Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI)

Band Gap Modulation and Nonlinear Optical Properties of

Quaternary Tellurates Li2GeTeO⁶

Dan Wang,^{a#} Yunxi Zhang,^{a#} Qian Liu,^a Bingbing Zhang,^a Daqing Yang,^a and Ying

Wang*^a

^aCollege of Chemistry and Environmental Science, Hebei University, Baoding 071002, China. Email: wangy@hbu.edu.cn.

#These authors contributed equally to this work.

Table of contents

Experimental section

Synthesis. All chemicals were used as received. Li₂CO₃ ($>99.0\%$, aladdin), GeO₂ (99.99%, Hawk), and $TeO₂$ (99.99%, Hawk) were all used as raw materials. Single crystals of $Li₂GeTeO₆$ were obtained by using the high-temperature flux method. The mixture of Li_2CO_3 , GeO₂, and TeO₂ in a molar ratio of 2.5 : 1 : 4 was fully grounded and placed in an alumina crucible. The crucible was heated to 720 °C in 3 h, and held at this temperature for 12 h. Afterward, the solution was cooled slowly to 500 °C with a rate of $2^{\circ}C$ h⁻¹, and then cooled the room temperature quickly. Colorless crystals of $Li₂GeTeO₆$ were obtained from the surface of the crucible (yield: about 70% based on Ge).

The polycrystalline powder samples of $Li₂GeTeO₆$ were prepared via the solid-state reaction method in air. A mixture of $Li₂CO₃$, TeO₂, and GeO₂ with a stoichiometric ratio was fully ground and loaded into a corundum crucible, heated to 700 °C at a rate of 3 °C min⁻¹, held at this temperature for 48 hours, then heat to 750 °C for 12 h with several intermittent grindings. The chemical reaction process can be expressed as follows: $Li_2CO_3 + GeO_2 + TeO_2 + 1/2$ $O_2 = Li_2GeTeO_6 + CO_2$.

Characterization. The single-crystal X-ray diffraction (XRD) data were collected on a Bruker D8 VENTURE dual-wavelength Mo/Cu three-circle diffractometer with a microfocus sealed X-ray tube using mirror optics as monochromator and a Bruker PHOTON III detector. The diffractometer used $M \alpha K_a$ radiation ($\lambda = 0.71073$ Å) for data collection. All data were integrated with SAINT program¹ and a multi-scan absorption correction using SADABS² was applied. The structure was solved by Intrinsic Phasing methods using $SHELXT³$ and refined by full-matrix least-squares methods against *F*² by SHELXL⁴ , embedding within the *Olex*2 program.⁵ Potential higher symmetry was checked by PLATON.⁶ Crystal data and refinement details, atomic coordinates, and selected bond distances and angles are listed in Tables S1-S3. Powder XRD data were measured on a Dandong Haoyuan DX-27mini X-ray diffractometer with Cu Kα radiation ($\lambda = 1.54056$ Å). The powder XRD pattern was scanned over the 2θ angles range of 10-70°, at a scanning step width of 0.02° and a

fixed counting time of 2 s. The thermal gravimetric (TG) analysis and differential scanning calorimetry (DSC) were studied with a NETZSCH5 instrument under air. The sample was placed in an Al₂O₃ crucible and heated from 30 to 1000 $^{\circ}$ C with a heating rate of 10 °C·min⁻¹. The infrared spectra were recorded on a Shimadzu IR Affinity-1 Fourier transform infrared spectrometer in the range of 400 - 4000 cm−1 . The sample was grounded and mixed with KBr. The UV−Vis−NIR diffuse reflectance spectra were measured at room temperature with a Shimadzu SolidSpec-3600DUV spectrophotometer in the 200-1100 nm wavelength range. The SHG effects of the powder samples were measured by using a modified Kurtz-Perry method⁷ with a Oswitched 1064 nm Nd: YAG laser. The samples were ground and divided into fractions according to different particle size ranges: 20-38.5, 38.5-55, 55-80, 80-125, 125-160, 160-200, and 200-250 μm. The same particle-sized KDP samples were used as the standard. The optical damage induced by the laser was tested on crystalline powder pellet samples using a Q-switched 1064 nm Nd: YAG laser (1064 nm, 7 ns, 1 Hz). The pulse energy was changed from 20 to100 mJ and a convex lens was used to adjust the beam diameter. The damaged area can be directly observed under a microscope.

