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EXPERIMENTAL DETAILS

Chemical reagents

All reagents were commercially purchased and used without further purification. 

Hexachloroplatinic acid (H2PtCl6.xH2O; ~38% Pt), nickel(II) chloride hexahydrate 

(NiCl2.6H2O; 99.9% trace metal basis), and Nafion 117 solution (5 wt%) were purchased 

from Sigma-Aldrich, USA. Polyvinylpyrrolidone (PVP, MW = 40 000) and L-ascorbic acid 

(≥ 99.7%) were obtained from HiMedia Lab., India, and Beijing Chemical Reagent, China.

Material Characterizations

X-ray diffraction (XRD) pattern of as-made catalyst was collected on D2 PHASER (Bruker, 

Germany) with Cu K radiation source (λ = 1.5418 Å) in degree range of 20o to 80o at a step 

size of 0.02o. The morphology and particle size of the as-obtained nanocatalyst were 

characterized through transmission electron microscopy (TEM) and HR-TEM images on a 

JOEL-JEM 2100F device at 200 kV. Before the test, a specimen was distributed in ethanol 

solution to form a homogeneous suspension, followed by casting on carbon film-coated 

copper microgrids. Also, elemental composition and distribution were recorded by scanning 

electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) on JOEL-JSM 

6500F device at 10 kV. X-ray photoelectron spectroscopy (XPS) was carried out on PHI 

5000 VersaProbe (Ulvac-PHI) equipped with a monochromator Al K (h  = 1486.6 eV) X-ʋ

ray source at a 10 mV current and 15 kV anode voltage.

Electrochemical Properties

Electrochemical measurements were conducted on an Autolab potentiostat/galvanostat 

(PGSTAT302N) workstation (Metrohm Co., Ltd. Switzerland) connected with a three-

electrode cell, including a working electrode (glassy carbon (GCE), 5 mm), a counter 

electrode (platinum wire), and reference electrode (Ag/AgCl/(sat.KCl). For catalyst ink 

preparation, 1.7 mg of as-made catalyst was dispersed in a mixture of 20 µL of Nafion and 
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180 µL of ethanol absolute, followed by the ultrasonication of 30 min to form a 

homogeneous ink. Before coasting the as-prepared catalyst ink, the surface of the working 

electrode was polished by 0.5 µm Al2O3 and washed by absolute ethanol and purged water, 

and then 2.5 µL of catalyst ink was drop-cast onto the GCE surface and dried naturally. To 

start with, a cyclic voltammetry test was performed in an N2-saturated 0.5 M H2SO4 

electrolyte solution with 100 cycles at 50 mV s-1 to get an active working electrode. The 

electrochemical surface area (ECSA) of the as-made catalyst was calculated from the 

hydrogen adsorption/desorption region in cyclic voltammetry (CV) in N2-saturated 0.5 M 

H2SO4 aqueous electrolyte at 25 mV s-1 scan rate. To investigate the ORR performance, 

linear sweep voltammetry (LSV) test was carried out using a rotating disk electrode (Autolab 

RDE) at 1600 rpm in an O2-saturated 0.5 M H2SO4 electrolyte solution at a scan rate of 10 

mV s-1. Electrochemical impedance spectroscopy (EIS) was recorded in a frequency range of 

0.1 - 105 Hz at 0.9 VRHE in an O2-saturated 0.5 M H2SO4 electrolyte solution. In terms of 

electrocatalytic stability, an accelerated durability test (ADT) with 5000-cycling was 

conducted in N2- and O2-saturated 0.5 M H2SO4 electrolyte solution. For comparison, 20 wt% 

Pt NPs/C (E-TEK) catalyst was used as a benchmark catalyst. All reported potentials were 

converted from Ag/AgCl to reversible hydrogen electrode (RHE) scale by Eqs. (1)-(3):1 

ERHE = EMea + 0.059*pH + E0
Ag/AgCl

ERHE = EMea + 0.059*0 + 0.197

ERHE = EMea + 0.197

(1)

(2)

(3)

where ERHE is a potential versus RHE, EMea is a measured potential, E0
Ag/AgCl is a standard 

electrode potential of Ag/AgCl/(sat.KCl), and pH of 0.5 M H2SO4 is close to 0.

Calculation of lattice parameters of as-made NiPt NUCs/C catalyst

The interplanar spacing (d(hkl)) was calculated by Bragg’s law (Eq. (4))2, 3:
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(hkl)
λd =

2sinθ (4)

where: d(hkl) is lattice space (Å); λ is the wavelength of the incident X-ray (λ = 15406 Å); 

is the Bragg angle.

The coherent length (D(hkl)) was estimated by Debye-Scherrer’s formula (Eq.(5))2-4:

(hkl)
kλD =

βcosθ (5)

where: D(hkl) is average crystallite size (nm), k is Scherrer constant (0.94), λ is the 

wavelength of the incident X-ray (λ = 15406 Å),  is the line broadening at half the 

maximum intensity (FWHM), and is the Bragg angle.

Calculation of electrochemical surface area

Based on hydrogen adsorption/desorption regions in CV curves in N2-purged 0.5 M H2SO4 

electrolyte solution, the electrochemical surface area (ECSA) of as-made NiPt NUCs/C and 

commercial Pt NPs/C (E-TEK) catalysts was calculated by Eq. (6):5-7

HQECSA=
0.21*[Metal] (6)

where QH (mC cm-2) represents the coulombic charge for hydrogen adsorption; 0.21 (mC 

cm-2) is the charge required to oxidize an H2 monolayer, and [Metal] is the loaded catalyst 

metal onto the working surface electrode (0.13 mg cm-2). QH can be estimated by Eqs. (7):8, 9

H (V)
1Q = I dV

ν A  (7)

where I (A) represents the peak current; V (V) is the peak potential; (mV s-1) denotes the 

scanning rate, which is 25 mV s-1 in this experiment; and A (cm-2) is the GCE’s geometric 

area, which is 0.1964 cm-2.

