# **Supporting information**

## Successive constructions of regular tetra-, hexa- and octanuclear

## microporous polyoxovanadates(III) for gas adsorptions

Zhen-Lang Xie, Dong-Li An, Wei-Zheng Weng, Zhao-Hui Zhou\*

State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China, Tel: + 86-592-2184531; Fax: + 86-592-2183047 zhzhou@xmu.edu.cn

### **Figures and Table Options**

Figure S2. (a) "Violet" and (b) "yellow": cosine-like "V-O-S-O-V-O" rings of 4. (c): Fourier transform infrared (FT-IR) spectra of  $(NH_4)_2K_2[V_4(\mu_2 - \mu_3)_2K_2]V_4(\mu_3 - \mu_3)_2K_2[V_4(\mu_3 - \mu_3)_2K_2]V_4(\mu_3 - \mu_3)_2K_2[V_3(\mu_3 - \mu_3)_2K_2]V_3(\mu_3 - \mu_3)_2K_2[V_3(\mu_3 - \mu_3)_2K_2]V_3(\mu_3 - \mu_3)_2K_2[V_3(\mu_3 - \mu_3)_2K_2]V_3(\mu_3 - \mu_3)_2K_2]V_3(\mu_3 - \mu_3)_2K_2[V_3(\mu_3 - \mu_3)_2K_2]V_3(\mu_3 - \mu_3)_2K_2]V_3(\mu_3 - \mu_3)_2K_2]V_3(\mu_3 - \mu_3)V_3(\mu_3 - \mu_3)$ Figure S5. OH)<sub>4</sub>(ox)<sub>4</sub>(pz)<sub>4</sub>]·9H<sub>2</sub>O (1), (NH<sub>4</sub>)<sub>2</sub>Na<sub>2</sub>[V<sub>4</sub>( $\mu_2$ -OH)<sub>4</sub>(ox)<sub>4</sub>(4-mpz)<sub>4</sub>]·7H<sub>2</sub>O (2), K<sub>2</sub>[V<sub>6</sub>( $\mu_2$ - $OH_{6}(ox)_{6}(Hdatrz)_{6}Cl_{2} \cdot 29.5H_{2}O(3)$  and  $[V_{8}(\mu_{2}-OH)_{8}(SO_{3})_{8}(Hdatrz)_{8}] \cdot 38H_{2}O(4).....7$ Figure S6. Solid-state UV-vis spectra of  $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4]$ ·9H<sub>2</sub>O (1),  $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4]$  · 7H<sub>2</sub>O (2),K<sub>2</sub>[V<sub>6</sub>(µ<sub>2</sub>-Figure S7. TGA curves of solid samples  $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4]\cdot 9H_2O$  (1, a),  $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4]$  · 7H<sub>2</sub>O (2,b).  $K_{2}[V_{6}(\mu_{2} -$ OH)<sub>6</sub>(ox)<sub>6</sub>(Hdatrz)<sub>6</sub>]Cl<sub>2</sub>·29.5H<sub>2</sub>O (**3**, c) and [V<sub>8</sub>(µ<sub>2</sub>-OH)<sub>8</sub>(SO<sub>3</sub>)<sub>8</sub>(Hdatrz)<sub>8</sub>]·38H<sub>2</sub>O (**4**, d).....9 Figure S8. Temperature dependence of magnetic susceptibilities of  $(NH_4)_2K_2[V_4(\mu_2 -$ OH)<sub>4</sub>(ox)<sub>4</sub>(pz)<sub>4</sub>]·9H<sub>2</sub>O (1, a), (NH<sub>4</sub>)<sub>2</sub>Na<sub>2</sub>[V<sub>4</sub>( $\mu_2$ -OH)<sub>4</sub>(ox)<sub>4</sub>(4-mpz)<sub>4</sub>]·7H<sub>2</sub>O (2, b), K<sub>2</sub>[V<sub>6</sub>( $\mu_2$ - $OH_{6}(ox)_{6}(Hdatrz)_{6}Cl_{2} \cdot 29.5H_{2}O$  (3, c) and  $[V_{8}(\mu_{2}-OH)_{8}(SO_{3})_{8}(Hdatrz)_{8}] \cdot 38H_{2}O$  (4, d) under 0.1 T applied field between 300 and 2 K. Blue lines correspond to the best fitting results. Figure S9. N<sub>2</sub> adsorption-desorption isotherms of  $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4]$ ·9H<sub>2</sub>O (1),  $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4]$  · 7H<sub>2</sub>O (**2**) and  $[V_8(\mu_2-OH)_8(SO_3)_8(Hdatrz)_8]$  · 38H<sub>2</sub>O (**4**) 