Theoretical Calculations. The electronic structures and optical properties for $Li₂GeTeO₆$ were calculated by using the CASTEP package.⁸ The generalized gradientapproximation (GGA) with Perdew-Burke-Ernzerhof (PBE) functional was adopted to describe the exchange-correlation potential.⁹ The norm-conserving pseudopotentials (NCP) were adopted to model the effective interaction between the valence electrons and atom cores.¹⁰ The configurations for diverse electron orbital were Li: $2s^2$, Ge: $4s^24p^2$, Te: $5s^25p^4$, and O: $2s^22p^4$, respectively. The cut off energies and the dense *K*points in the Brillouin zone were set as 750 eV and $3 \times 3 \times 2$. In addition, a scissors operator was used to correct the underestimation of band gap induced by PBE-GGA. On the basis of the scissor-corrected electron band structure, the second-order NLO coefficients *d*ij were calculated using the length-gauge formalism at a zero-frequency limit.¹¹ The static second-order nonlinear susceptibilities can be ascribed to Virtual-Hole (VH) and Virtual-Electron (VE) processes. In addition, to visualize the contribution of each atom to the SHG response, the SHG-weighted electron density method was adopted.^{12, 13}

Li ₂ GeTeO ₆
310.07
273(2)
Trigonal
$R3$ (No. 146)
4.996(3)
4.996(3)
14.335(12)
309.8(5)
$\overline{3}$
4.985
14.272
414
8.53 to 56.61
$-6 \le h \le 6$; $-6 \le k \le 6$; $-18 \le l \le 18$
1414
353 ($R_{\text{int}} = 0.0733$, $R_{\text{sigma}} = 0.0629$)
100.0%
353/7/32
1.085
$R_1 = 0.0323$; w $R_2 = 0.0575$
$R_1 = 0.0424$; w $R_2 = 0.0598$
$1.94/-1.27$
0.23(6)

Table S1. Crystal data and structure refinements for $Li₂GeTeO₆$.

 $a \mathbf{R}_1 = \sum ||F_{\rm o}|| - |F_{\rm c}||/\sum |F_{\rm o}|$ and $w\mathbf{R}_2 = \left[\sum w(F_{\rm o}^2 - F_{\rm c}^2)^2/\sum w F_{\rm o}^4\right]^{1/2}$ for $F_{\rm o}^2 > 2\sigma(F_{\rm o}^2)$.

atom	\boldsymbol{x}	y	z	U(eq)	BVS
Li(1)	0.666667	0.333333	0.635(4)	0.02(2)	0.906
Li(2)	0.333333	0.666667	0.699(4)	0.020(15)	0.909
Ge(1)	0.000000	0.000000	0.50701(15)	0.0071(7)	3.910
Te(1)	0.333333	0.666667	0.49362(15)	0.0110(5)	6.004
O(1)	0.298(5)	0.340(5)	0.575(3)	0.013(6)	1.915
O(2)	0.678(5)	0.708(4)	0.425(2)	0.005(5)	1.995

