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EXPERIMENTAL DETAILS

Chemical reagents

All reagents were commercially purchased and used without further purification.
Hexachloroplatinic acid (H,PtClg.xH,O; ~38% Pt), nickel(Il) chloride hexahydrate
(NiCl,.6H,0; 99.9% trace metal basis), and Nafion 117 solution (5 wt%) were purchased
from Sigma-Aldrich, USA. Polyvinylpyrrolidone (PVP, MW = 40 000) and L-ascorbic acid
(= 99.7%) were obtained from HiMedia Lab., India, and Beijing Chemical Reagent, China.
Material Characterizations

X-ray diffraction (XRD) pattern of as-made catalyst was collected on D2 PHASER (Bruker,
Germany) with Cu K, radiation source (A = 1.5418 A) in degree range of 20° to 80° at a step
size of 0.02°. The morphology and particle size of the as-obtained nanocatalyst were
characterized through transmission electron microscopy (TEM) and HR-TEM images on a
JOEL-JEM 2100F device at 200 kV. Before the test, a specimen was distributed in ethanol
solution to form a homogeneous suspension, followed by casting on carbon film-coated
copper microgrids. Also, elemental composition and distribution were recorded by scanning
electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) on JOEL-JSM
6500F device at 10 kV. X-ray photoelectron spectroscopy (XPS) was carried out on PHI
5000 VersaProbe (Ulvac-PHI) equipped with a monochromator Al K, (hv = 1486.6 eV) X-
ray source at a 10 mV current and 15 kV anode voltage.

Electrochemical Properties

Electrochemical measurements were conducted on an Autolab potentiostat/galvanostat
(PGSTAT302N) workstation (Metrohm Co., Ltd. Switzerland) connected with a three-
electrode cell, including a working electrode (glassy carbon (GCE), 5 mm), a counter
electrode (platinum wire), and reference electrode (Ag/AgCl/(sat.KCl). For catalyst ink

preparation, 1.7 mg of as-made catalyst was dispersed in a mixture of 20 pL of Nafion and
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180 pL of ethanol absolute, followed by the ultrasonication of 30 min to form a
homogeneous ink. Before coasting the as-prepared catalyst ink, the surface of the working
electrode was polished by 0.5 pm Al,O5; and washed by absolute ethanol and purged water,
and then 2.5 pL of catalyst ink was drop-cast onto the GCE surface and dried naturally. To
start with, a cyclic voltammetry test was performed in an N,-saturated 0.5 M H,SO,
electrolyte solution with 100 cycles at 50 mV s’! to get an active working electrode. The
electrochemical surface area (ECSA) of the as-made catalyst was calculated from the
hydrogen adsorption/desorption region in cyclic voltammetry (CV) in Nj-saturated 0.5 M
H,SO, aqueous electrolyte at 25 mV s°! scan rate. To investigate the ORR performance,
linear sweep voltammetry (LSV) test was carried out using a rotating disk electrode (Autolab
RDE) at 1600 rpm in an O,-saturated 0.5 M H,SO, electrolyte solution at a scan rate of 10
mV s!. Electrochemical impedance spectroscopy (EIS) was recorded in a frequency range of
0.1 - 10° Hz at 0.9 Vgyg in an O,-saturated 0.5 M H,SO, electrolyte solution. In terms of
electrocatalytic stability, an accelerated durability test (ADT) with 5000-cycling was
conducted in N,- and O,-saturated 0.5 M H,SO, electrolyte solution. For comparison, 20 wt%
Pt NPs/C (E-TEK) catalyst was used as a benchmark catalyst. All reported potentials were

converted from Ag/AgCl to reversible hydrogen electrode (RHE) scale by Egs. (1)-(3):!

Erne = Emeat 0.059%pH + E%giagci (1)
ERHE = EMea+ 0.059*0 + 0.197 (2)
Erng = Emea +0.197 (3)

where Egyp is a potential versus RHE, Eyje, is a measured potential, E?5gaqc is a standard
electrode potential of Ag/AgCl/(sat.KCl), and pH of 0.5 M H,SO; is close to 0.
Calculation of lattice parameters of as-made NiPt NUCs/C catalyst

The interplanar spacing (d.;)) was calculated by Bragg’s law (Eq. (4))*>3:
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where: dgy) is lattice space (A); A is the wavelength of the incident X-ray (A = 15406 A);
0 is the Bragg angle.
The coherent length (D)) was estimated by Debye-Scherrer’s formula (Eq.(5))**:

kA
BcosO

D ity = (5)

where: Dy 1s average crystallite size (nm), k is Scherrer constant (0.94), A is the
wavelength of the incident X-ray (A = 15406 A), B is the line broadening at half the
maximum intensity (FWHM), and 0 is the Bragg angle.
Calculation of electrochemical surface area
Based on hydrogen adsorption/desorption regions in CV curves in N,-purged 0.5 M H,SO,
electrolyte solution, the electrochemical surface area (ECSA) of as-made NiPt NUCs/C and

commercial Pt NPs/C (E-TEK) catalysts was calculated by Eq. (6):37

ECSA=—Qu (6)
0.21*[Metal]

where Qp (mC cm) represents the coulombic charge for hydrogen adsorption; 0.21 (mC
cm?) is the charge required to oxidize an H, monolayer, and [Metal] is the loaded catalyst

metal onto the working surface electrode (0.13 mg cm™). Qy can be estimated by Egs. (7):3-°
1
QH_JJ‘ [ydV (7

where I (A) represents the peak current; V (V) is the peak potential; v (mV s!) denotes the
scanning rate, which is 25 mV s! in this experiment; and A (cm?) is the GCE’s geometric
area, which is 0.1964 cm2.
Calculation of ORR kinetics of catalyst

