Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supporting Information

BODIPY-Conjugated Bis-terpyridine Ru(II) Complexes Showing Ultra-long Luminescent Lifetimes and Applying to Triplet-triplet Annihilation Upconversion

Xingke Yu^{†, a} Fanrui Gao,^{†, a} Weiyi Zhao^b Hongxia Lai^a Lingling Wei^a Cheng Yang*^a and Wanhua Wu*^a

^{a.} Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China

^{b.}Sichuan University-Pittsburgh Institute, Sichuan University, Chengdu 610064, China

† X. Yu and F. Gao contributed equally to this work.

Table of Contents

1.0 Synthesis and characterizations	S2
2.0 NMR and MS spectra	S3
3.0 Photophysical details	S10
4.0 Upconversion details	S12

1.0 Synthesis and characterizations

Scheme S1. The synthetic route of Ru-1, Ru-2 and Ru-3. Reagents and conditions: (i) Pd (PPh₃)₂Cl₂, PPh₃, CuI, triethylamine/THF, 70°C, 4 h; (ii) KF, MeOH/THF, RT, overnight; (iii) NIS, CH₂Cl₂, RT, 30min; (iv) Pd (PPh₃)₂Cl₂, PPh₃, CuI, Triethylamine/THF, 70°C, overnight, N₂; (v) ethanol, 90°C, 48h, N₂; (vi) RuCl₃; ethanol, 90°C, 2h, N₂; (vii) 4-Ethylmorpholine, ethanol, 90°C, 48h, N₂.

2.0 NMR and MS spectra

Figure S3. ¹H NMR for **3** in CDCl₃, 20°C.

Figure S4. ¹H NMR for **Iodo-Bodipy** in CD₃OD, 20°C.

Figure S5. ¹H NMR for L1 in CDCl₃, 20°C.

Figure S7. ¹H NMR for **Ru-1** in acetone-*d6*, 20°C.

Figure S8. ¹³C NMR for **Ru-1** in DMSO-*d6*, 20°C.

Figure S9. The MALDI-TOF (HRMS) spectrum of Ru-1.

Figure S10. ¹H NMR for **Ru-2** in acetone-*d6*, 20°C.

Figure S11. ¹³C NMR of **Ru-2** in acetone-d6.

Figure S12. The MALDI-TOF (HRMS) spectrum of Ru-2.

Figure S13. ¹H NMR for **Ru-3** in acetone-*d6*, 20°C.

Figure S14. ¹³C NMR for **Ru-3** in DMSO-*d6*, 20°C.

Figure S15. The MALDI-TOF (HRMS) spectrum of Ru-3.

3.0 Photophysical details

Figure S16. (a) The fluorescence decay spectra **Ru-1** was monitored at 550 nm, 1.0 μM, MeCN, RT; (b) Emission decays of **Ru-2** monitored at 687 nm, 1.0 μM, MeCN, RT.

Figure S17. The UV-vis absorption and emission spectra of (a) L1 and (b) L2, 1×10⁻⁵ M in MeCN, r.t.

Figure S18. The fluorescence decay spectra L1 was monitored at 477nm (excited with nanoled 388nm laser) in the MeCN. Experimental conditions: 1×10^{-6} mol/L, RT.

Figure S19. Nanosecond time-resolved transient decay traces of (a) **Ru-1** at 510 nm and (b) **Ru-2** at 510 nm. 2×10^{-5} M in deaerated MeCN, 20°C.

Figure S20. Comparison of the normalized UV-vis absorption and the excitation spectra of the complexes **Ru-1** (a), **Ru-2** (b), $\lambda_{em} = 750$ nm, 1×10⁻⁵ mol/L, in MeCN solution, r.t.

4.0 Upconversion details

Figure S21. (a) Schematic energy-level illustration of the TTA-UC process. GS, $S_{1,D}$ and $T_{1,D}$ represent the ground state, singlet and triplet excited states of the energy donor (sensitizer), respectively. $S_{1,A}$ and $T_{1,A}$ represent singlet and triplet excited states of the energy acceptor. ISC, TTET, and TTA represent the process of intersystem crossing, triplet-triplet energy transfer, and triplet-triplet annihilation, respectively.