| Figure S10. (a) CO <sub>2</sub> adsorption isotherms for <b>1</b> , <b>2</b> and <b>4</b> at 288 K; (b) Isosteric heat of adsorption ( $Q_{st}$ ) plotted against CO <sub>2</sub> uptake for <b>1</b> , <b>2</b> and <b>4</b>                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure S11. IAST selectivity of equimolar $CO_2/CH_4 = 0.5/0.5$ mixture for 4                                                                                                                                                                                                                                                                                                                       |
| Figure S12. Comparison of the observed PXRD (red) with the simulated patterns (black) calculated from the SXRD data for $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4]\cdot 9H_2O$ (1, a), $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4]\cdot 7H_2O$ (2, b), $K_2[V_6(\mu_2-OH)_6(ox)_6(Hdatrz)_6]Cl_2\cdot 29.5H_2O$ (3, c) and $[V_8(\mu_2-OH)_8(SO_3)_8(Hdatrz)_8]\cdot 38H_2O$ (4, d), respectively. |
| Table S1. Crystallographic data and structural refinement details for $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4] \cdot 9H_2O$ (1), $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4] \cdot 7H_2O$ (2), $K_2[V_6(\mu_2-OH)_6(ox)_6(Hdatrz)_6]Cl_2 \cdot 29.5H_2O$ (3) and $[V_8(\mu_2-OH)_8(SO_3)_8(Hdatrz)_8] \cdot 38H_2O$ (4), respectively.                                                           |
| Table S2. Selected bond distances (Å) and angles (°) for $(NH_4)_2K_2[V_4(\mu_2 - OH)_4(ox)_4(pz)_4] \cdot 9H_2O$ (1), $(NH_4)_2Na_2[V_4(\mu_2 - OH)_4(ox)_4(4 - mpz)_4] \cdot 7H_2O$ (2), $K_2[V_6(\mu_2 - OH)_6(ox)_6(Hdatrz)_6]Cl_2 \cdot 29.5H_2O$ (3) and $[V_8(\mu_2 - OH)_8(SO_3)_8(Hdatrz)_8] \cdot 38H_2O$ (4), respectively. 17                                                           |
| Table S3. Hydrogen bonds observed in $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4]\cdot 9H_2O$ (1), $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4]\cdot 7H_2O$ (2), $K_2[V_6(\mu_2-OH)_6(ox)_6(Hdatrz)_6]Cl_2\cdot 29.5H_2O$ (3) and $[V_8(\mu_2-OH)_8(SO_3)_8(Hdatrz)_8]\cdot 38H_2O$ (4)                                                                                                               |
| Table S4. Comparisons of V–O distances (Å) in $1 \sim 4$ and a series of tetra-, hexa- and octanuclear vanadium(III/IV/V) clusters with bridging $\mu_2$ -hydroxy/ $\mu_2$ -oxygen groups 22                                                                                                                                                                                                        |
| Table S5. Bond valence sum calculations for $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4] \cdot 9H_2O$ (1), $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4] \cdot 7H_2O$ (2), $K_2[V_6(\mu_2-OH)_6(ox)_6(Hdatrz)_6]Cl_2 \cdot 29.5H_2O$ (3) and $[V_8(\mu_2-OH)_8(SO_3)_8(Hdatrz)_8] \cdot 38H_2O$ (4),respectively.24                                                                                    |
| Table S6. Comparisons of CO2 adsorption data for 1, 2 and 4 with other porous   polyoxometalates at 298 K.   25                                                                                                                                                                                                                                                                                     |
| Table S7. $V-\mu_2-O$ distances (Å) for $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4]\cdot 9H_2O$ (1),<br>$(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4]\cdot 7H_2O$ (2) and $[V_8(\mu_2-OH)_8(SO_3)_8(Hdatrz)_8]\cdot 38H_2O$ (4)<br>before and after O <sub>2</sub> adsorption                                                                                                                         |



Figure S1. Ball-and-stick models of polyanionic cluster  $[V_4(\mu_2-OH)_4(ox)_4(pz)_4]^{4-}$  (1).



Figure S2. (a) "Violet" and (b) "yellow": cosine-like "V–O–S–O–V–O" rings of **4**. (c): sinusoid-like "V–N–N–V" ring.



Figure S3. 2D packing diagram of 1 observed along the c axis.



Figure S4. Channels in **4** viewed along *b* axis.



Figure S5. Fourier transform infrared (FT-IR) spectra of  $(NH_4)_2K_2[V_4(\mu_2 - OH)_4(ox)_4(pz)_4] \cdot 9H_2O$  (1),  $(NH_4)_2Na_2[V_4(\mu_2 - OH)_4(ox)_4(4 - mpz)_4] \cdot 7H_2O$  (2),  $K_2[V_6(\mu_2 - OH)_6(ox)_6(Hdatrz)_6]Cl_2 \cdot 29.5H_2O$  (3) and  $[V_8(\mu_2 - OH)_8(SO_3)_8(Hdatrz)_8] \cdot 38H_2O$  (4).



Figure S6. Solid-state UV-vis spectra of  $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4]\cdot 9H_2O$  (1),  $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4]\cdot 7H_2O$  (2),  $K_2[V_6(\mu_2-OH)_6(ox)_6(Hdatrz)_6]Cl_2\cdot 29.5H_2O$ (3) and  $[V_8(\mu_2-OH)_8(SO_3)_8(Hdatrz)_8]\cdot 38H_2O$  (4).



Figure S7. TGA curves of solid samples  $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4]\cdot 9H_2O$  (1, a),  $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4]\cdot 7H_2O$  (2, b),  $K_2[V_6(\mu_2-OH)_6(ox)_6(Hdatrz)_6]Cl_2\cdot 29.5H_2O$  (3, c) and  $[V_8(\mu_2-OH)_8(SO_3)_8(Hdatrz)_8]\cdot 38H_2O$  (4, d).



Figure S8. Temperature dependence of magnetic susceptibilities of  $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4]\cdot 9H_2O$  (1, a),  $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4]\cdot 7H_2O$  (2, b),  $K_2[V_6(\mu_2-OH)_6(ox)_6(Hdatrz)_6]Cl_2\cdot 29.5H_2O$  (3, c) and  $[V_8(\mu_2-OH)_8(SO_3)_8(Hdatrz)_8]\cdot 38H_2O$  (4, d) under 0.1 T applied field between 300 and 2 K. Blue lines correspond to the best fitting results.



Figure S9. N<sub>2</sub> adsorption-desorption isotherms of  $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4]\cdot 9H_2O$  (1),  $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4]\cdot 7H_2O$  (2) and  $[V_8(\mu_2-OH)_8(SO_3)_8(Hdatrz)_8]\cdot 38H_2O$  (4) at 77K.



Figure S10. (a) CO<sub>2</sub> adsorption isotherms for 1, 2 and 4 at 288 K; (b) Isosteric heat of adsorption  $(Q_{st})$  plotted against CO<sub>2</sub> uptake for 1, 2 and 4.

### Isosteric heat of adsorption was calculated using Clausius–Clapeyron equation:

 $Q_{\rm st} = RT_1T_2\ln(P_2/P_1)/(T_2-T_1);$ 

 $R = 8.314 \times 10^{-3} \text{ kJ/(mol·K^{-1})}, T_1 = 288 \text{ K}, T_2 = 298 \text{ K}.$ 



Figure S11. IAST selectivity of equimolar  $CO_2/CH_4 = 0.5/0.5$  mixture for 4.

