ZnL**₂]**[ZnCl**₂]₂·4H₂**O** and **[ZnL**₂]**[Zn(OAc)**₂]₂·2H₂**O**, which is associated with the excitation of the proton-transferred species, supports the fact that proton transfer does not take place in **[ZnL**₂]**[ZnCl**₂]₂·4H₂**O** and **[ZnL**₂]**[Zn(OAc)**₂]₂·2H₂**O**.

Figure S24. Comparison of the emission intensity of fresh and light-irradiated samples of $[ZnL_2][Zn(OAc)_2]_2 \cdot 2H_2O$, $\lambda_{ex} = 300$ nm.

Figure S25. Comparison of the emission intensity of fresh and light-irradiated samples of $[ZnL_2][ZnCl_2]_2 \cdot 4H_2O$, $\lambda_{ex} = 300$ nm.

Table S3. Optimized geometry of the ground state of $ZnHLCl_2$ (normal form, S_0^N) in Cartesian (XYZ) coordinates as calculated in Gaussian at the M062X/6-31+g(d) level of theory using the QM/MM method (QM region).

Cl	0.825694000000	-3.862487000000	0.840797000000	
CI	0.860198000000	-2.705945000000	-3.048448000000	
Zn	0.352078000000	-2.470449000000	-0.869659000000	
N	-1.624869000000	-1.592827000000	-0.662082000000	
N	1.384673000000	1.668871000000	-0.178751000000	
0	2.144111000000	2.779681000000	0.023539000000	
Н	3.071377000000	2.397088000000	0.119494000000	
N	4.068468000000	1.004286000000	0.207530000000	
C	3.576976000000	-1.350837000000	0.126029000000	
Н	2.849020000000	-2.149909000000	0.037855000000	
N	0.776683000000	-0.410920000000	-0.380077000000	
С	-0.329697000000	0.385206000000	-0.478963000000	
C	0.035434000000	1.718729000000	-0.354596000000	
C	1.815726000000	0.381064000000	-0.191224000000	
C	3.202550000000	-0.009893000000	0.045135000000	
C	5.346927000000	0.715598000000	0.453611000000	
Н	6.013682000000	1.560229000000	0.584438000000	
C	5.814932000000	-0.588990000000	0.544366000000	
Н	6.858763000000	-0.775340000000	0.753585000000	
C	4.910898000000	-1.634275000000	0.375487000000	
Н	5.230215000000	-2.665506000000	0.445290000000	
С	-0.701125000000	3.013277000000	-0.354351000000	
Н	0.011559000000	3.839693000000	-0.346729000000	
Н	-1.342151000000	3.110885000000	0.526794000000	
Н	-1.328743000000	3.099373000000	-1.243589000000	
C	-1.643759000000	-0.248892000000	-0.600794000000	

C	-2.84859400000	0.455600000000	-0.589816000000	
Н	-2.848913000000	1.535699000000	-0.527055000000	
С	-4.041879000000	-0.253150000000	-0.634597000000	
Н	-4.986063000000	0.280354000000	-0.606044000000	
C	-4.012124000000	-1.644626000000	-0.678680000000	
Н	-4.917926000000	-2.237139000000	-0.689845000000	
C	-2.772165000000	-2.270699000000	-0.688995000000	
Н	-2.680444000000	-3.350735000000	-0.715506000000	

Table S4. Optimized geometry of the ground state of ZnHLCl2 (local minimum in the tautomeric form,
S_0^T) in Cartesian (XYZ) coordinates as calculated in Gaussian at the M062X/6-31+g(d) level of theory using
the QM/MM method (QM region).

Cl	0.775738000000	-3.832706000000	0.794024000000
Cl	0.862419000000	-2.694486000000	-3.114866000000
Zn	0.382329000000	-2.447386000000	-0.939736000000
Ν	-1.603480000000	-1.572254000000	-0.713366000000
Ν	1.326273000000	1.728743000000	-0.076356000000
0	2.035844000000	2.740983000000	0.284094000000
Н	3.699823000000	2.009251000000	-0.012326000000
Ν	4.114242000000	0.993751000000	0.006614000000
С	3.520450000000	-1.295739000000	0.338944000000
Н	2.759860000000	-2.065108000000	0.409664000000
Ν	0.780621000000	-0.361776000000	-0.448246000000
С	-0.368848000000	0.439095000000	-0.53840600000
С	-0.030507000000	1.755365000000	-0.344616000000
С	1.776102000000	0.415323000000	-0.155226000000
С	3.163381000000	0.004422000000	0.101424000000
С	5.422852000000	0.710120000000	0.283814000000
Н	6.110503000000	1.540189000000	0.256674000000
С	5.819481000000	-0.583381000000	0.510674000000
Н	6.866111000000	-0.782962000000	0.689654000000
С	4.878670000000	-1.622750000000	0.506064000000
Н	5.179199000000	-2.649790000000	0.635424000000
С	-0.776846000000	3.040965000000	-0.302946000000
Н	-0.064145000000	3.865705000000	-0.242426000000
Н	-1.433986000000	3.098076000000	0.569324000000
Н	-1.388116000000	3.161186000000	-1.198916000000
С	-1.655109000000	-0.226084000000	-0.660636000000
С	-2.878168000000	0.451907000000	-0.640426000000
Н	-2.902287000000	1.532407000000	-0.587316000000
С	-4.053309000000	-0.284402000000	-0.66330600000
Н	-5.008588000000	0.227819000000	-0.629716000000
С	-3.989970000000	-1.676222000000	-0.696056000000
Н	-4.881761000000	-2.289741000000	-0.69699600000
С	-2.735121000000	-2.274573000000	-0.717746000000
Н	-2.619622000000	-3.352583000000	-0.74149600000

Table S5. Optimized geometry of the **first singlet excited state** of **ZnHLCl**₂ (**normal form**, **S**₁^N) in Cartesian (XYZ) coordinates as calculated in Gaussian at the M062X/6-31+g(d) level of theory using the QM/MM method (QM region).

Cl 0.76582000000 -3.85135000000 0.813668000000

Cl	0.854233000000	-2.692747000000	-3.054239000000	
Zn	0.252724000000	-2.466490000000	-0.892939000000	
N	-1.674414000000	-1.516269000000	-0.682558000000	
Ν	1.390276000000	1.706888000000	-0.192659000000	
0	2.203396000000	2.759990000000	0.007731000000	
Н	3.138708000000	2.287682000000	0.140765000000	
Ν	4.026478000000	1.038870000000	0.254566000000	
C	3.551372000000	-1.357624000000	0.149426000000	
Н	2.828048000000	-2.160273000000	0.039090000000	
Ν	0.736563000000	-0.409694000000	-0.401544000000	
C	-0.345017000000	0.418937000000	-0.505748000000	
C	0.081778000000	1.787678000000	-0.378444000000	
C	1.807769000000	0.361068000000	-0.192346000000	
C	3.149936000000	-0.003470000000	0.064132000000	
C	5.292041000000	0.747817000000	0.524826000000	
Н	5.956474000000	1.591691000000	0.678224000000	
C	5.771260000000	-0.559809000000	0.620845000000	
Н	6.812718000000	-0.732362000000	0.855536000000	
C	4.876382000000	-1.625292000000	0.426379000000	
Н	5.208838000000	-2.651905000000	0.500071000000	
C	-0.631836000000	3.086553000000	-0.405280000000	
Н	0.092991000000	3.901971000000	-0.402943000000	
Н	-1.283663000000	3.195583000000	0.467519000000	
Н	-1.251898000000	3.153130000000	-1.301625000000	
С	-1.652699000000	-0.141067000000	-0.638681000000	
С	-2.841323000000	0.611443000000	-0.655612000000	
Н	-2.796976000000	1.692747000000	-0.622313000000	
С	-4.061975000000	-0.038978000000	-0.697558000000	
Н	-4.984848000000	0.529917000000	-0.704380000000	
С	-4.073766000000	-1.445049000000	-0.707985000000	
Н	-4.999167000000	-2.006823000000	-0.722763000000	
C	-2.858958000000	-2.125837000000	-0.701333000000	
Н	-2.832856000000	-3.211066000000	-0.717779000000	

Table S6. Optimized geometry of the **first singlet excited state** of $ZnHLCl_2$ (tautomeric form, S_1^T) in Cartesian (XYZ) coordinates as calculated in Gaussian at the M062X/6-31+g(d) level of theory using the QM/MM method (QM region).

Cl	0.768662000000	-3.828544000000	0.787461000000	
CI	0.862806000000	-2.692947000000	-3.124254000000	
Zn	0.386721000000	-2.444178000000	-0.949636000000	
N	-1.600364000000	-1.569418000000	-0.720579000000	
N	1.317994000000	1.737204000000	-0.061612000000	
0	2.020436000000	2.735356000000	0.321418000000	
Н	3.789668000000	1.953758000000	-0.031057000000	
N	4.120842000000	0.992160000000	-0.021981000000	
C	3.512448000000	-1.287954000000	0.369470000000	
Н	2.747191000000	-2.053087000000	0.462880000000	
N	0.781259000000	-0.354856000000	-0.457872000000	
C	-0.374381000000	0.446692000000	-0.546788000000	
C	-0.039863000000	1.760501000000	-0.343080000000	
C	1.770508000000	0.420114000000	-0.149974000000	
C	3.157854000000	0.006367000000	0.109575000000	
C	5.433762000000	0.709247000000	0.259665000000	

Н	6.124402000000	1.537229000000	0.209953000000	
C	5.820201000000	-0.582671000000	0.505971000000	
Н	6.867230000000	-0.784143000000	0.680639000000	
C	4.874129000000	-1.621195000000	0.524827000000	
Н	5.171972000000	-2.647641000000	0.662693000000	
C	-0.787601000000	3.044828000000	-0.295492000000	
Н	-0.074890000000	3.869325000000	-0.227416000000	
Н	-1.447042000000	3.096142000000	0.575502000000	
Н	-1.396532000000	3.169914000000	-1.192419000000	
C	-1.656664000000	-0.222925000000	-0.669073000000	
C	-2.882326000000	0.451283000000	-0.647538000000	
Н	-2.909843000000	1.531838000000	-0.595812000000	
C	-4.054869000000	-0.288958000000	-0.667295000000	
Н	-5.011733000000	0.220208000000	-0.632995000000	
C	-3.986744000000	-1.680837000000	-0.698435000000	
н	-4.87652000000	-2.297357000000	-0.697909000000	
C	-2.729759000000	-2.275227000000	-0.721749000000	
Н	-2.610860000000	-3.352935000000	-0.745100000000	

Table S7. Optimized geometry of the **second singlet excited state** of $ZnHLCl_2$ (tautomeric form, S_2^T) in Cartesian (XYZ) coordinates as calculated in Gaussian at the M062X/6-31+g(d) level of theory using the QM/MM method (QM region).