Calculation of ORR kinetics of catalyst

Based on the rotating disk electrodes (RDE) test, the kinetic current density and number of 
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transferred electrons during the oxygen electro-reduction process were calculated by 

Koutecky-Levich (K-L) equation as follows:10-15

1/2
1 1 1 1 1

L K Kj j j B j
   

2/3 1/6
00.201B nFC D  

(8)

(9)

where j (mA cm-2) is a measured current density, jL (mA cm-2) and jK (mA cm-2) are 

diffusion-limited current density and kinetic current density, respectively. B (C cm-2 s-1/2) is 

the Levich constant, which was calculated from slope values of 1/j and 1/ꞷ1/2; n is the 

transferred electron number during ORR; F (96485 C mol-1) is the Faraday constant; C0 is the 

bulk concentration of O2 (1.17x10-6 mol cm-3
 in 0.5 M H2SO4).16, 17 D is the diffusion 

coefficient of O2 (1.4x10-5 cm2 s-1 in 0.5 M H2SO4)16, 17; ν is the kinematic viscosity of 

electrolyte (0.01 cm2 s-1 for 0.5 M H2SO4);16, 17 and ꞷ (rad s-1/2) is electrode angular velocity. 

Then, the kinetic current density was calculated following Eq. (10):

* L
K

L

j jj
j j


 (10)

The mass activity and specific activity were calculated by following Eq.(11), (12):

[ ]
KjMass activity

Metal


Mass activitySpecific activity
ECSA



(11)

(12)
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Results and Discussion

Figure S1. Fitted-XRD pattern of as-made NiPt NUCs/C catalyst.

Figure S2. Fitted-XRD pattern of commercial Pt NPs/C catalyst.
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Figure S3. SEM image of the as-made NiPt NUCs/C catalyst.

Figure S4. CO-stripping curves of as-made NiPt NUCs/C and Pt NPs/C (E-TEK) catalysts in 

0.5 M H2SO4 electrolyte solution at a scan rate of 50 mV s-1.
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Figure S5. TEM images of the as-made NiPt NUCs/C catalyst (a) before and (b) after ADT.

Figure S6. (a) EDX spectroscopy and (b) elemental mapping of Ni and Pt in the as-made 

NiPt NUCs/C catalyst after ADT.

Table S1. Summary of XRD result of NiPt NUCs/C catalyst and Pt NPs/C (E-TEK) catalyst.

d(hkl)
(a)

Å

D(hkl)
(b)

nmCatalysts

(111) (200) (220) (111) (200) (220)

H(111)/H(200) H(111)/H(220)

NiPt NUCs/C 2.20 1.90 1.40 3.13 1.94 2.12 3.00 8.74

Pt NPs/C (E-TEK) 2.30 2.00 1.40 2.07 1.96 2.09 2.44 3.79

(a)Calculation from Bragg’s law.
(b)Calculation from Debye-Scherrer’s equation.

Table S2. Summary of fitted XPS result of as-made NiPt NUCs/C catalyst.
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Catalyst Assignment 
Binding energy

eV

Relative intensity

%

70.78
Pt0

74.22
72.07

72.14
Pt2+

76.13
27.93

853.22
Ni0

870.16
35.18

855.88

NiPt NUCs/C

Ni2+

873.55
64.82
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Table S3. A comparison of ORR activity of Pt-based electrocatalysts.

Catalyst
Onset 
potential

VRHE

Half-wave 
potential

VRHE

Mass activity 
at 0.9 VRHE

mA mgMetal
-1

Specific activity 
at 0.9 VRHE

mA cm-2

Refs.

NiPt NUCs/C 0.956 0.918 565.22 1.04 This 
work

Pt NPs/C (E-TEK) 0.938 0.88 116.93 0.16 This 
work

Pd1Pt4 DNSs 0.99 0.89 530.0 0.74 18

Pt NPs/C (JM) 0.956 - 67.1 - 19

Pt/(Mn-N)@C - 0.928 541.0 0.496 20

Pt3Co-700 - 0.945 520.0 1.10 21

PtxY-E/C – 0.89 483.0 0.59 22

La-doped Pt/C-5 – – 490.0 0.93 23

D-PtNi/KB - 0.89 460.0 1.10 24

Commerical Pt/C - 0.85 180.0 0.38 24

Pt NPs/C 0.922 0.811 120.0 0.15 25

Pt-Ni NWAr/C - - 150.0 0.45 26

Pt1Co1-IMC@Pt - - 530.0 1.11 27

Pt3Mn intermetallic/C - - 386.0 0.877 28

10% Pt/Co-N-C - 0.886 223.0 - 29

PtP1.4@Pt/C - 0.888 310.0 0.62 30
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Table S4. A summary of ORR performance of electrocatalysts before and after the ADT test.

Oxygen electro-reduction reaction

Half-wave potential 

VRHE

Mass activity

mA mgMetal
-1Catalyst

Initial After ADT Initial After ADT
Deterioration

%

NiPt NUCs/C 0.918 0.908 565.22 478.74 15.29

Pt NPs/C (E-TEK) 0.876 0.851 116.93 62.57 46.48
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