#### Calculation of CO<sub>2</sub>/CH<sub>4</sub> selectivity

The ideal adsorbed solution theory (IAST) developed by Myers and Praunitz was used to quantify the  $CO_2/CH_4$  (50/50) selectivities for 4. Pure component isotherm of  $CO_2$  and  $CH_4$  at 298 K were fitted to the single-site Langmuir-Freundlich (LF) model:

$$N = a \times \frac{bp^c}{1 + bp^c}$$

where *a* represents the saturation adsorption capacities; *b* is the affinity constants; *p* is the pressure of the bulk gas at equilibrium with the adsorbed phase; *c* is the deviations from an ideal homogeneous surface. The fitting parameters of LF equation as well as the correlation coefficients ( $\mathbb{R}^2$ ) were listed below:

| Adsorbates      | a    | b       | С       | R <sup>2</sup> |
|-----------------|------|---------|---------|----------------|
| CO <sub>2</sub> | 3.13 | 0.02678 | 0.87785 | 0.9995         |
| CH <sub>4</sub> | 1.04 | 0.06081 | 1.04342 | 0.9990         |

The adsorption selectivity is defined as

$$S = \frac{x_1 / x_2}{y_1 / y_2}$$

where x is the molar fraction in the adsorbed phase and y is the molar fraction in the gas phase.



Figure S12. Comparison of the observed PXRD (red) with the simulated patterns (black) calculated from the SXRD data for  $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4]\cdot 9H_2O$  (1, a),  $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4]\cdot 7H_2O$  (2, b),  $K_2[V_6(\mu_2-OH)_6(ox)_6(Hdatrz)_6]Cl_2\cdot 29.5H_2O$  (3, c) and  $[V_8(\mu_2-OH)_8(SO_3)_8(Hdatrz)_8]\cdot 38H_2O$  (4, d), respectively.

|                              | 1                          | 2                          | 3                        | 4                                 |
|------------------------------|----------------------------|----------------------------|--------------------------|-----------------------------------|
| Empirical formula            | C20H34K2N10O29V4           | C24H40N10Na2O27V4          | C24Cl2H88.5K2N30O59.5V6  | $C_{16}H_{124}N_{40}O_{70}S_8V_8$ |
| Formula weight               | 1160.53                    | 1150.40                    | 2204.48                  | 2661.54                           |
| Temperature/K                | 100(1)                     | 100(1)                     | 100(1)                   | 100(1)                            |
| Crystal system               | Trigonal                   | Orthorhombic               | Cubic                    | Tetragonal                        |
| Space group                  | <i>P</i> 3 <sub>2</sub> 21 | <i>C</i> 222 <sub>1</sub>  | <i>P a</i> -3            | P 4nc                             |
| a/Å                          | 18.1163(1)                 | 12.6075(5)                 | 21.0340(1)               | 17.5495(8)                        |
| b/Å                          | 18.1163(1)                 | 19.6716(6)                 | 21.0340(1)               | 17.5495(8)                        |
| c/Å                          | 11.4282(6)                 | 19.2268(6)                 | 21.0340(1)               | 15.9061(1)                        |
| $\alpha/^{\circ}$            | 90                         | 90                         | 90                       | 90                                |
| $eta/^{\circ}$               | 90                         | 90                         | 90                       | 90                                |
| γ/°                          | 120                        | 90                         | 90                       | 90                                |
| Volume/Å <sup>3</sup>        | 3248.24(4)                 | 4768.40(3)                 | 9306.06(1)               | 4898.84(6)                        |
| Ζ                            | 3                          | 4                          | 4                        | 2                                 |
| $\rho_{calc}g/cm^3$          | 1.780                      | 1.602                      | 1.573                    | 1.804                             |
| $\mu/mm^{-1}$                | 9.713                      | 7.416                      | 7.211                    | 8.879                             |
| <i>F</i> (000)               | 1758.0                     | 2336.0                     | 4514.0                   | 2774.0                            |
| Crystal size/mm <sup>3</sup> | 0.10 	imes 0.05 	imes 0.05 | 0.10 	imes 0.05 	imes 0.05 | 0.1 	imes 0.1 	imes 0.05 | 0.1 	imes 0.05 	imes 0.05         |

Table S1. Crystallographic data and structural refinement details for  $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4] \cdot 9H_2O$  (1),  $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4] \cdot 7H_2O$  (2),  $K_2[V_6(\mu_2-OH)_6(ox)_6(Hdatrz)_6]Cl_2 \cdot 29.5H_2O$  (3) and  $[V_8(\mu_2-OH)_8(SO_3)_8(Hdatrz)_8] \cdot 38H_2O$  (4), respectively.

| Radiation                                     | Cu Ka ( $\lambda$ = 1.54184)  | $Cu K\alpha (\lambda = 1.54184)$ | Cu K $\alpha$ ( $\lambda$ = 1.54184) | Cu Kα (λ =<br>1.54184)        |
|-----------------------------------------------|-------------------------------|----------------------------------|--------------------------------------|-------------------------------|
| 2θ range for data collection/°                | 5.632 to 153.962              | 8.330 to 133.978                 | 7.280 to 153.388                     | 7.124 to 154.232              |
| Reflections collected                         | 48980                         | 9530                             | 12070                                | 69024                         |
| Independent reflections                       | 4498                          | 4005                             | 3071                                 | 5037                          |
| R <sub>int</sub>                              | 0.0454                        | 0.0542                           | 0.0259                               | 0.0379                        |
| Data/restraints/parameters                    | 4498/2/263                    | 4005/12/291                      | 3071/1/166                           | 5037/6/244                    |
| Goodness of fit on $F^2$                      | 1.040                         | 1.042                            | 1.069                                | 1.039                         |
| Final <i>R</i> indexes [ $I \ge 2\sigma(I)$ ] | $R_1 = 0.0472, wR_2 = 0.1253$ | $R_1 = 0.0736, wR_2 = 0.2013$    | $R_1 = 0.0524, wR_2 = 0.1577$        | $R_1 = 0.0477, wR_2 = 0.1279$ |
| Final <i>R</i> indexes [all data]             | $R_1 = 0.0477, wR_2 = 0.1258$ | $R_1 = 0.0787, wR_2 = 0.2087$    | $R_1 = 0.0545, wR_2 = 0.1597$        | $R_1 = 0.0487, wR_2 = 0.1292$ |
| Largest diff. peak and hole / $e^{A^{-3}}$    | 1.33/-1.07                    | 1.72/-0.50                       | 0.99/-0.32                           | 0.42/-0.58                    |