(Cl	0.764481000000	-3.865582000000	0.818465000000
(Cl	0.853504000000	-2.678844000000	-3.078942000000
Z	Zn	0.399155000000	-2.448481000000	-0.892521000000
Ν	N	-1.586193000000	-1.574380000000	-0.672761000000
1	Ν	1.317573000000	1.776583000000	-0.157395000000
(0	2.069383000000	2.786111000000	0.041026000000
ł	Н	3.769342000000	1.946039000000	0.111197000000
1	N	4.098232000000	0.982560000000	0.190765000000
(С	3.502993000000	-1.326338000000	0.219365000000
ł	Н	2.754746000000	-2.104545000000	0.254385000000
٦	N	0.783898000000	-0.356088000000	-0.394721000000
(С	-0.370169000000	0.442383000000	-0.498928000000
(С	-0.034127000000	1.777472000000	-0.36116000000
(С	1.783782000000	0.441898000000	-0.178948000000
(С	3.157000000000	0.033371000000	0.080046000000
(С	5.396836000000	0.736560000000	0.421716000000
I	Н	6.049122000000	1.589447000000	0.50916000000
(С	5.819088000000	-0.627169000000	0.508470000000
H	Н	6.863588000000	-0.848467000000	0.658570000000
(С	4.877101000000	-1.615977000000	0.405755000000
H	Н	5.175485000000	-2.654647000000	0.471964000000
(С	-0.793231000000	3.056092000000	-0.348163000000
ŀ	Η	-0.086466000000	3.888297000000	-0.338187000000
ŀ	Η	-1.425313000000	3.137266000000	0.540824000000
ŀ	Η	-1.429562000000	3.139871000000	-1.230564000000
(С	-1.646272000000	-0.223068000000	-0.61760900000
(С	-2.875374000000	0.450131000000	-0.608361000000
ŀ	Η	-2.904543000000	1.530402000000	-0.552407000000
(С	-4.046365000000	-0.289569000000	-0.646487000000
ŀ	Η	-5.004475000000	0.217455000000	-0.619314000000
(С	-3.974230000000	-1.683732000000	-0.683162000000

Н	-4.86302000000	-2.301783000000	-0.692838000000
C	-2.716095000000	-2.277637000000	-0.69229000000
Н	-2.598283000000	-3.355681000000	-0.715083000000

Table S8. Optimized geometry of the ground state of $ZnHLCl_2$ (minor component, S_0^{minor}) in Cartesian (XYZ) coordinates as calculated in Gaussian at the M062X/6-31+g(d) level of theory using the QM/MM method (QM region).

Cl	0.599908000000	-3.704082000000	0.684290000000	
Cl	0.945568000000	-2.668690000000	-2.954056000000	
Zn	1.615361000000	-2.297303000000	-0.830635000000	
Ν	-1.649267000000	-1.605819000000	-0.464626000000	
Ν	1.352632000000	1.783122000000	-0.152534000000	
0	2.065994000000	2.846607000000	0.023328000000	
Ν	3.385662000000	-1.271445000000	-0.153287000000	
C	4.218337000000	0.927093000000	0.365884000000	
Н	3.980072000000	1.976854000000	0.471783000000	
Ν	0.813308000000	-0.367075000000	-0.351830000000	
C	-0.319396000000	0.380998000000	-0.449015000000	
C	0.001877000000	1.743226000000	-0.332608000000	
C	1.811407000000	0.493031000000	-0.175200000000	
C	3.185278000000	0.057426000000	0.011828000000	
C	4.602625000000	-1.770250000000	0.079496000000	
Н	4.713331000000	-2.842236000000	-0.033948000000	
C	5.682027000000	-0.976134000000	0.446114000000	
Н	6.649096000000	-1.429561000000	0.618386000000	
C	5.485297000000	0.396401000000	0.568705000000	
Н	6.311546000000	1.050361000000	0.825844000000	
C	-0.773664000000	3.010688000000	-0.344728000000	
Н	-0.056687000000	3.833389000000	-0.283595000000	
Н	-1.457187000000	3.086987000000	0.507016000000	
Н	-1.355878000000	3.112908000000	-1.263948000000	
C	-1.60031000000	-0.252864000000	-0.539910000000	
C	-2.829455000000	0.420126000000	-0.655925000000	
Н	-2.834169000000	1.501048000000	-0.675599000000	
C	-4.007068000000	-0.296161000000	-0.717525000000	
Н	-4.949058000000	0.238585000000	-0.773613000000	
C	-3.993368000000	-1.701069000000	-0.703638000000	
Н	-4.900594000000	-2.286139000000	-0.763087000000	
C	-2.777894000000	-2.328169000000	-0.573028000000	
Н	-2.639259000000	-3.399607000000	-0.513751000000	
Н	-0.798847000000	-2.136472000000	-0.225490000000	

Table S9. Optimized geometry of the **first singlet excited state** of $ZnHLCl_2$ (**minor component**, S_1^{minor}) in Cartesian (XYZ) coordinates as calculated in Gaussian at the M062X/6-31+g(d) level of theory using the QM/MM method (QM region).

Cl	0.757770000000	-3.694794000000	0.777121000000	
Cl	0.994920000000	-2.656824000000	-2.981516000000	
Zn	1.583194000000	-2.315583000000	-0.840273000000	
N	-1.618148000000	-1.591515000000	-0.450163000000	
N	1.353534000000	1.797367000000	-0.171740000000	
0	2.041921000000	2.844722000000	-0.015180000000	

Ν	3.378935000000	-1.27140100000	-0.175356000000	
C	4.248814000000	0.909146000000	0.370934000000	
Н	4.053563000000	1.962024000000	0.504641000000	
Ν	0.817351000000	-0.331832000000	-0.353107000000	
C	-0.339980000000	0.432653000000	-0.443240000000	
C	-0.029220000000	1.767083000000	-0.338545000000	
C	1.830609000000	0.495320000000	-0.182273000000	
C	3.199373000000	0.061230000000	0.002500000000	
C	4.587421000000	-1.787558000000	0.059597000000	
Н	4.682579000000	-2.860153000000	-0.058786000000	
C	5.680266000000	-1.015359000000	0.435016000000	
Н	6.639134000000	-1.485115000000	0.607457000000	
C	5.506209000000	0.360966000000	0.570570000000	
Н	6.340151000000	1.000430000000	0.838174000000	
C	-0.809000000000	3.030762000000	-0.335678000000	
Н	-0.125656000000	3.876536000000	-0.241127000000	
Н	-1.514056000000	3.060240000000	0.499503000000	
Н	-1.375897000000	3.136103000000	-1.262945000000	
C	-1.639742000000	-0.212706000000	-0.533036000000	
C	-2.851652000000	0.429110000000	-0.662654000000	
Н	-2.872435000000	1.509686000000	-0.709934000000	
C	-4.047225000000	-0.299068000000	-0.725629000000	
Н	-4.995338000000	0.217721000000	-0.784479000000	
C	-3.975931000000	-1.712204000000	-0.714299000000	
Н	-4.865098000000	-2.323851000000	-0.799143000000	
С	-2.760620000000	-2.327716000000	-0.577725000000	
Н	-2.620947000000	-3.398881000000	-0.536995000000	
Н	-0.791801000000	-2.078595000000	-0.101289000000	

Table S10. Optimized geometry of the ground state of ZnHLBr₂ (normal form, S_0^N) in Cartesian (XYZ) coordinates as calculated in Gaussian at the M062X/6-31+g(d) level of theory using the QM/MM method (QM region).