Based on the rotating disk electrodes (RDE) test, the kinetic current density and number of
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transferred electrons during the oxygen electro-reduction process were calculated by
Koutecky-Levich (K-L) equation as follows:!0-15

111

= +_
j. Jx Ba"? i (8)
©9)

1
J
B=0.201nFC,D**v"°
where j (mA cm?) is a measured current density, j; (mA cm?) and jx (mA cm™?) are
diffusion-limited current density and kinetic current density, respectively. B (C cm? s12) is
the Levich constant, which was calculated from slope values of 1/ and 1/@"?; n is the
transferred electron number during ORR; F (96485 C mol!) is the Faraday constant; Cj is the
bulk concentration of O, (1.17x10% mol ¢cm? in 0.5 M H,S0,).'® 7 D is the diffusion
coefficient of O, (1.4x105 c¢m? s in 0.5 M H,SOy4)!'% !7; v is the kinematic viscosity of
electrolyte (0.01 cm? s for 0.5 M H,SOy);'% 17 and B (rad s*'?) is electrode angular velocity.
Then, the kinetic current density was calculated following Eq. (10):

_J*
jL _j

Jx (10)

The mass activity and specific activity were calculated by following Eq.(11), (12):

Mass activity = -
[Metal] (11)
. . Mass activity (12)
Specific activity = ——
pecif v ECSA
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Results and Discussion
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Figure S1. Fitted-XRD pattern of as-made NiPt NUCs/C catalyst.
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Figure S2. Fitted-XRD pattern of commercial Pt NPs/C catalyst.
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Figure S3. SEM image of the as-made NiPt NUCs/C catalyst.
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Figure S4. CO-stripping curves of as-made NiPt NUCs/C and Pt NPs/C (E-TEK) catalysts in

0.5 M H,S04 electrolyte solution at a scan rate of 50 mV s
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Figure S5. TEM images of the as-made NiPt NUCs/C catalyst (a) before and (b) after ADT.

Counts

Energy / keV
Figure S6. (a) EDX spectroscopy and (b) elemental mapping of Ni and Pt in the as-made
NiPt NUCs/C catalyst after ADT.

Table S1. Summary of XRD result of NiPt NUCs/C catalyst and Pt NPs/C (E-TEK) catalyst.

d @ D ety
Catalysts A nm H(l 1 1)/H(200) H(l 1 1)/H(220)

(111)  (200)  (220)  (111)  (200)  (220)

NiPt NUCs/C 2.20 1.90 1.40 3.13 1.94 2.12 3.00 8.74

Pt NPs/C (E-TEK) 2.30 2.00 1.40 2.07 1.96 2.09 244 3.79

@Calculation from Bragg'’s law.

® Calculation from Debye-Scherrer’s equation.

Table S2. Summary of fitted XPS result of as-made NiPt NUCs/C catalyst.
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Binding energy

Relative intensity

Catalyst Assignment
eV %
70.78
Pt0 72.07
74.22
72.14
Pt 27.93
76.13
NiPt NUCs/C
853.22
Ni¢ 35.18
870.16
855.88
Ni?* 64.82
873.55
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Table S3. A comparison of ORR activity of Pt-based electrocatalysts.

Onset Half-wave  Mass activity ~ Specific activity
Catalyst potential  potential at 0.9 Vyug at 0.9 Vrue Refs.
VRuE VRuE MA Ml mA cm-
NiPt NUCs/C 0.956 0918 565.22 1.04 \1);}(1)1:1(
Pt NPs/C (E-TEK) 0.938 0.88 116.93 0.16 S(I)Irsk
Pd,Pt, DNSs 0.99 0.89 530.0 0.74 18
Pt NPs/C (IM) 0.956 - 67.1 - 19
Pt/(Mn-N)@C - 0.928 541.0 0.496 20
Pt;Co-700 - 0.945 520.0 1.10 2
Pt,Y-E/C - 0.89 483.0 0.59 2
La-doped Pt/C-5 - - 490.0 0.93 23
D-PtNi/KB - 0.89 460.0 1.10 1
Commerical Pt/C - 0.85 180.0 0.38 24
Pt NPs/C 0.922 0.811 120.0 0.15 25
Pt-Ni NW,,/C - - 150.0 0.45 26
Pt1Col-IMC@Pt - - 530.0 1.11 2
Pt;Mn intermetallic/C - - 386.0 0.877 28
10% Pt/Co-N-C - 0.886 223.0 - 2
PtP, 4@Pt/C - 0.888 310.0 0.62 30
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Table S4. A summary of ORR performance of electrocatalysts before and after the ADT test.

Oxygen electro-reduction reaction

Half-wave potential Mass activity
Catalyst VRrue MA MEyetar”
Deterioration
Initial After ADT Initial After ADT "
NiPt NUCs/C 0.918 0.908 565.22  478.74 15.29
Pt NPs/C (E-TEK) 0.876 0.851 116.93  62.57 46.48
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