| 1                                   |           |                                     |           |
|-------------------------------------|-----------|-------------------------------------|-----------|
| V1-O5                               | 1.948(4)  | V309                                | 2.041(4)  |
| V1-06                               | 1.934(4)  | V3–N2 <sup>a</sup>                  | 2.081(4)  |
| V1-O1                               | 2.049(4)  | V3-N2                               | 2.081(4)  |
| V1-O2                               | 2.043(4)  | V2–O6 <sup>a</sup>                  | 1.945(4)  |
| V1-N3                               | 2.105(4)  | V2–O6                               | 1.946(4)  |
| V1-N1                               | 2.085(5)  | V2–O7 <sup>a</sup>                  | 2.041(7)  |
| V3–O5 <sup>a</sup>                  | 1.947(4)  | V2–O7                               | 2.041(7)  |
| V3–O5                               | 1.947(4)  | V2-N4                               | 2.097(5)  |
| V3–O9 <sup>a</sup>                  | 2.041(4)  | V2–N4 <sup>a</sup>                  | 2.097(5)  |
|                                     |           |                                     |           |
| O5-V1-O1                            | 88.46(2)  | O6ª-V2-O6                           | 103.3(2)  |
| O5-V1-O2                            | 163.16(2) | O6–V2–O7                            | 89.5(3)   |
| O5-V1-N3                            | 92.64(2)  | O6–V2–O7 <sup>a</sup>               | 165.5(3)  |
| O5-V1-N1                            | 84.53(2)  | O6 <sup>a</sup> –V2–O7              | 165.5(3)  |
| O6-V1-O5                            | 105.36(2) | O7 <sup>a</sup> –V2–N4 <sup>a</sup> | 95.6(3)   |
| O6-V1-O1                            | 164.04(2) | O7–V2–N4 <sup>a</sup>               | 88.4(3)   |
| O6-V1-O2                            | 90.14(2)  | O7 <sup>a</sup> –V2–N4              | 88.4(3)   |
| O6-V1-N3                            | 84.21(2)  | O7-V2-N4                            | 95.6(3)   |
| O6-V1-N1                            | 91.85(2)  | N4–V2–N4 <sup>a</sup>               | 174.9(3)  |
| O1-V1-N3                            | 87.28(2)  | O5–V3–O9                            | 91.34(2)  |
| 01-V1-N1                            | 97.47(2)  | O5 <sup>a</sup> –V3–O9 <sup>a</sup> | 91.34(2)  |
| O2-V1-O1                            | 77.24(2)  | O5–V3–O9 <sup>a</sup>               | 167.24(2) |
| O2-V1-N3                            | 95.48(2)  | O5–V3–N2 <sup>a</sup>               | 90.99(2)  |
| O2-V1-N1                            | 88.52(2)  | O5-V3-N2                            | 84.78(2)  |
| N1-V1-N3                            | 174.38(2) | O5 <sup>a</sup> –V3–N2              | 91.00(2)  |
| O5 <sup>a</sup> –V3–O5              | 100.3(2)  | O5 <sup>a</sup> –V3–N2 <sup>a</sup> | 84.78(2)  |
| O5–V3–O9 <sup>a</sup>               | 167.24(2) | O9 <sup>a</sup> –V3–O9              | 77.6(2)   |
| O6 <sup>a</sup> –V2–O7 <sup>a</sup> | 89.5(3)   | O9–V3–N2                            | 95.33(2)  |
| O6-V2-N4                            | 84.23(2)  | O9 <sup>a</sup> –V3–N2              | 89.81(2)  |
| O6–V2–N4 <sup>a</sup>               | 92.59(2)  | O9–V3–N2 <sup>a</sup>               | 89.81(2)  |
| O6 <sup>a</sup> –V2–N4 <sup>a</sup> | 84.23(2)  | O9 <sup>a</sup> –V3–N2 <sup>a</sup> | 95.33(2)  |
| O6 <sup>a</sup> –V2–N4              | 92.59(2)  | N2 <sup>a</sup> –V3–N2              | 173.4(3)  |
| O7–V2–O7 <sup>a</sup>               | 78.8(6)   |                                     |           |

 $Table \ S2. \ Selected \ bond \ distances (\ ^{o}) \ for \ (NH_{4})_{2} K_{2} [V_{4}(\mu_{2}\text{-}OH)_{4}(ox)_{4}(pz)_{4}] \cdot 9H_{2}O(pz)_{4} + 2H_{2}O(pz)_{4} + 2H_{2}O(pz)_{4}$ 

(2),

and  $[V_8(\mu_2-OH)_8(SO_3)_8(Hdatrz)_8] \cdot 38H_2O$ 

 $K_2[V_6(\mu_2 -$ 

(4),

 $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4]\cdot 7H_2O$ 

 $OH_{6}(ox)_{6}(Hdatrz)_{6}]Cl_{2} \cdot 29.5H_{2}O$  (3)

(1),

respectively.