E	Br	0.868164000000	-3.966194000000	0.909353000000	
E	Br	0.915945000000	-2.670581000000	-3.162031000000	
Z	Zn	0.371061000000	-2.429764000000	-0.853635000000	
١	N	-1.603133000000	-1.551249000000	-0.641524000000	
1	N	1.404422000000	1.705075000000	-0.105190000000	
(0	2.162676000000	2.814973000000	0.111314000000	
I	Н	3.091717000000	2.435908000000	0.188252000000	
I	N	4.101874000000	1.034280000000	0.229369000000	
(С	3.606965000000	-1.317890000000	0.105847000000	
ł	Н	2.878671000000	-2.114500000000	0.003989000000	
1	N	0.799248000000	-0.371649000000	-0.344542000000	
(С	-0.309792000000	0.424111000000	-0.421813000000	
(С	0.053447000000	1.755279000000	-0.271704000000	
(С	1.839045000000	0.418509000000	-0.147639000000	
(С	3.231671000000	0.024644000000	0.058443000000	
	С	5.384136000000	0.737341000000	0.449639000000	
I	Н	6.057684000000	1.576985000000	0.586073000000	
(С	5.851109000000	-0.570312000000	0.512728000000	
I	Н	6.898555000000	-0.762669000000	0.703765000000	
(С	4.941955000000	-1.611058000000	0.339904000000	
ŀ	Н	5.255832000000	-2.646106000000	0.398031000000	

С	-0.689748000000	3.046087000000	-0.242246000000	
Н	0.016682000000	3.875280000000	-0.175787000000	
Н	-1.360381000000	3.101875000000	0.620141000000	
Н	-1.288730000000	3.167851000000	-1.147639000000	
С	-1.623640000000	-0.208959000000	-0.557401000000	
С	-2.830815000000	0.491296000000	-0.542943000000	
Н	-2.834174000000	1.570520000000	-0.468741000000	
С	-4.022642000000	-0.219321000000	-0.605503000000	
Н	-4.967408000000	0.313066000000	-0.577383000000	
C	-3.991053000000	-1.609860000000	-0.672941000000	
Н	-4.896034000000	-2.204832000000	-0.704296000000	
C	-2.748592000000	-2.231004000000	-0.687713000000	
Н	-2.651172000000	-3.308927000000	-0.735699000000	

Table S11. Optimized geometry of the **ground state** of **ZnHLBr**₂ (local minimum in the **tautomeric form**, S_0^T) in Cartesian (XYZ) coordinates as calculated in Gaussian at the M062X/6-31+g(d) level of theory **using the QM/MM method (QM region)**.

Br	0.813652000000	-3.956640000000	0.85801000000	
Br	0.922866000000	-2.652469000000	-3.22604000000	
Zn	0.406414000000	-2.415025000000	-0.92133000000	
N	-1.572607000000	-1.530839000000	-0.69400000000	
N	1.371044000000	1.746336000000	0.008850000000	
0	2.087732000000	2.747895000000	0.38504000000	
Н	3.758230000000	2.020455000000	0.02581000000	
N	4.166453000000	1.001060000000	0.02221000000	
С	3.564920000000	-1.287048000000	0.34360000000	
Н	2.800589000000	-2.051427000000	0.41693000000	
N	0.818069000000	-0.334540000000	-0.404140000000	
C	-0.330341000000	0.471056000000	-0.47280000000	
С	0.011793000000	1.781710000000	-0.25046000000	
С	1.818079000000	0.434732000000	-0.10275000000	
C	3.210204000000	0.017108000000	0.124350000000	
C	5.479476000000	0.703515000000	0.26866000000	
Н	6.175136000000	1.528544000000	0.23467000000	
С	5.870932000000	-0.595290000000	0.47874000000	
н	6.920884000000	-0.804467000000	0.63168000000	
C	4.921734000000	-1.627671000000	0.49107000000	
Н	5.211466000000	-2.658638000000	0.62918000000	
С	-0.734972000000	3.066201000000	-0.17751000000	
Н	-0.025482000000	3.884659000000	-0.041470000000	
Н	-1.432842000000	3.078583000000	0.66409000000	
Н	-1.304394000000	3.235114000000	-1.09374000000	
C	-1.619663000000	-0.186230000000	-0.61439000000	
С	-2.842031000000	0.492236000000	-0.59154000000	
Н	-2.864744000000	1.571945000000	-0.52433000000	
C	-4.018982000000	-0.241418000000	-0.63590000000	
Н	-4.973229000000	0.273150000000	-0.60286000000	
С	-3.959786000000	-1.632488000000	-0.69499000000	
Н	-4.853678000000	-2.244328000000	-0.71875000000	
С	-2.705189000000	-2.23080300000	-0.72166000000	
Н	-2.588136000000	-3.307091000000	-0.77123000000	

Table S12. Optimized geometry of the **first singlet excited state** of $ZnHLBr_2$ (**tautomeric form**, S_1^T) in Cartesian (XYZ) coordinates as calculated in Gaussian at the M062X/6-31+g(d) level of theory **using the QM/MM method (QM region)**.

Br	0.805773000000	-3.955046000000	0.849692000000
Br	0.923774000000	-2.649657000000	-3.236166000000
Zn	0.411395000000	-2.412689000000	-0.931986000000
N	-1.568306000000	-1.527663000000	-0.702476000000
N	1.366264000000	1.752455000000	0.024155000000
0	2.077019000000	2.738524000000	0.423162000000
Н	3.853435000000	1.961289000000	0.001625000000
N	4.175647000000	0.996495000000	-0.008371000000
C	3.558858000000	-1.282454000000	0.376578000000
Н	2.789363000000	-2.042211000000	0.474943000000
N	0.820717000000	-0.32901000000	-0.413641000000
C	-0.333314000000	0.478003000000	-0.481065000000
C	0.005827000000	1.785728000000	-0.248407000000
C	1.815048000000	0.437269000000	-0.097322000000
C	3.207094000000	0.016224000000	0.132785000000
C	5.493071000000	0.698848000000	0.241824000000
Н	6.191894000000	1.521778000000	0.18349000000
C	5.873713000000	-0.598702000000	0.472901000000
Н	6.924027000000	-0.810289000000	0.620401000000
C	4.918782000000	-1.629876000000	0.511679000000
Н	5.205048000000	-2.660254000000	0.66122000000
C	-0.741428000000	3.069323000000	-0.169247000000
Н	-0.031489000000	3.886242000000	-0.023262000000
Н	-1.443189000000	3.075511000000	0.669384000000
Н	-1.306630000000	3.244984000000	-1.087024000000
С	-1.619134000000	-0.182717000000	-0.623516000000
C	-2.843668000000	0.492651000000	-0.59946000000
Н	-2.869124000000	1.572431000000	-0.533257000000
C	-4.018504000000	-0.244280000000	-0.641221000000
Н	-4.974098000000	0.267752000000	-0.607485000000
C	-3.955379000000	-1.635424000000	-0.699122000000
Н	-4.847700000000	-2.249668000000	-0.721795000000
C	-2.699054000000	-2.230498000000	-0.727488000000
Н	-2.579210000000	-3.306550000000	-0.777286000000

Table S13. Optimized geometry of the ground state of ZnHLBr₂ (minor component, S_0^{minor}) in Cartesian (XYZ) coordinates as calculated in Gaussian at the M062X/6-31+g(d) level of theory using the QM/MM method (QM region).

Br	0.713992000000	-3.802297000000	0.764890000000	
Br	0.963526000000	-2.641173000000	-3.095504000000	
Zn	1.676720000000	-2.244042000000	-0.847539000000	
Ν	-1.607218000000	-1.561272000000	-0.450685000000	
Ν	1.386909000000	1.831301000000	-0.100001000000	
0	2.096366000000	2.897417000000	0.081530000000	
Ν	3.446331000000	-1.201941000000	-0.216314000000	
C	4.267714000000	0.986171000000	0.352952000000	
Н	4.020018000000	2.028587000000	0.501841000000	
Ν	0.857694000000	-0.319263000000	-0.33403000000	

C	-0.280234000000	0.426023000000	-0.408713000000	
C	0.035044000000	1.786981000000	-0.268654000000	
C	1.852415000000	0.544183000000	-0.150114000000	
C	3.235293000000	0.117977000000	-0.005283000000	
C	4.672643000000	-1.697228000000	-0.032121000000	
Н	4.786681000000	-2.764438000000	-0.189206000000	
C	5.752659000000	-0.903812000000	0.336681000000	
Н	6.729029000000	-1.351281000000	0.472682000000	
С	5.544588000000	0.461971000000	0.510580000000	
Н	6.370098000000	1.115517000000	0.774600000000	
C	-0.747072000000	3.050635000000	-0.257022000000	
Н	-0.034367000000	3.874229000000	-0.164562000000	
Н	-1.442836000000	3.099602000000	0.586557000000	
Н	-1.315833000000	3.176611000000	-1.182351000000	
C	-1.560425000000	-0.207864000000	-0.507893000000	
C	-2.792005000000	0.461346000000	-0.617389000000	
Н	-2.799924000000	1.542271000000	-0.627987000000	
C	-3.967511000000	-0.258128000000	-0.689196000000	
Н	-4.910474000000	0.275147000000	-0.745882000000	
C	-3.951439000000	-1.663147000000	-0.686588000000	
Н	-4.858223000000	-2.250372000000	-0.752034000000	
C	-2.733499000000	-2.286550000000	-0.560924000000	
Н	-2.588480000000	-3.357037000000	-0.509316000000	
Н	-0.752206000000	-2.089079000000	-0.228403000000	

Table S14. Optimized geometry of the **first singlet excited state** of **ZnHLBr**₂ (**minor component**, S_1^{minor}) in Cartesian (XYZ) coordinates as calculated in Gaussian at the M062X/6-31+g(d) level of theory using the QM/MM method (QM region).