Table S2. Atomic coordinates and equivalent isotropic displacement parameters for Li₂GeTeO₆. U(eq) is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom-Atom	Length [Å]	Atom-Atom-Atom	Angle [°]
$Li1-O1$	2.05(4)	$O1-Li1-O1$	103(2)
$Li1-O1^{\#1}$	2.05(4)	$O1-Li1-O1$	103(2)
$Li1 - O1^{#2}$	2.05(4)	$O1-Li1-O1$	103(2)
$Li1 - O2^{#3}$	2.35(5)	$O1-Li1-O2$	156(3)
$Li1-O2^{#4}$	2.35(5)	$O1-Li1-O2$	89.3(8)
$Li1 - O2^{#5}$	2.35(5)	$O1-Li1-O2$	93.4(11)
$Li2-O2^{#5}$	2.03(3)	$O1-Li1-O2$	89.3(8)
$Li2-O2^{+9}$	2.03(3)	$O1-Li1-O2$	93.4(11)
$Li2-O2^{#10}$	2.03(3)	$O1-Li1-O2$	156(3)
$Li2-O1$	2.37(5)	$O2-Li1-O2$	69.2(16)
$Li2-O1^{#11}$	2.37(5)	$O1-Li1-O2$	93.4(11)
$Li2-O1^{#12}$	2.37(5)	$O1-Li1-O2$	156(3)
$Ge1 - O1^{#13}$	1.87(3)	$O1-Li1-O2$	89.3(8)
$Ge1-O1^{#14}$	1.87(3)	$O2-Li1-O2$	69.2(16)
Gel-Ol	1.87(3)	$O2-Li1-O2$	69.2(16)
$Ge1 - O2^{#15}$	1.93(2)	$O2 - Li2 - O2$	103.7(19)
$Ge1 - O2^{#11}$	1.93(2)	$O2 - Li2 - O2$	103.7(19)
$Ge1 - O2^{t+1}$	1.93(2)	$O2 - Li2 - O2$	103.7(19)
$Te1 - O2^{#11}$	1.90(3)	$O2 - Li2 - O1$	93.2(10)
$Te1 - O2^{#12}$	1.90(3)	$O2-Li2-O1$	89.0(8)
$Te1-O2$	1.90(3)	$O2-Li2-O1$	156(3)
$Te1 - O1^{#12}$	1.94(2)	$O2 - Li2 - O1$	156(3)
$Te1 - O1^{#11}$	1.94(2)	$O2-Li2-O1$	93.2(10)
$Te1-O1$	1.94(2)	$O2 - Li2 - O1$	89.0(8)
		$O1-Li2-O1$	69.2(17)
		$O2 - Li2 - O1$	89.0(8)
		$O2 - Li2 - O1$	156(3)
		$O2 - Li2 - O1$	93.2(10)
		$O1-Li2-O1$	69.2(17)

Table S3. Bond lengths $[\hat{A}]$ and angles $[degree]$ for Li_2GeTeO_6 .

O1–Li2–O1 69.2(17) O1–Ge1–O1 95.7(12) O1–Ge1–O1 95.7(12) O1–Ge1–O1 95.7(12) O1–Ge1–O2 95.5(4) O1–Ge1–O2 82.1(6) O1–Ge1–O2 168.8(9) O1–Ge1–O2 168.8(9) O1–Ge1–O2 95.5(4)

Symmetry transformations used to generate equivalent atoms:

#1: 1-Y, +X-Y, +Z; #2: 1-X+Y, 1-X, +Z; #3: 1.66667-Y, 0.33333+X-Y, 0.33333+Z; #4: -0.33333+X, - $0.66667+Y, 0.33333+Z$; #5: $0.66667-X+Y, 1.33333-X, 0.33333+Z$; #6: $0.66667+X, 0.33333+Y, 0.33333+Z$; #7: 1+X, +Y, +Z; #8: +X, -1+Y, +Z; #9: 0.66667-Y, 0.33333+X-Y, 0.33333+Z; #10: -0.33333+X, 0.33333+Y, 0.33333+Z; #11: -X+Y, 1-X, +Z; #12: 1-Y, 1+X-Y, +Z; #13: -1+X, +Y, +Z; #14: +X, 1+Y, +Z; #15: -X+Y, -X, +Z; #16: -Y, +X-Y, +Z; #17: -1+X, -1+Y, +Z; #18: -0.66667+X, -0.33333+Y, - 0.33333+Z; #19: 1+X, 1+Y, +Z; #20: 0.33333+X, -0.33333+Y, -0.33333+Z; #21: 0.33333+X, 0.66667+Y, -0.33333+Z;