Symmetric codes: (a) -y + x, -y, 4/3 - z

| 2                                      |                              |                        |           |
|----------------------------------------|------------------------------|------------------------|-----------|
| V1-O10 <sup>a</sup>                    | 1.953(6)                     | V2010                  | 1.955(6)  |
| V105                                   | 1.931(6)                     | V2–O5                  | 1.955(6)  |
| V1O2                                   | 2.036(6)                     | V207                   | 2.026(6)  |
| V101                                   | 2.048(7)                     | V206                   | 2.061(6)  |
| V1–N4 <sup>a</sup>                     | 2.094(7)                     | V2N1                   | 2.100(7)  |
| V1-N2                                  | 2.096(7)                     | V2-N3                  | 2.099(7)  |
|                                        |                              |                        |           |
| O10 <sup>a</sup> -V1-O2                | 166.7(3)                     | O10-V2-O7              | 89.8(3)   |
| O10 <sup>a</sup> -V1-O1                | 91.4(3)                      | O10-V2-O6              | 165.0(3)  |
| O10 <sup>a</sup> –V1–N4 <sup>a</sup>   | 85.3(3)                      | O10-V2-N1              | 92.0(3)   |
| O10 <sup>a</sup> -V1-N2                | 91.2(3)                      | O10-V2-N3              | 85.1(3)   |
| O5–V1–O10 <sup>a</sup>                 | 101.6(3)                     | O5-V2-O10              | 102.0(3)  |
| O5-V1-O2                               | 90.5(3)                      | O5–V2–O7               | 166.5(3)  |
| O5-V1-O1                               | 165.5(3)                     | O5–V2–O6               | 91.7(3)   |
| O5–V1–N4 <sup>a</sup>                  | 93.0(3)                      | O5-V2-N1               | 84.6(3)   |
| O5-V1-N2                               | 85.0(3)                      | O5-V2-N3               | 92.1(3)   |
| O2-V1-O1                               | 77.2(3)                      | O7–V2–O6               | 77.4(3)   |
| O2–V1–N4 <sup>a</sup>                  | 88.7(3)                      | O7-V2-N1               | 88.5(3)   |
| O2-V1-N2                               | 95.30(3)                     | O7-V2-N3               | 95.6(3)   |
| O1–V1–N4 <sup>a</sup>                  | 94.4(3)                      | O6-V2-N1               | 95.4(3)   |
| O1-V1-N2                               | 88.4(3)                      | O6-V2-N3               | 88.3(3)   |
| N4 <sup>a</sup> –V1–N2                 | 175.6(3)                     | N3-V2-N1               | 175.0(3)  |
| Symmetric codes: (a) $x$ , 1 –         | -y, 1-z                      |                        |           |
| 3                                      |                              |                        |           |
| V1-05                                  | 1 934(2)                     | V1-01                  | 2032(2)   |
| V1-05 <sup>a</sup>                     | 1.938(2)                     | $V1-N2^{a}$            | 2.096(2)  |
| V1-O2                                  | 2.038(2)                     | V1-N1                  | 2.098(2)  |
|                                        |                              |                        |           |
| O5–V1–O5 <sup>a</sup>                  | 99.66(1)                     | O5 <sup>a</sup> –V1–N1 | 89.29(9)  |
| O5 <sup>a</sup> -V1-O2                 | 167.91(8)                    | O2–V1–N2 <sup>a</sup>  | 90.78(9)  |
| O5-V1-O2                               | 92.28(8)                     | O2-V1-N1               | 93.23(9)  |
| O5-V1-O1                               | 170.18(8)                    | O1-V1-O2               | 78.26(9)  |
| O5 <sup>a</sup> -V1-O1                 | 89.90(8)                     | O1–V1–N2 <sup>a</sup>  | 92.84(1)  |
| O5 <sup>a</sup> –V1–N2 <sup>a</sup>    | 87.35(9)                     | 01-V1-N1               | 90.69(9)  |
| O5–V1–N2 <sup>a</sup>                  | 89.87(9)                     | N2 <sup>a</sup> -V1-N1 | 175.12(1) |
| O5-V1-N1                               | 87.20(9)                     |                        |           |
| Symmetric codes: (a) $\frac{1}{2}$ – y | $y_{1}, -\frac{1}{2} + z, x$ |                        |           |
|                                        |                              |                        |           |
| 4                                      |                              |                        |           |

| V101  | 1.944(4) | V2–O1 <sup>a</sup> | 1.963(4) |
|-------|----------|--------------------|----------|
| V1–O2 | 1.969(4) | V2–O2              | 1.983(4) |
| V1–O3 | 2.033(4) | V2–O6              | 1.986(4) |

| V1-N1                    | 2.056(5)                                                                | V204                                | 2.030(4)  |
|--------------------------|-------------------------------------------------------------------------|-------------------------------------|-----------|
| V1–O8 <sup>b</sup>       | 2.012(4)                                                                | V2–N7 <sup>a</sup>                  | 2.159(5)  |
| V1-N6                    | 2.123(5)                                                                | V2-N2                               | 2.071(5)  |
|                          |                                                                         |                                     |           |
| O1-V1-O2                 | 97.84(2)                                                                | O1 <sup>a</sup> -V2-O2              | 91.93(2)  |
| O1-V1-O3                 | 170.21(2)                                                               | O1 <sup>a</sup> -V2-O6              | 90.47(2)  |
| O1-V1-N1                 | 94.61(2)                                                                | O1 <sup>a</sup> -V2-O4              | 172.59(2) |
| O1-V1-O8 <sup>b</sup>    | 90.10(2)                                                                | O1 <sup>a</sup> –V2–N7 <sup>a</sup> | 86.47(2)  |
| O1-V1-N6                 | 84.55(2)                                                                | O1 <sup>a</sup> –V2–N2              | 94.32(2)  |
| O2-V1-O3                 | 87.81(2)                                                                | O2-V2-O6                            | 174.50(2) |
| O2-V1-N1                 | 86.29(2)                                                                | O2-V2-O4                            | 89.98(2)  |
| O2-V1-O8 <sup>b</sup>    | 172.05(2)                                                               | O2-V2-N7 <sup>a</sup>               | 90.95(2)  |
| O2-V1-N6                 | 89.40(2)                                                                | O2-V2-N2                            | 85.21(2)  |
| O3-V1-N1                 | 93.70(2)                                                                | O6-V2-O4                            | 88.26(2)  |
| O3-V1-N6                 | 87.50(2)                                                                | O6–V2–N7 <sup>a</sup>               | 94.1(2)   |
| N1-V1-N6                 | 175.40(2)                                                               | O6-V2-N2                            | 89.7(2)   |
| O8 <sup>b</sup> -V1-O3   | 84.34(2)                                                                | O4–V2–N7 <sup>a</sup>               | 86.35(2)  |
| O8 <sup>b</sup> -V1-N1   | 93.00(2)                                                                | O4-V2-N2                            | 92.96(2)  |
| O8 <sup>b</sup> -V1-N6   | 91.50(2)                                                                | N2-V2-N7 <sup>a</sup>               | 176.10(2) |
| Symmetric codes: (a) 1 - | - <i>y</i> , <i>x</i> , <i>z</i> ; (b) <i>y</i> ,1- <i>x</i> , <i>z</i> |                                     |           |

Table S3. Hydrogen bonds observed in  $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4]\cdot 9H_2O$  (1),  $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4]\cdot 7H_2O$  (2),  $K_2[V_6(\mu_2-OH)_6(ox)_6(Hdatrz)_6]Cl_2\cdot 29.5H_2O$ (3) and  $[V_8(\mu_2-OH)_8(SO_3)_8(Hdatrz)_8]\cdot 38H_2O$  (4).