Br	0.886794000000	-3.780615000000	0.857337000000	
Br	1.014114000000	-2.628138000000	-3.125610000000	
Zn	1.645494000000	-2.261271000000	-0.861017000000	
N	-1.575946000000	-1.547547000000	-0.434130000000	
N	1.386523000000	1.848266000000	-0.119157000000	
0	2.070347000000	2.898591000000	0.040765000000	
N	3.437138000000	-1.199352000000	-0.243888000000	
C	4.297411000000	0.966664000000	0.361439000000	
Н	4.093677000000	2.010789000000	0.543022000000	
N	0.860691000000	-0.281866000000	-0.334850000000	
C	-0.302092000000	0.478767000000	-0.401708000000	
C	0.002173000000	1.812409000000	-0.272669000000	
C	1.870720000000	0.549164000000	-0.158522000000	
C	3.247857000000	0.123285000000	-0.015786000000	
C	4.653958000000	-1.71494000000	-0.057638000000	
Н	4.750418000000	-2.782362000000	-0.223779000000	
C	5.747900000000	-0.946325000000	0.324134000000	
Н	6.715747000000	-1.411109000000	0.460915000000	
C	5.563807000000	0.422459000000	0.515520000000	
Н	6.397502000000	1.059052000000	0.793876000000	
C	-0.784185000000	3.071931000000	-0.247535000000	
н	-0.105615000000	3.917743000000	-0.121937000000	
Н	-1.500957000000	3.075233000000	0.578066000000	
Н	-1.337786000000	3.200341000000	-1.180638000000	

C	-1.600895000000	-0.168234000000	-0.501148000000	
C	-2.815267000000	0.468959000000	-0.627516000000	
Н	-2.839770000000	1.549754000000	-0.665829000000	
C	-4.008268000000	-0.263054000000	-0.701003000000	
Н	-4.957307000000	0.251592000000	-0.765153000000	
C	-3.933865000000	-1.676032000000	-0.697018000000	
Н	-4.822472000000	-2.289969000000	-0.785886000000	
C	-2.716231000000	-2.287165000000	-0.561770000000	
Н	-2.57040000000	-3.357087000000	-0.524742000000	
Н	-0.744361000000	-2.032821000000	-0.098381000000	

Table S15. Optimized geometry of the ground state of $ZnHLI_2$ (normal form, S_0^N) in Cartesian (XYZ) coordinates as calculated in Gaussian at the M062X/6-31+g(d) level of theory using the QM/MM method (QM region).

	-0.831065000000	-4.189703000000	-1.018188000000
1	-0.929714000000	-2.675743000000	3.336445000000
Zn	-0.355745000000	-2.415383000000	0.81996000000
N	1.593346000000	-1.502155000000	0.599297000000
N	-1.482091000000	1.688156000000	0.045053000000
0	-2.267757000000	2.783996000000	-0.145718000000
Н	-3.195342000000	2.394032000000	-0.149824000000
N	-4.186357000000	0.972260000000	-0.124531000000
C	-3.645363000000	-1.37010000000	-0.034898000000
Н	-2.899436000000	-2.154593000000	0.017065000000
N	-0.832035000000	-0.375567000000	0.281323000000
С	0.264203000000	0.442101000000	0.326987000000
С	-0.127903000000	1.764872000000	0.177423000000
C	-1.892123000000	0.394607000000	0.108125000000
C	-3.288766000000	-0.022096000000	-0.015257000000
C	-5.476398000000	0.652465000000	-0.247995000000
Н	-6.173700000000	1.480020000000	-0.328224000000
C	-5.925983000000	-0.663155000000	-0.271997000000
Н	-6.98354000000	-0.873392000000	-0.37012000000
C	-4.988754000000	-1.687979000000	-0.168342000000
Н	-5.286817000000	-2.729315000000	-0.199450000000
C	0.589168000000	3.070673000000	0.135943000000
Н	1.228498000000	3.149086000000	-0.748338000000
н	1.215304000000	3.197210000000	1.022732000000
Н	-0.135697000000	3.885855000000	0.103204000000
C	1.591104000000	-0.163829000000	0.466118000000
C	2.787685000000	0.553041000000	0.420146000000
Н	2.773015000000	1.628143000000	0.301453000000
C	3.990811000000	-0.137097000000	0.506425000000
Н	4.928659000000	0.405642000000	0.450401000000
C	3.981008000000	-1.523921000000	0.631028000000
Н	4.895396000000	-2.103646000000	0.678563000000
C	2.748528000000	-2.162833000000	0.672745000000
н	2.66619600000	-3.239474000000	0.76120900000

Table S16. Optimized geometry of the **ground state** of **ZnHLI**₂ (local minimum in the **tautomeric form**, S_0^{T}) in Cartesian (XYZ) coordinates as calculated in Gaussian at the M062X/6-31+g(d) level of theory using the QM/MM method (QM region).

1	-0.756456000000	-4.187570000000	-0.96663000000
I	-0.927218000000	-2.656003000000	3.398490000000
Zn	-0.386336000000	-2.404193000000	0.884650000000
Ν	1.567887000000	-1.48403000000	0.653290000000
Ν	-1.453148000000	1.725299000000	-0.068110000000
0	-2.199590000000	2.710184000000	-0.42374000000
Н	-3.867855000000	1.958993000000	0.04619000000
Ν	-4.238061000000	0.942576000000	0.07363000000
C	-3.626334000000	-1.340540000000	-0.261510000000
Н	-2.858718000000	-2.095914000000	-0.37840000000
Ν	-0.851077000000	-0.342687000000	0.34486000000
C	0.285023000000	0.486196000000	0.381810000000
C	-0.087752000000	1.787769000000	0.158070000000
C	-1.874081000000	0.406378000000	0.066810000000
C	-3.272089000000	-0.029364000000	-0.08120000000
C	-5.560897000000	0.620959000000	-0.072750000000
Н	-6.264987000000	1.436777000000	0.008470000000
C	-5.947641000000	-0.686379000000	-0.23348000000
Н	-7.004895000000	-0.913247000000	-0.28563000000
C	-4.983967000000	-1.705579000000	-0.30940000000
Н	-5.263331000000	-2.743909000000	-0.42065000000
C	0.628653000000	3.089631000000	0.07875000000
Н	1.297980000000	3.131140000000	-0.78519000000
Н	1.222460000000	3.260705000000	0.97993000000
Н	-0.103886000000	3.893078000000	-0.02097000000
C	1.588669000000	-0.142499000000	0.526550000000
C	2.799358000000	0.555380000000	0.47025000000
Н	2.801409000000	1.631680000000	0.35930000000
C	3.989710000000	-0.156013000000	0.53374000000
Н	4.936151000000	0.370426000000	0.46780000000
C	3.955681000000	-1.544466000000	0.64866000000
Н	4.860585000000	-2.14007000000	0.68050000000
C	2.712246000000	-2.163087000000	0.70460000000
Н	2.612795000000	-3.239144000000	0.78881000000

Table S17. Optimized geometry of the **first singlet excited state** of **ZnHLI**₂ (tautomeric form, S_1^T) in Cartesian (XYZ) coordinates as calculated in Gaussian at the M062X/6-31+g(d) level of theory using the QM/MM method (QM region).

1	-0.747937000000	-4.187458000000	-0.959594000000	
1	-0.926527000000	-2.652996000000	3.406523000000	
Zn	-0.389241000000	-2.403074000000	0.892883000000	
N	1.565540000000	-1.482137000000	0.659682000000	
N	-1.449229000000	1.729579000000	-0.079486000000	
0	-2.191143000000	2.702221000000	-0.453797000000	
н	-3.941540000000	1.911176000000	0.068060000000	
N	-4.243205000000	0.939909000000	0.096833000000	
C	-3.624125000000	-1.336989000000	-0.284960000000	
Н	-2.854376000000	-2.089531000000	-0.420244000000	
N	-0.852829000000	-0.338941000000	0.352969000000	
C	0.287673000000	0.490922000000	0.388926000000	
C	-0.082785000000	1.790321000000	0.157402000000	
C	-1.871740000000	0.407891000000	0.063606000000	

C	-3.269786000000	-0.029884000000	-0.08705000000	
С	-5.56963000000	0.618286000000	-0.052014000000	
Н	-6.274197000000	1.433005000000	0.047664000000	
C	-5.949791000000	-0.68804000000	-0.227888000000	
Н	-7.00704000000	-0.916628000000	-0.274867000000	
C	-4.983348000000	-1.70674000000	-0.323606000000	
Н	-5.260927000000	-2.744640000000	-0.444052000000	
C	0.633875000000	3.091613000000	0.073747000000	
н	1.308788000000	3.127580000000	-0.786212000000	
Н	1.221771000000	3.269075000000	0.977766000000	
Н	-0.099168000000	3.893645000000	-0.036563000000	
С	1.588733000000	-0.140138000000	0.534310000000	
C	2.800945000000	0.555747000000	0.477462000000	
Н	2.804812000000	1.632258000000	0.367984000000	
С	3.989946000000	-0.157890000000	0.538316000000	
Н	4.937279000000	0.366912000000	0.471757000000	
C	3.953375000000	-1.546591000000	0.651520000000	
н	4.857279000000	-2.143859000000	0.681652000000	
С	2.708766000000	-2.163085000000	0.708513000000	
Н	2.607507000000	-3.239136000000	0.791726000000	

Table S18. Optimized geometry of the **ground state** of **ZnHLI**₂ (**minor component**, S_0^{minor}) in Cartesian (XYZ) coordinates as calculated in Gaussian at the M062X/6-31+g(d) level of theory using the QM/MM method (QM region).