compounds	space group	octahedral distortion Δd		band gap (eV)	SHG $($ \times KDP)	transparent	LDT $(MW cm^{-2})$
		MO ₆	TeO ₆			region (µm)	
Li ₂ TiTeO ₆	Pnn2	0.20	0.06	3.26	26	$0.38 - 6.72$	550
Li ₂ ZrTeO ₆	R ₃	0.12	0.02	4.06	2.5	$0.29 - 7.4$	1300
α -Li ₂ HfTeO ₆	R ₃	0.19	0.06	3.98	2.2	$0.27 - 8$ [#]	1000
Li ₂ SnTeO ₆	Pnn2	0.01	0.09	3.26	2.5	0.38-6.86	672
$Li2GeTeO6*$	R3	0.16	0.13	4.65	1.3	$0.24 - 10^{#}$	1725

Table S4. Comparison of structure and optical properties of NLO active-quaternary tellurates.

*This work

#Based on polycrystalline samples. It should be noted that the IR cut-off edges is deduced from powder IR spectrum which were not highly precise.

Figure S1. Structural comparison of (a) Li₂ZrTeO₆, (b) α-Li₂HfTeO₆, (c) Li₂SnTeO₆, and (d) $Li₂TiTeO₆$.

Figure S2. The SEM and EDX of Li₂GeTeO₆. Noted that the EDX only provides semiquantitative results, and the Li elements are ignored due to the drawback of EDX analysis.

Figure S3. The calculated and experimental powder XRD patterns of $Li₂GeTeO₆$.

Figure S4. The TG and DSC curves of Li₂GeTeO₆.

.

Figure S5. The IR spectrum of $Li₂GeTeO₆$.

Figure S6. The band gap of $Li₂GeTeO₆$.

Figure S7. The DOS and PDOS of $Li₂GeTeO₆$.

Figure S8. SHG density maps of the occupied and unoccupied orbitals in the VH process of Li₂GeTeO₆. (a) VH occupied; (b)VH unoccupied.

Reference

- 1. SAINT, *Version 7.60A, Bruker analytical X-ray Instruments, inc.,Madison, WI, 2008*.
- 2. L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, *J. Appl. Cryst.*, 2015, **48**, 3-10.
- 3. G. Sheldrick, *Acta Cryst.*, 2015, **A71**, 3-8.
- 4. G. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3-8.
- 5. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339-341.
- 6. A. L. Spek, *J. Appl. Crystallogr.*, 2003, **36**, 7-13.
- 7. S. K. Kurtz and T. T. Perry, *J. Appl. Phys.*, 1968, **39**, 3798-3813.
- 8. S. J. Clark, M. D.Segall, C. J.Pickard,P. J. Hasnip, M. I. J.Probert, K. Refson and M. C.Payne, *Z. Kristallogr.*, 2005, **220**, 567-570.
- 9. J. S. Lin, A. Qteish, M. C. Payne and V. Heine, *Phys. Rev. B*, 1993, **47**, 4174-4180.
- 10. A. M. Rappe, K. M. Rabe, E. Kaxiras and J. D. Joannopoulos, *Phys. Rev. B*, 1990, **41**, 1227- 1230.
- 11. S. N. Rashkeev., W. R. L. Lambrecht. and B. Segall., *Phys. Rev. B*, 1998, **57**, 3905-3919.
- 12. H. K. Liu, Y. Wang, B. B. Zhang, Z. H. Yang and S. L. Pan, *Chem. Sci.*, 2019, **11**, 694-698.
- 13. M. H. Lee, C. H. Yang and J. H. Jan, *Phys. Rev. B*, 2004, **70**, 235110.