| D–H…A                     | D-H (Å)                       | H…A (Å)                                | D…A (Å)    | D−H···A(°) |
|---------------------------|-------------------------------|----------------------------------------|------------|------------|
| 1                         |                               |                                        |            |            |
| O5–H5····O2w <sup>a</sup> | 0.86                          | 1.85                                   | 2.710(6)   | 176        |
| N5–H5B…O7                 | 0.91                          | 2.25                                   | 2.095(1)   | 122        |
| N5-H5D…O2                 | 0.91                          | 1.83                                   | 2.738(1)   | 179        |
| O6–H6…O1w <sup>b</sup>    | 0.83                          | 1.97                                   | 2.773(6)   | 164        |
| Symmetric codes: (a)      | 1-x+y, 1-x,                   | 1/3 + z; (b) y, -1                     | +x, 1-z    |            |
|                           |                               |                                        |            |            |
| 2                         |                               |                                        |            |            |
| O5–H5…N5                  | 0.85(2)                       | 1.87(2)                                | 2.710(1)   | 170(2)     |
| N5–H5A…O8ª                | 0.91                          | 2.03                                   | 2.889(2)   | 156        |
| N5–H5B····O3 <sup>b</sup> | 0.91                          | 2.42                                   | 3.206(2)   | 145        |
| O10–H10…O1w               | 0.84(4)                       | 1.88(4)                                | 2.689(2)   | 161(6)     |
| Symmetric codes: (a)      | $-x, y, \frac{1}{2} - z;$ (b) | $-\frac{1}{2} + x, \frac{1}{2} - y, 1$ | - <i>z</i> |            |
|                           |                               |                                        |            |            |
| 3                         |                               |                                        |            |            |
| N3–H3····O3ª              | 0.88                          | 2.18                                   | 2.824(4)   | 129        |
| N3–H3····O4ª              | 0.88                          | 2.14                                   | 2.880(4)   | 141        |
| N4–H4A…O1                 | 0.88                          | 2.22                                   | 2.946(4)   | 140        |
| N4–H4B…O3ª                | 0.88                          | 2.34                                   | 2.985(4)   | 130        |
| O5–H5…Cl1                 | 0.85(3)                       | 2.31(4)                                | 3.150(2)   | 169(4)     |

| N5–H5A…O2                                                                                            | 0.88         | 2.32 | 3.022(4) | 137 |  |
|------------------------------------------------------------------------------------------------------|--------------|------|----------|-----|--|
| N5–H5B····O4 <sup>a</sup>                                                                            | 0.88         | 2.37 | 3.089(4) | 140 |  |
| Symmetric codes: (a) 1                                                                               | -y, 1-z, 1-x |      |          |     |  |
|                                                                                                      |              |      |          |     |  |
| 4                                                                                                    |              |      |          |     |  |
| N3–H3…O5ª                                                                                            | 0.88         | 1.85 | 2.694(7) | 160 |  |
| N4–H4A····O7 <sup>b</sup>                                                                            | 0.88         | 2.39 | 3.192(9) | 152 |  |
| N4–H4A····O8 <sup>b</sup>                                                                            | 0.88         | 2.34 | 3.048(9) | 137 |  |
| N5–H5B…O6                                                                                            | 0.89         | 2.12 | 2.938(8) | 152 |  |
| N9–H9A…O3                                                                                            | 0.88         | 2.57 | 3.119(9) | 121 |  |
| N10–H10A $\cdots$ O4 <sup>b</sup>                                                                    | 0.88         | 2.19 | 2.919(8) | 140 |  |
| Symmetric codes: (a) $-\frac{1}{2} + y$ , $\frac{1}{2} + x$ , $\frac{1}{2} + z$ ; (b) y, $1 - x$ , z |              |      |          |     |  |

| Complexes                                                                | V–µ2-ОН  | V–µ2-O   |
|--------------------------------------------------------------------------|----------|----------|
| {V <sup>V</sup> 4O12}                                                    |          |          |
| $[Co_2(phen)_4V_4O_{12}] C_6H_{11}OH \cdot H_2O^1$                       |          | 1.791(3) |
| $[Mn_2(phen)_4V_4O_{12}] C_6H_{11}OH \cdot H_2O^1$                       |          | 1.788(4) |
| $[Ni_2(phen)_4V_4O_{12}] C_6H_{11}OH \cdot H_2O^1$                       |          | 1.794(4) |
| $[{Ni(quaterpy)(H_2O)}_2V_4O_{12}] 10H_2O^2$                             |          | 1.778(4) |
| Average                                                                  |          | 1.788(4) |
| {V <sup>V</sup> 4O8}                                                     |          |          |
| $Na_4[V_4O_8(rac\text{-tart})_2] \ 12H_2O^3$                             |          | 1.826(2) |
| $(NEt_4)_4[V_4O_8((R,R)-tart)_2] 6H_2O^3$                                |          | 1.832(2) |
| $(C_{24}H_{20}P)[V_4O_8(C_2H_3O_2)_4(NO_3)]^4$                           |          | 1.811(2) |
| Average                                                                  |          | 1.823(2) |
| $\{\mathbf{V}^{\mathbf{V}_{6}}\mathbf{O}_{13}\}$                         |          |          |
| $(Bu_4N)_2[V_6O_{13}{(OCH_2)_3CCH_2OOCC_6H_4Br-p}_2]^5$                  |          | 1.835(3) |
| $(Bu_{4}N)_{2}[V_{6}O_{13}\{(OCH_{2})_{3}CCH_{2}OOCC_{6}H_{4}NO_{2}-$    |          | 1.841(5) |
| $m_{2}^{5}$                                                              |          |          |
| $(Bu_4N)_2 [V_6O_{13} \{(OCH_2)_3 CCH_2 OOCC_4 H_3 S\}_2]^5$             |          | 1.843(2) |
| Average                                                                  |          | 1.840(5) |
| {V <sup>IV</sup> 4O4}                                                    |          |          |
| $[Cp*VCl(\mu-O)]_4^6$                                                    |          | 1.800(2) |
| {V <sup>III</sup> 4(OH)4}                                                |          |          |
| $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4]$ · 9H <sub>2</sub> O (1)       | 1.942(5) |          |
| $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4]$ · 7H <sub>2</sub> O (2)   | 1.939(5) |          |
| $[V_4(\mu\text{-OOCCH}_3)_4(\mu\text{-OH})_4(OH_2)_8]Cl_4 \cdot 3H_2O^7$ | 1.939(1) |          |
| $[V_4(\mu\text{-}OH)_4(\mu\text{-}OOCCF_3)_4(OH_2)_8]Cl_4\cdot7.5H_2O^8$ | 1.939(3) |          |
| [V4(µ-OH)4(µ-                                                            | 1 030(1) |          |
| $OOCCH_3)_4(OH_2)_8]Cl_4\cdot CH_3COOH\cdot 12H_2O^8$                    | 1.939(1) |          |
| $[V_4(\mu\text{-}OH)_4(\mu\text{-}OOCCH_3)_4(OH_2)_8]Cl_4\cdot 3H_2O^8$  | 1.940(4) |          |
| Average                                                                  | 1.940(5) |          |
| {V <sup>III</sup> 4O <sub>2</sub> }                                      |          |          |