I -0.768892000000 -4.032322000000 -0.939552000000 I -0.900065000000 -2.660589000000 3.247742000000 Zn -1.689141000000 -2.25747300000 0.79844000000 N 1.592148000000 -1.51365900000 0.372194000000 O -2.199526000000 2.87724200000 -0.137060000000 O -2.199526000000 2.87724200000 -0.13706000000 N -3.48062800000 -1.237325000000 0.23578300000 C -4.36638200000 0.93878200000 -0.26893900000 H -4.14991700000 1.98848300000 -0.41593300000 N -0.90191800000 1.96848300000 0.26203000000 C -0.11314100000 1.8005400000 0.16538300000 C -0.11314100000 1.8005400000 0.02235400000 C -3.29982800000 0.08634600000 0.02235400000 C -4.70488000000 -1.75690200000 0.1159400000 C -5.815927000000 -2.82785700000 0.285123000000 C -5.639555000000 0.389652000000 -0.194014000000 H </th <th></th> <th></th> <th></th> <th></th>				
I -0.90006500000 -2.66058900000 3.24774200000 Zn -1.68914100000 -2.25747300000 0.79844000000 N 1.59214800000 -1.51365900000 0.37219400000 O -2.19952600000 2.87724200000 -0.13706000000 O -2.19952600000 2.87724200000 -0.3578300000 O -2.436638200000 -1.23732500000 0.23578300000 C -4.36638200000 -9.3878200000 -0.41593300000 H -4.14991700000 1.98848300000 -0.41593300000 N -0.901918000000 -0.31967900000 0.2620300000 C -0.2647200000 0.455800000 0.30704900000 C -1.91509100000 1.8005400000 0.16538300000 C -1.91509100000 0.52894600000 0.0908900000 C -3.29982800000 0.08634600000 0.02235400000 C -4.70488000000 -1.75690200000 0.1593100000 C -5.815927000000 -2.82785700000 0.28512300000 C -5.63955500000 0.389652000000 -0.58742600000 H -6.489		-0.768892000000	-4.032322000000	-0.939552000000
Zn -1.689141000000 -2.257473000000 0.79844000000 N 1.592148000000 -1.51365900000 0.37219400000 N -1.46962000000 1.82255600000 0.029044000000 O -2.19952600000 2.87724200000 -0.13706000000 N -3.48062800000 -1.23732500000 0.23578300000 C -4.36638200000 0.93878200000 -0.26893900000 H -4.14991700000 1.98848300000 -0.41593300000 N -0.90191800000 -0.31967900000 0.26200300000 C 0.22647200000 0.44558000000 0.30704900000 C -0.11314100000 1.8005400000 0.16538300000 C -1.91509100000 0.52894600000 0.09908900000 C -1.91509100000 0.52894600000 0.02235400000 C -4.70488000000 -1.75690200000 0.11599400000 C -5.81592700000 -0.8092600000 -0.19401400000 H -6.79173300000 -1.44216600000 -0.28512300000 C 5.639555000000 0.389652000000 -0.367496000000 H <t< td=""><th>I</th><td>-0.900065000000</td><td>-2.660589000000</td><td>3.247742000000</td></t<>	I	-0.900065000000	-2.660589000000	3.247742000000
N 1.592148000000 -1.513659000000 0.372194000000 N -1.469620000000 1.822556000000 0.029044000000 O -2.199526000000 2.877242000000 -0.137060000000 N -3.480628000000 -1.237325000000 0.235783000000 C -4.366382000000 0.938782000000 -0.268939000000 H -4.149917000000 1.988483000000 -0.415933000000 N -0.901918000000 -0.319679000000 0.262003000000 C 0.226472000000 0.44558000000 0.307049000000 C -0.113141000000 1.80054000000 0.165383000000 C -1.915091000000 0.528946000000 0.099089000000 C -3.299828000000 0.086346000000 0.022354000000 C -4.70488000000 -1.75690200000 0.115994000000 H -4.78715400000 -2.82785700000 0.276581000000 C -5.815927000000 -0.389652000000 -0.367496000000 H -6.791733000000 -1.442166000000 -0.2857426000000 C -5.639555000000 0.389652000000 -0.367496000000 </td <th>Zn</th> <td>-1.689141000000</td> <td>-2.257473000000</td> <td>0.798440000000</td>	Zn	-1.689141000000	-2.257473000000	0.798440000000
N -1.46962000000 1.82255600000 -0.029044000000 O -2.19952600000 2.87724200000 -0.13706000000 N -3.48062800000 -1.23732500000 0.23578300000 C -4.36638200000 0.93878200000 -0.26893900000 H -4.14991700000 1.98848300000 -0.41593300000 N -0.90191800000 -0.31967900000 0.26200300000 C 0.22647200000 0.44558000000 0.30704900000 C -0.11314100000 1.8005400000 0.09908900000 C -1.91509100000 0.52894600000 0.02235400000 C -3.29982800000 -0.8634600000 0.11599400000 C -4.70488000000 -1.75690200000 0.11599400000 C -5.81592700000 -2.82785700000 0.27658100000 H -6.79173300000 -1.44216600000 -0.28512300000 H -6.48906300000 1.02933800000 -0.35742600000 H -6.48906300000 1.02933800000 -0.36749600000 H -6.4997000000 3.21584000000 -0.707440000000 H 1.	N	1.592148000000	-1.513659000000	0.372194000000
O -2.19952600000 2.87724200000 -0.13706000000 N -3.48062800000 -1.23732500000 0.23578300000 C -4.36638200000 0.93878200000 -0.26893900000 H -4.14991700000 1.98848300000 -0.41593300000 N -0.90191800000 -0.31967900000 0.26200300000 C 0.22647200000 0.44558000000 0.30704900000 C -0.11314100000 1.8005400000 0.16538300000 C -0.191509100000 0.52894600000 0.09908900000 C -1.91509100000 0.52894600000 0.02235400000 C -3.29982800000 0.08634600000 0.02235400000 C -3.29982800000 0.08634600000 0.02235400000 C -4.70488000000 -1.7569200000 0.11599400000 H -4.78715400000 -2.82785700000 0.28512300000 C -5.6395500000 0.38965200000 -0.36749600000 H -6.48906300000 1.02933800000 -0.58742600000 C 0.64997000000 3.07582400000 0.13294500000 H 1.3502060	N	-1.469620000000	1.822556000000	0.029044000000
N -3.48062800000 -1.23732500000 0.23578300000 C -4.36638200000 0.93878200000 -0.26893900000 H -4.14991700000 1.98848300000 -0.41593300000 N -0.90191800000 -0.31967900000 0.26200300000 C 0.22647200000 0.44558000000 0.30704900000 C -0.11314100000 1.80005400000 0.16538300000 C -0.11314100000 0.52894600000 0.09908900000 C -1.91509100000 0.52894600000 0.02235400000 C -3.29982800000 0.08634600000 0.22658100000 C -4.70488000000 -1.75690200000 0.11599400000 H -4.78715400000 -2.82785700000 0.27658100000 H -6.79173300000 -1.44216600000 -0.28512300000 H -6.48906300000 1.02933800000 -0.36749600000 H -6.48906300000 1.02933800000 -0.36749600000 H -6.48906300000 3.07582400000 0.132945000000 H 1.35020600000 3.23158400000 -0.707440000000	0	-2.199526000000	2.877242000000	-0.13706000000
C-4.366382000000.93878200000-0.26893900000H-4.149917000001.98848300000-0.41593300000N-0.90191800000-0.319679000000.26200300000C0.226472000000.445580000000.30704900000C-0.113141000001.800054000000.16538300000C-1.915091000000.528946000000.09908900000C-3.299828000000.086346000000.02235400000C-4.70488000000-1.756902000000.11599400000H-4.78715400000-2.827857000000.27658100000C-5.81592700000-0.98092600000-0.19401400000H-6.79173300000-1.44216600000-0.28512300000C-5.639555000000.38965200000-0.36749600000H-6.489063000003.075824000000.13294500000H1.350206000003.231584000001.05944300000H-0.075345000003.886092000000.02189300000	N	-3.480628000000	-1.237325000000	0.235783000000
H-4.149917000001.98848300000-0.41593300000N-0.90191800000-0.319679000000.26200300000C0.226472000000.445580000000.30704900000C-0.113141000001.800054000000.16538300000C-1.915091000000.528946000000.09908900000C-3.299828000000.086346000000.02235400000C-3.29982800000-1.756902000000.11599400000H-4.78715400000-2.827857000000.27658100000H-6.79173300000-1.44216600000-0.28512300000H-6.791733000001.02933800000-0.36749600000H-6.489063000001.02933800000-0.58742600000H-6.489063000003.075824000000.13294500000H1.350206000003.23158400000-0.70744000000H-0.0752450000003.886092000000.021993000000	C	-4.366382000000	0.938782000000	-0.268939000000
N -0.901918000000 -0.319679000000 0.262003000000 C 0.226472000000 0.445580000000 0.307049000000 C -0.113141000000 1.800054000000 0.165383000000 C -1.91509100000 0.528946000000 0.09908900000 C -3.29982800000 0.086346000000 0.022354000000 C -3.299828000000 -1.756902000000 0.115994000000 H -4.704880000000 -1.75690200000 0.276581000000 H -4.787154000000 -2.827857000000 0.285123000000 H -6.791733000000 -1.442166000000 -0.285123000000 H -6.489063000000 1.029338000000 -0.587426000000 H -6.489063000000 3.075824000000 0.132945000000 H 1.350206000000 3.231584000000 1.059443000000	н	-4.149917000000	1.988483000000	-0.415933000000
C0.2264720000000.445580000000.307049000000C-0.1131410000001.8000540000000.165383000000C-1.9150910000000.5289460000000.099089000000C-3.2998280000000.0863460000000.022354000000C-4.704880000000-1.7569020000000.115994000000H-4.78715400000-2.8278570000000.276581000000C-5.815927000000-0.980926000000-0.194014000000H-6.791733000000-1.442166000000-0.285123000000C-5.6395550000000.389652000000-0.367496000000H-6.4890630000001.029338000000-0.587426000000H1.3502060000003.118591000000-0.707440000000H1.2110030000003.2315840000001.059443000000	N	-0.901918000000	-0.319679000000	0.262003000000
C-0.1131410000001.8000540000000.165383000000C-1.9150910000000.5289460000000.099089000000C-3.2998280000000.0863460000000.022354000000C-4.704880000000-1.7569020000000.115994000000H-4.787154000000-2.8278570000000.276581000000C-5.815927000000-0.980926000000-0.194014000000H-6.791733000000-1.442166000000-0.285123000000C-5.6395550000000.389652000000-0.367496000000H-6.4890630000001.029338000000-0.587426000000H1.3502060000003.118591000000-0.707440000000H1.2110030000003.2315840000001.059443000000	C	0.226472000000	0.445580000000	0.307049000000
C-1.915091000000.528946000000.09908900000C-3.299828000000.086346000000.02235400000C-4.70488000000-1.756902000000.11599400000H-4.78715400000-2.827857000000.27658100000C-5.81592700000-0.98092600000-0.19401400000H-6.79173300000-1.44216600000-0.28512300000C-5.639555000000.38965200000-0.36749600000H-6.489063000001.02933800000-0.58742600000H1.350206000003.11859100000-0.70744000000H1.211003000003.231584000001.05944300000	C	-0.113141000000	1.800054000000	0.165383000000
C-3.299828000000.086346000000.022354000000C-4.70488000000-1.756902000000.11599400000H-4.78715400000-2.827857000000.276581000000C-5.81592700000-0.980926000000-0.194014000000H-6.79173300000-1.44216600000-0.285123000000C-5.639555000000.38965200000-0.367496000000H-6.489063000001.02933800000-0.587426000000H-6.489063000003.075824000000.132945000000H1.350206000003.231584000001.059443000000H-0.0752450000003.8860920000000.021993000000	C	-1.915091000000	0.528946000000	0.099089000000
C-4.70488000000-1.756902000000.11599400000H-4.78715400000-2.827857000000.27658100000C-5.81592700000-0.98092600000-0.19401400000H-6.79173300000-1.44216600000-0.28512300000C-5.639555000000.38965200000-0.36749600000H-6.489063000001.02933800000-0.58742600000H-6.49970000003.075824000000.13294500000H1.350206000003.11859100000-0.70744000000H1.211003000003.231584000001.05944300000	C	-3.299828000000	0.086346000000	0.022354000000
H-4.78715400000-2.827857000000.27658100000C-5.81592700000-0.98092600000-0.19401400000H-6.79173300000-1.44216600000-0.28512300000C-5.639555000000.38965200000-0.367496000000H-6.489063000001.02933800000-0.58742600000C0.649970000003.075824000000.13294500000H1.350206000003.11859100000-0.70744000000H1.211003000003.231584000001.05944300000H-0.0752450000003.8860920000000.021993000000	С	-4.704880000000	-1.756902000000	0.115994000000
C-5.81592700000-0.98092600000-0.19401400000H-6.79173300000-1.44216600000-0.28512300000C-5.639555000000.38965200000-0.36749600000H-6.489063000001.02933800000-0.58742600000C0.649970000003.075824000000.13294500000H1.350206000003.11859100000-0.70744000000H1.211003000003.231584000001.05944300000H-0.0752450000003.886092000000.021993000000	н	-4.787154000000	-2.827857000000	0.276581000000
H-6.79173300000-1.44216600000-0.28512300000C-5.639555000000.38965200000-0.36749600000H-6.489063000001.02933800000-0.58742600000C0.649970000003.075824000000.13294500000H1.350206000003.11859100000-0.70744000000H1.211003000003.231584000001.05944300000H-0.0752450000003.886092000000.021993000000	С	-5.815927000000	-0.980926000000	-0.194014000000
C -5.63955500000 0.38965200000 -0.367496000000 H -6.48906300000 1.02933800000 -0.587426000000 C 0.64997000000 3.07582400000 0.132945000000 H 1.35020600000 3.11859100000 -0.707440000000 H 1.21100300000 3.23158400000 1.059443000000 H -0.075245000000 3.886092000000 0.021993000000	Н	-6.791733000000	-1.442166000000	-0.285123000000
H-6.489063000001.029338000000-0.587426000000C0.649970000003.0758240000000.132945000000H1.3502060000003.118591000000-0.707440000000H1.2110030000003.2315840000001.059443000000H-0.0752450000003.8860920000000.021993000000	С	-5.639555000000	0.389652000000	-0.36749600000
C 0.64997000000 3.07582400000 0.132945000000 H 1.35020600000 3.11859100000 -0.707440000000 H 1.21100300000 3.231584000000 1.059443000000 H -0.075245000000 3.886092000000 0.021993000000	Н	-6.489063000000	1.029338000000	-0.58742600000
H 1.350206000000 3.118591000000 -0.707440000000 H 1.211003000000 3.231584000000 1.059443000000 H -0.075245000000 3.886092000000 0.021993000000	C	0.649970000000	3.075824000000	0.132945000000
H 1.211003000000 3.231584000000 1.059443000000 H -0.075245000000 3.886092000000 0.021993000000	Н	1.350206000000	3.118591000000	-0.70744000000
	Н	1.211003000000	3.231584000000	1.059443000000
11 -0.075245000000 - 5.880052000000 - 0.021555000000	Н	-0.075245000000	3.886092000000	0.021993000000
C 1.519674000000 -0.160936000000 0.412018000000	C	1.519674000000	-0.160936000000	0.412018000000
C 2.74000400000 0.529369000000 0.521306000000	C	2.740004000000	0.529369000000	0.521306000000
H 2.730644000000 1.610450000000 0.516815000000	Н	2.730644000000	1.610450000000	0.516815000000
C 3.926306000000 -0.170595000000 0.616970000000	C	3.926306000000	-0.170595000000	0.616970000000