Figure S22. The emission spectra of **Ru-1**, **Py** and the mixture of **Ru-1**/**Py** in the deaerated MeCN, [**Ru-1**] = 1.0 μ M, [**Py**] = 3.3 μ M, power densitiy = 343.9 mW/cm², RT.

Figure S23. Normalized spectra of UC emission of Ru-1 / Py system and prompt fluorescence of Py in MeCN, [Ru-1] = 1.0 μ M, [Py] = 3.3 μ M, RT.

Figure S24. Time-resolved emission spectra (TRES) of the upconverted fluorescence of **Py** using (a) **Ru-1** as the triplet photosensitizer and (b) **Ru-2** as the triplet photosensitizer. Experimental conditions: [**Ru-1**] = 10 μ M, [**Ru-2**] = 10 μ M, [**Py**] = 33 μ M, in deaerated MeCN, RT; The TTA-UC decay spectra of (c) **Ru-1** / **Py** and (d) **Ru-2** / perylene, $\lambda_{em} = 445$ nm.

Figure S25. The fluorescence decay spectra **Py** was monitored at 450 nm (excited with nanoled 388nm laser) in the MeCN. Experimental conditions: 1×10^{-5} mol/L, RT.

Figure S26. Excitation power dependency of the upconverted perylene emission with **Ru-2** as sensitizers, $\lambda_{ex} = 532$ nm, MeCN. (Insert: the normalized integrated emission intensity plotted as a function of normalized incident light power). The minimal and the maximal excitation power densities are 254.8 mW/cm² and 1401.3 mW/cm², respectively. [**Ru-2**] = 1.0 μ M, [**Py**] = 3.3 μ M.

Figure S27. (a) Dependency of the UC emission upon the concentrations of sensitizer **Ru-1** in deaerated MeCN; (b) The upconverted quantum yield plotted as a function of the concentration of **Ru-1**. [**Py**] = 3.3 μ M in MeCN. power density = 1273.9 mW·cm⁻², $\lambda_{ex} = 532$ nm.

Figure S28. (a) Dependency of the UC emission upon the concentrations of sensitizer **Ru-2** in deaerated MeCN; (b) The upconverted quantum yield plotted as a function of the concentration of **Ru-2**. [**Py**] = 3.3 μ M in MeCN. power density = 1273.9 mW·cm⁻², $\lambda_{ex} = 532$ nm.

Figure S29. (a) Dependency of UC emission spectra upon the concentrations of acceptor **Py** with (a) **Ru-1** and (b) **Ru-2** as the sensitizers, $\lambda_{ex} = 532$ nm, [**Ru-1**] = 1.0 μ M, [**Ru-2**] = 1.0 μ M in deaerated MeCN, power density = 1273.9 mW/cm², RT.

Table S1. The quantum efficiency with different concentration of acceptors [a]

	0.33 µM	0.67 μΜ	1.0 µM	2.0 µM	3.0 µM
$\Phi_{\text{Ru-1}}$	1.29%	2.28%	2.56%	2.93%	2.83%
$\Phi_{\text{Ru-2}}$	0.045%	0.18%	0.38%	0.43%	0.4%

[a] Excited with 532 nm laser, with the prompt fluorescence of **I-BDP-I** as the standard ($\Phi = 2.7$ % in MeCN).

Figure S30. The chemical structure of I-BDP-I

Table S2. Triplet excited state lifetimes (τ_T), Stern-Volmer quenching constant (K_{SV}) and bimolecular quenching constants (k_q) of **Ru-1**, **Ru-2** and **Ru-3** as the sensitizers. ^[a]

	$K_{\rm sv} (10^3 { m M}^{-1})$	$k_{\rm q} (10^9{ m M}^{-1}{ m s}^{-1})$	$ au_{ m DF}$ / $\mu m s$	$arPhi_{ m UC}(\%)^{[b]}$	η ^[c] / 10 ³ M ⁻¹ cm ⁻¹
Ru-1	3994.2	10.9	209.8	2.93	3.47
Ru-2	683.4	12.7	103.0	0.43	0.22

[a] Excited with 532 nm laser. [b] results with [sensitizer] = 1.0 μ M, [Py] = 3.3 μ M. [c] apparent brightness. $\eta = \varepsilon \times \Phi_{UC}$.