Table S4. Comparisons of V–O distances (Å) in  $1 \sim 4$  and a series of tetra-, hexa- and octanuclear vanadium(III/IV/V) clusters with bridging  $\mu_2$ -hydroxy/ $\mu_2$ -oxygen groups.

| $[{V(\mu-hpnbpda)_2} {\mu-(C_6H_5O)_2PO_2}_2(\mu-$                                       |          | 1.897(5) |
|------------------------------------------------------------------------------------------|----------|----------|
| $O_{2}] \cdot 6CH_{3}OH^{9}$                                                             |          |          |
| {V <sup>III</sup> 6(OH)6}                                                                |          |          |
| $K_{2}[V_{6}(\mu_{2}\text{-}OH)_{6}(ox)_{6}(Hdatrz)_{6}]Cl_{2}\cdot 29.5H_{2}O(3)$       | 1.936(2) |          |
| {V <sup>III</sup> 8(OH)8}                                                                |          |          |
| $[V_8(\mu_2-OH)_8(SO_3)_8(Hdatrz)_8]$ ·38H <sub>2</sub> O (4)                            | 1.965(4) |          |
| $D-[H_2N(CH_3)_2]_{12.5}(H_3N(CH_2)_2NH_3)(H_3O)_{1.5}(V\mu_2-$                          | 1.057(2) |          |
| OH)8(SO4)16·2H2O <sup>10</sup>                                                           | 1.937(3) |          |
| $L-[H_2N(CH_3)_2]_{12.5}(H_3N(CH_2)_2NH_3)(H_3O)_{1.5}(V\mu_2-$                          | 1 066(5) |          |
| $OH_{8}(SO_{4})_{16} \cdot 2H_{2}O^{10}$                                                 | 1.900(3) |          |
| $[(CH_3)_2NH_2]_{17.4}[V_8(\mu_2\text{-}OH)_8(\mu_2\text{-}SO_4)_{16}][SO_4]_{0.7}^{11}$ | 1.949(2) |          |
| $[V_8(\mu-OH)_4(\mu-OEt)_8(\mu-CH_3COO)_{12})]^{12}$                                     | 1.967(7) |          |
| Average                                                                                  | 1.961(7) |          |
|                                                                                          |          |          |

Table S5. Bond valence sum calculations for  $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4]\cdot 9H_2O$  (1),  $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4]\cdot 7H_2O$  (2),  $K_2[V_6(\mu_2-OH)_6(ox)_6(Hdatrz)_6]Cl_2\cdot 29.5H_2O$  (3) and  $[V_8(\mu_2-OH)_8(SO_3)_8(Hdatrz)_8]\cdot 38H_2O$  (4), respectively.

| Complexes | Atoms   | n | S     | d     | Assignment                  |
|-----------|---------|---|-------|-------|-----------------------------|
| 1         | V(1)    | 3 | 2.986 | 0.014 |                             |
|           | V(2)    | 3 | 2.982 | 0.018 |                             |
|           | V(3)    | 3 | 3.017 | 0.017 |                             |
|           | average | 3 | 2.995 | 0.005 | V(III)                      |
|           | O(5)    | 1 | 1.194 | 0.194 | μ <b>2-</b> OH <sup>-</sup> |
|           | O(6)    | 1 | 1.170 | 0.170 | μ2 <b>-</b> OH <sup>-</sup> |
| 2         | V(1)    | 3 | 2.994 | 0.006 |                             |
|           | V(2)    | 3 | 2.937 | 0.063 |                             |
|           | average | 3 | 2.966 | 0.034 | V(III)                      |
|           | O(5)    | 1 | 1.184 | 0.184 | μ <b>2-</b> OH <sup>-</sup> |
|           | O(10)   | 1 | 1.149 | 0.149 | μ <b>2-</b> OH <sup>-</sup> |
| 3         | V(1)    | 3 | 3.025 | 0.025 | V(III)                      |
|           | O(5)    | 1 | 1.208 | 0.208 | μ2 <b>-</b> OH <sup>-</sup> |
| 4         | V(1)    | 3 | 3.015 | 0.015 |                             |
|           | V(2)    | 3 | 2.941 | 0.059 |                             |
|           | average | 3 | 2.978 | 0.022 | V(III)                      |
|           | O(3)    | 1 | 1.151 | 0.151 | μ <b>2-</b> OH <sup>-</sup> |
|           | O(4)    | 1 | 1.083 | 0.083 | μ <b>2-</b> OH <sup>-</sup> |

| Adsorbents                                                             | Amount                | Pressure (bar) |
|------------------------------------------------------------------------|-----------------------|----------------|
|                                                                        | $(mmol \cdot g^{-1})$ |                |
| 1                                                                      | 0.006                 | 1              |
| 2                                                                      | 0.053                 | 1              |
| 4                                                                      | 0.089                 | 1              |
|                                                                        | 1.080                 | 30             |
| $[Mo^V{}_8O_8(\mu_2\text{-}O)_{12}(Htrz)_8]\cdot 62H_2O^{13}$          | 0.052                 | 1              |
| $Na_3[Mo^V{}_6O_6(\mu_2\text{-}O)_9(Htrz)_3(trz)_3]\cdot 7.5H_2O^{14}$ | 0.020                 | 1              |
| COMOC-2 <sup>15</sup>                                                  | 1.230                 | 1              |
| SO <sub>2</sub> -COMOC-2 <sup>15</sup>                                 | 2.130                 | 1              |
| MFM-300(V <sup>III</sup> ) <sup>16</sup>                               | 6.000                 | 1              |
| MFM-300(V <sup>IV</sup> ) <sup>16</sup>                                | 3.540                 | 1              |
| NH <sub>2</sub> -MIL-47 <sup>17</sup>                                  | 5.800                 | 29             |
| V-MIL-100 <sup>18</sup>                                                | 14.2                  | 1              |

Table S6. Comparisons of  $CO_2$  adsorption data for 1, 2 and 4 with other porous polyoxometalates at 298 K.