Н	4.861515000000	0.376964000000	0.672469000000	
C	3.933456000000	-1.575590000000	0.637385000000	
Н	4.849956000000	-2.146362000000	0.716820000000	
C	2.727415000000	-2.220350000000	0.506388000000	
Н	2.595498000000	-3.293029000000	0.468471000000	
Н	0.748158000000	-2.055261000000	0.152084000000	

Table S19. Optimized geometry of the first singlet excited state of ZnHLI ₂ (minor component, S ₁ ^{minor}) in
Cartesian (XYZ) coordinates as calculated in Gaussian at the M062X/6-31+g(d) level of theory using th
QM/MM method (QM region).

	-0.900558000000	-4.022685000000	-0.990893000000	
1	-0.981731000000	-2.633426000000	3.289991000000	
Zr	-1.653164000000	-2.269754000000	0.814181000000	
N	1.555306000000	-1.498776000000	0.35380900000	
N	-1.468542000000	1.842442000000	0.046129000000	
0	-2.173129000000	2.880785000000	-0.105270000000	
N	-3.464488000000	-1.237371000000	0.252159000000	
C	-4.396572000000	0.918516000000	-0.268813000000	
Н	-4.227648000000	1.971565000000	-0.434336000000	
N	-0.904057000000	-0.278850000000	0.261757000000	
C	0.248428000000	0.503126000000	0.301789000000	
C	-0.080762000000	1.830656000000	0.167072000000	
C	-1.932463000000	0.536446000000	0.108017000000	
C	-3.309708000000	0.090882000000	0.031412000000	
C	-4.678726000000	-1.778324000000	0.129862000000	
Н	-4.740156000000	-2.850392000000	0.292988000000	
C	-5.805738000000	-1.027137000000	-0.185754000000	
Н	-6.772261000000	-1.506422000000	-0.278858000000	
C	-5.657360000000	0.347942000000	-0.366479000000	
Н	-6.517107000000	0.970778000000	-0.593839000000	
C	0.686274000000	3.102448000000	0.122385000000	
Н	1.408255000000	3.101363000000	-0.69906000000	
Н	1.232127000000	3.259732000000	1.056699000000	
Н	-0.004822000000	3.935041000000	-0.022184000000	
C	1.558658000000	-0.118270000000	0.402006000000	
C	2.765701000000	0.535926000000	0.529173000000	
Н	2.776615000000	1.617570000000	0.553355000000	
C	3.965645000000	-0.180828000000	0.626504000000	
Н	4.909908000000	0.344006000000	0.687838000000	
C	3.910078000000	-1.595238000000	0.644228000000	
Н	4.806968000000	-2.195593000000	0.744844000000	
C	2.701910000000	-2.222990000000	0.502897000000	
Н	2.565117000000	-3.294454000000	0.475676000000	
Н	0.735174000000	-1.997208000000	0.011720000000	

Table S20. Optimized geometries of the ground and excited states of **ZnHLCl**₂. Dihedral angles between the planes of aromatic heterocycles are shown for both major and minor components. In the case of the major component, O...H and O...N distances are also shown.

Normal form of the major component,	Tautomeric form of the major component,
ground state (S ₀ ^N)	ground state (S₀ [⊤])

Table S21. Optimized geometries of the ground and excited states of **ZnHLBr**₂. Dihedral angles between the planes of aromatic heterocycles are shown for both major and minor components. In the case of the major component, O...H and O...N distances are also shown.

Table S22. Optimized geometries of the ground and excited states of **ZnHLI**₂. Dihedral angles between the planes of aromatic heterocycles are shown for both major and minor components. In the case of the major component, O...H and O...N distances are also shown.

Normal form of the major component,	Tautomeric form of the major component,
ground state (S₀ ^N)	ground state (S₀ [⊤])

Figure S26. ONIOM model for the quantum chemical calculations of ZnHLBr₂.

Figure S27. ONIOM model for the quantum chemical calculations of ZnHLI₂.

Table S23. Excited state properties of $ZnHLCl_2$ at the relaxed ground state geometry (normal form, S_0^N , M062X/6-31+g(d) level of theory). Transitions with contribution >10% are shown.

State	Energy	Energy	Contributions (%)	Oscillator	Character
	(eV)	(nm)		strength	
S1	4.2887	289	HOMO \rightarrow LUMO (94.5%)	0.6168	IL
S2	4.8362	256	HOMO → LUMO+1 (81.6%)	0.1106	IL
S3	5.0363	246	HOMO-1 → LUMO (82.9%)	0.0064	XLCT
S4	5.0856	244	HOMO-2 → LUMO (53.8%)	0.0117	XLCT + IL
			HOMO → LUMO+2 (26.8%)		
S5	5.1193	242	HOMO-2 → LUMO (25.5%)	0.0707	IL + XLCT
			HOMO → LUMO+2 (55.5%)		
S6	5.2149	238	HOMO-3 → LUMO (62.8%)	0.0073	XLCT
S7	5.2953	234	HOMO → LUMO+3 (70.6%)	0.0747	IL

S8	5.3281	233	HOMO-4 → LUMO (55.3%)	0.0084	XLCT
			HOMO-3 → LUMO (15.5%)		

Table S24. Isosurface contour plots of the molecular orbitals of $ZnHLCl_2$ at the ground state geometry (normal form, S_0^N , M062X/6-31+g(d) level of theory). Orbital decomposition resulting from Mulliken population analysis.

b – Imidazole ring c – proton accepting pyridine ring

d - second pyridine ring

Table S25. Excited state properties of ZnHLBr₂ at the relaxed ground state geometry (normal form, S₀^N, M062X/6-31+g(d) level of theory). Transitions with contribution >10% are shown.

State	Energy (eV)	Energy (nm)	Contributions (%)	Oscillator strength	Character
S1	4.2858	289	HOMO-2 → LUMO (78.7%)	0.5742	IL + XLCT
			HOMO-1 → LUMO (13.9%)		
S2	4.5407	273	HOMO → LUMO (94.5%)	0.0023	XLCT
S3	4.6360	267	HOMO-2 → LUMO (13.8%)	0.0182	XLCT + IL
			HOMO-1 → LUMO (80.7%)		
S4	4.7788	259	HOMO-3 → LUMO (87.0%)	0.0060	XLCT
S5	4.8405	256	HOMO-2 → LUMO+1 (67.2%)	0.1033	IL
S6	4.8885	254	HOMO-4 → LUMO (87.3%)	0.0091	XLCT
S7	5.1071	243	HOMO-2 \rightarrow LUMO+2 (69.1%)	0.0617	IL
S8	5.2134	238	HOMO → LUMO+1 (92.7%)	0.0037	XLCT

Table S26. Isosurface contour plots of the molecular orbitals of **ZnHLBr**₂ at the ground state geometry (normal form, S_0^N , M062X/6-31+g(d) level of theory). Orbital decomposition resulting from Mulliken population analysis.

a – ZnBr₂ group

b – Imidazole ring

c – proton accepting pyridine ring

d – second pyridine ring

Table S27. Excited state properties of ZnHLI ₂ at the relaxed ground state geometry (normal form,	S ₀ ^N ,
M062X/6-31+g(d) level of theory). Transitions with contribution >10% are shown.	

State	Energy	Energy	Contributions (%)	Oscillator	Character
	(eV)	(nm)		strength	
S1	4.0132	309	HOMO \rightarrow LUMO (96.2%)	0.0018	XLCT
S2	4.1082	302	HOMO-1 → LUMO (93.5%)	0.0130	XLCT
S3	4.2792	290	HOMO-4 → LUMO (22.5%)	0.1573	XLCT + IL
			HOMO-2 → LUMO (67.7%)		
S4	4.2986	288	HOMO-4 → LUMO (49.5%)	0.3474	IL + XLCT
			HOMO-2 → LUMO (26.5%)		
S5	4.3949	282	HOMO-3 → LUMO (88.1%)	0.0386	XLCT
S6	4.6731	265	HOMO → LUMO+1 (95.8%)	0.0012	XLCT
S7	4.7687	260	HOMO-5 → LUMO (25.7%)	0.0128	XLCT
			HOMO-4 → LUMO+1 (18.1%)		
			HOMO-1 → LUMO+1 (35.5%)		
S8	4.7715	260	HOMO-5 → LUMO (30.2%)	0.0058	XLCT
			HOMO-1 → LUMO+1 (55.1%)		

Table S28. Isosurface contour plots of the molecular orbitals of $ZnHLI_2$ at the ground state geometry (normal form, S_0^N , M062X/6-31+g(d) level of theory). Orbital decomposition resulting from Mulliken population analysis.

 $a-ZnI_2\,group$

b – Imidazole ring

c – proton accepting pyridine ring

d – second pyridine ring

State	Energy	Energy	Contributions (%)	Oscillator	Character
	(eV)	(nm)		strength	
S1	2.9775	416	HOMO \rightarrow LUMO (96.7%)	0.2897	IL
S2	3.7315	332	HOMO-1 → LUMO (89.0%)	0.1864	IL
S3	3.8365	323	HOMO → LUMO+1 (81.7%)	0.1238	IL
			HOMO → LUMO+2 (10.9%)		
S4	4.2395	292	HOMO → LUMO+2 (81.9%)	0.2545	IL
S5	4.4849	276	HOMO-3 → LUMO (72.4%)	0.0011	XLCT + IL
S6	4.5707	271	HOMO → LUMO+3 (81.0%)	0.0126	IL
S7	4.6052	269	HOMO-2 → LUMO (92.5%)	0.0007	XLCT
S8	4.6831	265	HOMO-1 → LUMO+1 (76.6%)	0.0706	IL
			HOMO → LUMO+3 (11.2%)		

Table S29. Excited state properties of **ZnHLCl**₂ at the relaxed ground state geometry (**minor component**, S_0^{minor} , M062X/6-31+g(d) level of theory). Transitions with contribution >10% are shown.

Table S30. Isosurface contour plots of the molecular orbitals of $ZnHLCl_2$ at the ground state geometry (minor component, S_0^{minor} , M062X/6-31+g(d) level of theory). Orbital decomposition resulting from Mulliken population analysis.

a – ZnCl₂ group

b – Imidazole ring

c – first pyridine ring (which is coordinated to Zn atom)

d – second pyridine ring (which is not coordinated to Zn atom)

State	Energy	Energy	Contributions (%)	Oscillator	Character
	(eV)	(nm)		strength	
S1	2.9703	417	HOMO → LUMO (96.6%)	0.2764	IL
S2	3.7216	333	HOMO-1 → LUMO (78.2%)	0.1817	IL + XLCT
S3	3.8335	323	HOMO → LUMO+1 (82.4%)	0.1170	IL
S4	4.0906	303	HOMO-2 → LUMO (87.8%)	0.0001	XLCT
			HOMO-1 → LUMO (11.3%)		
S5	4.2107	294	HOMO-3 → LUMO (50.4%)	0.0672	XLCT + IL
			HOMO → LUMO+1 (37.4%)		
S6	4.2600	291	HOMO-3 → LUMO (43.1%)	0.1923	IL + XLCT
			HOMO → LUMO+1 (45.4%)		
S7	4.4466	279	HOMO-5 → LUMO (20.6%)	0.0089	XLCT
			HOMO-4 → LUMO (68.9%)		
S8	4.5786	271	HOMO → LUMO+2 (70.5%)	0.0130	XLCT

Table S31. Excited state properties of **ZnHLBr**₂ at the relaxed ground state geometry (**minor component**, S_0^{minor} , M062X/6-31+g(d) level of theory). Transitions with contribution >10% are shown.

Table S32. Isosurface contour plots of the molecular orbitals of $ZnHLBr_2$ at the ground state geometry (minor component, S_0^{minor} , M062X/6-31+g(d) level of theory). Orbital decomposition resulting from Mulliken population analysis.

a – ZnBr₂ group

b – Imidazole ring

c - first pyridine ring (which is coordinated to Zn atom)

d – second pyridine ring (which is not coordinated to Zn atom)

Table S33. Excited state properties of ZnHLI2 at the relaxed ground state geometry (minor component, S_0^{minor} , M062X/6-31+g(d) level of theory). Transitions with contribution >10% are shown.

State	Energy	Energy	Contributions (%)	Oscillator	Character
	(eV)	(nm)		strength	
S1	2.9503	420	HOMO \rightarrow LUMO (96.5%)	0.2544	IL
S2	3.5335	351	HOMO-1 → LUMO (97.1%)	0.0167	XLCT
S3	3.6241	342	HOMO-4 → LUMO (13.2%)	0.0655	XLCT + IL
			HOMO-2 → LUMO (80.8%)		
S4	3.7676	329	HOMO-4 → LUMO (60.4%)	0.0883	XLCT + IL
			HOMO-2 → LUMO (12.5%)		
			HOMO → LUMO+1 (19.3%)		
S5	3.8413	323	HOMO-4 → LUMO (11.4%)	0.1349	IL + XLCT
			HOMO → LUMO+1 (66.5%)		

			HOMO → LUMO+2 (11.6%)		
S6	3.9636	313	HOMO-3 → LUMO (95.6%)	0.0048	XLCT
S7	4.1466	299	HOMO-5 → LUMO (95.9%)	0.0041	XLCT
S8	4.2430	292	HOMO → LUMO+2 (80.7%)	0.2301	IL

Table S34. Isosurface contour plots of the molecular orbitals of $ZnHLI_2$ at the ground state geometry (minor component, S_0^{minor} , M062X/6-31+g(d) level of theory). Orbital decomposition resulting from Mulliken population analysis.

b – Imidazole ring c – first pyridine ring (which is coordinated to Zn atom)

d - second pyridine ring (which is not coordinated to Zn atom)

Table S35. Excited state properties of ZnHLCl₂ at the relaxed ground state geometry (local minimum in the **tautomeric form**, S_0^T , M062X/6-31+g(d) level of theory). Transitions with contribution >10% are shown.