Abbreviations: Htrz = 1H-1,2,3-triazole; SO2-COMOC-2 =  $[V^{III}(O)V^{IV}(OH)(C_{14}H_6SO_6)_2]$ -<br/>(DMF) $_{0.3}(H_2O)_{0.7}(CH_3OH)_{1.15};$  MFM-300( $V^{III}$ ) =  $V^{III}_2(OH)_2(biphenyl-3,3',5,5'-tetracarboxylate);$  MFM-300( $V^{IV}$ ) =  $V^{IV}_2O_2(biphenyl-3,3',5,5'-tetracarboxylate).$ 

Table S7.  $V-\mu_2-O$  distances (Å) for  $(NH_4)_2K_2[V_4(\mu_2-OH)_4(ox)_4(pz)_4]\cdot 9H_2O$  (1),  $(NH_4)_2Na_2[V_4(\mu_2-OH)_4(ox)_4(4-mpz)_4]\cdot 7H_2O$  (2) and  $[V_8(\mu_2-OH)_8(SO_3)_8(Hdatrz)_8]\cdot 38H_2O$  (4) before and after O<sub>2</sub> adsorption.

| Before O <sub>2</sub> adsorption |       | After O <sub>2</sub> adsorption |   |       |          |
|----------------------------------|-------|---------------------------------|---|-------|----------|
| 1                                | V1-05 | 1.948(4)                        | 1 | V1-05 | 1.940(5) |
|                                  | V1-06 | 1.934(4)                        |   | V1-06 | 1.932(5) |
|                                  | V2-06 | 1.946(4)                        |   | V2-06 | 1.947(5) |
|                                  | V3–O5 | 1.947(4)                        |   | V3–O5 | 1.949(5) |
| 2                                | V1-05 | 1.931(6)                        | 2 | V1-05 | 1.926(2) |
|                                  | V2–O5 | 1.955(6)                        |   | V2–O5 | 1.949(2) |
|                                  | V2O10 | 1.955(6)                        |   | V2010 | 1.941(2) |
| 4                                | V1-01 | 1.944(4)                        | 4 | V1-01 | 1.939(4) |
|                                  | V1-02 | 1.969(4)                        |   | V1-O2 | 1.951(4) |
|                                  | V2–O2 | 1.983(4)                        |   | V2–O2 | 1.980(4) |

#### References

- V. Paredes-García, S. Gaune, M. Saldías, M. T. Garland, R. Baggio, A. Vega, M. S. El Fallah, A. Escuer, E. L. Fur, D. Venegas-Yazigi and E. Spodine, *Inorg. Chim. Acta.*, 2008, 361, 3681–3689.
- 2. D. Xiao, Y. Hou, E. Wang, J. Lü, Y. Li, L. Xu and C. Hu, *Inorg. Chem. Commum.*, 2004, 7, 437–439.
- 3. P. Schwendt, A. S. Tracey, J. Tatiersky, J. Gáliková and Z. Žák, *Inorg. Chem.*, 2007, 46, 3971–3983.
- 4. D. Wulff-Molder and M. Meisel, Acta Cryst. C, 2000, 56, 33-34.
- 5. B. Huang, M. Cheng, J. Cai, B. Wu, W. Xiong, X. Hu, Z. Xiao and P. Wu, J. Chem. Crystallogr., 2017, 47, 95–100.
- 6. F. Bottomley, J. Darkwa, L. Sutin and P. S. White, Organometallics, 1986, 5, 2165–2171.
- F. H. Fry, B. A. Dougan, N. McCann, C. J. Ziegler and N. E. Brasch, *Inorg. Chem.*, 2005, 44, 5197–5199.
- R. Mukherjee, B. A. Dougan, F. H. Fry, S. D. Bunge, C. J. Ziegler and N. E. Brasch, *Inorg. Chem.*, 2007, 46, 1575–1585.
- 9. K. Sato, T. Ohnuki, H. Takahashi, Y. Miyashita, K. Nozaki and K. Kanamori, *Inorg. Chem.*, 2012, **51**, 5026–5036.
- J. P. Cao, Y. S. Xue, Z. B. Hu, X. M. Luo, C. H. Cui, Y. Song and Y. Xu, *Inorg. Chem.*, 2019, 58, 2645–2651.
- 11. M. G. Sorolla, X. Q. Wang, T. Makarenko and A. J. Jacobson, *Chem. Commun.*, 2019, **55**, 342–344.
- R. H. Laye, M. Murrie, S. Ochsenbein, A. R. Bell, S. J. Teat, J. Raftery, H. U. Gudel and E. J. L. McInnes, *Chem. Eur. J.*, 2003, 9, 6215–6220.
- 13. L. Deng, R. Y. Lin and Z. H. Zhou, *Dalton Trans.*, 2022, **51**, 5239–5249.
- 14. L. Deng, X. Dong and Z. H. Zhou, Chem. Eur. J., 2021, 27, 9643–9653.
- 15. G. Wang, K. Leus, S. Couck, P. Tack, H. Depauw, Y. Y. Liu, L. Vincze, J. F. M. Denayer and P. Van Der Voort, *Dalton Trans.*, 2016, **45**, 9485–9491.
- 16. Z. Z. Lu, H. G. W. Godfrey, I. da Silva, Y. Q. Cheng, M. Savage, F. Tuna, E. J. L. McInnes, S. J. Teat, K. J. Gagnon, M. D. Frogley, P. Manuel, S. Rudic, A. J. Ramirez-Cuesta, T. L. Easun, S. H. Yang and M. Schroder, *Nat. Commun.*, 2017, 8, 14212.
- K. Leus, S. Couck, M. Vandichel, G. Vanhaelewyn, Y. Y. Liu, G. B. Marin, I. Van Driessche, D. Depla, M. Waroquier, V. Van Speybroeck, J. F. M. Denayer and P. Van Der Voort, *Phys. Chem. Chem. Phys.*, 2012, 14, 15562–15570.
- 18. A. Lieb, H. Leclerc, T. Devic, C. Serre, I. Margiolaki, F. Mahjoubi, J. S. Lee, A. Vimont, M. Daturi and J. S. Chang, *Micropor. Mesopor. Mater.*, 2012, **157**, 18–23.