State	Energy	Energy	Contributions (%)	Oscillator	Character
	(eV)	(nm)		strength	

S1	2.6811	462	HOMO → LUMO (97.2%)	0.1371	IL
S2	3.6530	339	HOMO → LUMO+1 (97.1%)	0.0896	IL
S3	3.8499	322	HOMO-1 → LUMO (88.8%)	0.2914	IL
S4	4.2294	293	HOMO-7 → LUMO (49.9%)	0.0663	IL
			HOMO → LUMO+2 (15.8%)		
S5	4.3625	284	HOMO-2 → LUMO (23.7%)	0.0944	IL + XLCT
			HOMO → LUMO+2 (60.5%)		
\$6	4.3792	283	HOMO-2 → LUMO (65.2%)	0.0228	IL + XLCT
			HOMO → LUMO+2 (12.6%)		
S7	4.4522	278	HOMO-3 → LUMO (81.9%)	0.0053	XLCT
S8	4.6167	269	HOMO-7 → LUMO (10.8%)	0.0029	XLCT
			HOMO-4 → LUMO (83.6%)		

Table S36. Isosurface contour plots of the molecular orbitals of $ZnHLCl_2$ at the ground state geometry (local minimum in the **tautomeric form**, S_0^T , M062X/6-31+g(d) level of theory). Orbital decomposition resulting from Mulliken population analysis.

a – ZnCl₂ group

b – Imidazole ring

c – proton accepting pyridine ring

d – second pyridine ring

Table S37. Excited state properties of $ZnHLBr_2$ at the relaxed ground state geometry (local minimum in the **tautomeric form**, S_0^T , M062X/6-31+g(d) level of theory). Transitions with contribution >10% are shown.

State	Energy (eV)	Energy (nm)	Contributions (%)	Oscillator strength	Character
\$1	2.6639	465	HOMO → LUMO (97.1%)	0.1305	IL
\$2	3.6480	340	HOMO → LUMO+1 (97.0%)	0.0822	IL
\$3	3.7747	328	HOMO-4 → LUMO (28.0%)	0.1364	XLCT + IL
			HOMO-1 → LUMO (57.7%)		
S4	3.8807	319	HOMO-4 → LUMO (28.9%)	0.0854	XLCT + IL
			HOMO-2 → LUMO (25.0%)		
			HOMO-1 → LUMO (38.9%)		
S5	3.9325	315	HOMO-4 → LUMO (29.3%)	0.0662	XLCT + IL
			HOMO-2 → LUMO (64.1%)		
\$6	4.0756	304	HOMO-3 → LUMO (79.4%)	0.0065	XLCT
S7	4.2085	295	HOMO-5 → LUMO (85.7%)	0.0026	XLCT
S8	4.2800	290	HOMO-7 → LUMO (28.7%)	0.0932	XLCT + IL
			HOMO → LUMO+2 (42.3%)		

Table S38. Isosurface contour plots of the molecular orbitals of $ZnHLBr_2$ at the ground state geometry (local minimum in the **tautomeric form**, S_0^T , M062X/6-31+g(d) level of theory). Orbital decomposition resulting from Mulliken population analysis.

b – Imidazole ring

c – proton accepting pyridine ring

d – second pyridine ring

Table S39. Excited state properties of ZnHLI₂ at the relaxed ground state geometry (local minimum in the tautomeric form, S_0^T , M062X/6-31+g(d) level of theory). Transitions with contribution >10% are shown.

Energy	Energy	Contributions (%)	Oscillator	Character
(ev)	(nm)		strength	
2.6213	473	HOMO → LUMO (87.0%)	0.1244	IL + MLCT
3.2553	381	HOMO-1 → LUMO (87.2%)	0.0039	MLCT
3.3534	370	HOMO-2 → LUMO (93.5%)	0.0018	MLCT
3.5466	350	HOMO-3 → LUMO (95.9%)	0.0027	MLCT
3.6094	344	HOMO → LUMO+1 (87.9%)	0.0720	IL + MLCT
3.6653	338	HOMO-4 → LUMO (97.0%)	0.0019	MLCT
3.7797	328	HOMO-6 \rightarrow LUMO (23.3%)	0.2233	IL + MLCT
				-
		HOMO-5 → LUMO (69.7%)		
	Energy (eV) 2.6213 3.2553 3.3534 3.5466 3.6094 3.6653 3.7797	Energy (eV) Energy (nm) 2.6213 473 3.2553 381 3.3534 370 3.5466 350 3.6094 344 3.6653 338 3.7797 328	Energy (eV) Energy (nm) Contributions (%) 2.6213 473 HOMO → LUMO (87.0%) 3.2553 381 HOMO-1 → LUMO (87.2%) 3.3534 370 HOMO-2 → LUMO (93.5%) 3.5466 350 HOMO-3 → LUMO (95.9%) 3.6094 344 HOMO-4 → LUMO (97.0%) 3.7797 328 HOMO-6 → LUMO (23.3%) HOMO-5 → LUMO (69.7%) HOMO-5 → LUMO (69.7%)	Energy (eV) Energy (nm) Contributions (%) Oscillator strength 2.6213 473 HOMO → LUMO (87.0%) 0.1244 3.2553 381 HOMO-1 → LUMO (87.2%) 0.0039 3.3534 370 HOMO-2 → LUMO (93.5%) 0.0018 3.5466 350 HOMO-3 → LUMO (95.9%) 0.0027 3.6094 344 HOMO-4 → LUMO (97.0%) 0.0019 3.7797 328 HOMO-6 → LUMO (23.3%) 0.2233 HOMO-5 → LUMO (69.7%) HOMO-5 → LUMO (69.7%) 0.2233

S8	4.1399	299	HOMO-1 → LUMO+1 (81.5%)	0.0038	MLCT

Table S40. Isosurface contour plots of the molecular orbitals of $ZnHLI_2$ at the ground state geometry (local minimum in the **tautomeric form**, S_0^T , M062X/6-31+g(d) level of theory). Orbital decomposition resulting from Mulliken population analysis.

a – Znl₂ group b – Imidazole ring

c – proton accepting pyridine ring

d – second pyridine ring

Table S41. Isosurface contour plots of the molecular orbitals of $ZnHLCl_2$ at the first singlet excited state geometry (tautomeric form, S_1^T , M062X/6-31+g(d) level of theory). Orbital decomposition resulting from Mulliken population analysis.

b – Imidazole ring

c – proton accepting pyridine ring

d - second pyridine ring

Table S42. Isosurface contour plots of the molecular orbitals of $ZnHLBr_2$ at the first singlet excited state geometry (tautomeric form, S_1^T , M062X/6-31+g(d) level of theory). Orbital decomposition resulting from Mulliken population analysis.

$S_1^T \rightarrow S_0^T$ is LUMO \rightarrow HOMO transition (97.9%), λ = 510 nm, f = 0.1208

a – ZnBr₂ group

b – Imidazole ring

c – proton accepting pyridine ring

d – second pyridine ring

Table S43. Isosurface contour plots of the molecular orbitals of ZnHLI₂ at the first singlet excited state geometry (tautomeric form, S₁^T, M062X/6-31+g(d) level of theory). Orbital decomposition resulting from Mulliken population analysis.

 $S_1^{T} \rightarrow S_0^{T}$ is LUMO \rightarrow HOMO transition (94.4%), $\lambda = 507$ nm, f = 0.1182

a – Znl₂ group

b – Imidazole ring

c - first pyridine ring (which is coordinated to Zn atom)

d - second pyridine ring (which is not coordinated to Zn atom)

Table S44. Isosurface contour plots of the molecular orbitals of ZnHLCl₂ at the second singlet excited state geometry (tautomeric form, S₂^T, M062X/6-31+g(d) level of theory). Orbital decomposition resulting from Mulliken population analysis.

 $S_2^T \rightarrow S_0^T$ is LUMO \rightarrow HOMO-1 transition (98.3%), $\lambda = 379$ nm, f = 0.1276

 $a - ZnCl_2$ group

b – Imidazole ring

c – proton accepting pyridine ring

d – second pyridine ring

Table S45. Isosurface contour plots of the molecular orbitals of ZnHLCl₂ at the first singlet excited state geometry (**minor component**, S_1^{minor} , M062X/6-31+g(d) level of theory). Orbital decomposition resulting from Mulliken population analysis.

 $S_1^{minor} \rightarrow S_0^{minor}$ is LUMO \rightarrow HOMO transition (97.4%), λ = 491 nm, f = 0.1884

a – ZnCl₂ group

b – Imidazole ring

c – first pyridine ring (which is coordinated to Zn atom)

d – second pyridine ring (which is not coordinated to Zn atom)

Table S46. Isosurface contour plots of the molecular orbitals of ZnHLBr₂ at the first singlet excited state geometry (**minor component**, S_1^{minor} , M062X/6-31+g(d) level of theory). Orbital decomposition resulting from Mulliken population analysis.

a – ZnBr₂ group

b – Imidazole ring

c – first pyridine ring (which is coordinated to Zn atom)

d – second pyridine ring (which is not coordinated to Zn atom)

Table S47. Isosurface contour plots of the molecular orbitals of $ZnHLl_2$ at the first singlet excited state geometry (minor component, S_1^{minor} , M062X/6-31+g(d) level of theory). Orbital decomposition resulting from Mulliken population analysis.

 $S_1^{minor} \rightarrow S_0^{minor}$ is LUMO \rightarrow HOMO transition (97.3%), λ = 494 nm, f = 0.1720

a – Znl₂ group

b – Imidazole ring

c – first pyridine ring (which is coordinated to Zn atom)

d - second pyridine ring (which is not coordinated to Zn atom)

Figure S28. Comparison of the emission mechanisms of the free ligand HL and the complex ZnHLCl₂.