Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Figure S1: Coordination environment of Mg^{2+} in $Mg(NH_2SO_3)_2 \cdot 4H_2O$ (H atoms in white, N atoms in blue, O atoms in red, S atoms in yellow, Mg atom in grey, covalent bonds as yellow sticks and coordinate bonds as grey broken lines; displacement ellipsoids for all atoms but hydrogen correspond to 70% probability level).

Figure S2: Hydrogen bonding pattern of $Mg(NH_2SO_3)_2 \cdot 4H_2O$ viewed along $[0\,1\,0]$ (H atoms in white, N atoms in blue, O atoms in red, MgO8 octahedra in grey, SO₃N tetrahedra in yellow). Hydrogen bonds are displayed as broken lines with colour coding as follows: N-H···O_{as} in red, O-H···O_{as} in violett, O-H···O_w in light green, O-H···N in dark blue.

Figure S3: Hydrogen bonding pattern of $Mg(NH_2SO_3)_2 \cdot 4H_2O$ viewed along [100] (H atoms in white, N atoms in blue, O atoms in red, MgO8 octahedra in grey, SO₃N tetrahedra in yellow). Hydrogen bonds are displayed as broken lines with colour coding as follows: N-H···O_{as} in red, O-H···O_{as} in violett, O-H···O_w in light green, O-H···N in dark blue.

Figure S4: Coordination environment of Mg^{2+} in $Mg(NH_2SO_3)_2 \cdot 3H_2O$ (H atoms in white, N atoms in blue, O atoms in red, S atoms in yellow, Mg atom in grey, covalent bonds as yellow sticks and coordinate bonds as grey broken lines; displacement ellipsoids for all atoms but hydrogen correspond to 70% probability level).

Figure S5: Hydrogen bonding pattern of $Mg(NH_2SO_3)_2 \cdot 4H_2O$ viewed along [100] (H atoms in white, N atoms in blue, O atoms in red, MgO8 octahedra in grey, SO₃N tetrahedra in yellow). Hydrogen bonds are displayed as broken lines with colour coding as follows: N-H···O_{as} in red, N-H···N in light blue, O-H···O_{as} in violett, O-H···O_w in light green, O-H···N in dark blue.

Figure S6: The unit cell of $Ca(NH_2SO_3)_2 \cdot H_2O$ viewed along [100] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow, Ca atoms in grey, covalent bonds as yellow sticks and coordinate bonds as grey broken lines).

Figure S7: Coordination environment of Ca^{2+} in $Ca(NH_2SO_3)_2 \cdot H_2O$ (H atoms in white, N atoms in blue, O atoms in red, S atoms in yellow, Ca atom in grey, covalent bonds as yellow sticks and coordinate bonds as grey broken lines; displacement ellipsoids for all atoms but hydrogen correspond to 70% probability level).

Figure S8: Hexagonal packing of CaO_9 pentagonal bipyramids (shown in grey) bridged via SO_3N tetrahedra (shown in yellow).

Figure S9: AA layered dense packing of ${\rm CaO}_7$ bipyramids (shown in grey).

Figure S10: Hydrogen bonding pattern of $Ca(NH_2SO_3)_2 \cdot H_2O$ viewed along [100] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow). Hydrogen bonds are displayed as broken lines with colour coding as follows: N-H···O_{as} in red, N-H···N in light blue, O-H···O_{as} in violett.

Figure S11: Hydrogen bonding pattern of $Ca(NH_2SO_3)_2 \cdot H_2O$ viewed along [001] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow). Hydrogen bonds are displayed as broken lines with colour coding as follows: N-H···O_{as} in red, N-H···N in light blue, O-H···O_{as} in violett.

Figure S12: The unit cell of $Sr(NH_2SO_3)_2 \cdot 4H_2O$ viewed along [010] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow, Sr atoms in grey, covalent bonds as yellow sticks and coordinate bonds as grey broken lines).

Figure S13: Coordination environment of Sr^{2+} in $Sr(NH_2SO_3)_2 \cdot 4H_2O$ (H atoms in white, N atoms in blue, O atoms in red, S atoms in yellow, Sr atom in grey, covalent bonds as yellow sticks and coordinate bonds as grey broken lines; displacement ellipsoids for all atoms but hydrogen correspond to 70% probability level)

Figure S14: Hydrogen bonding pattern of $Sr(NH_2SO_3)_2 \cdot 4H_2O$ viewed along [010] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow and SrO₈ antiprisms in grey). Hydrogen bonds are displayed as broken lines with colour coding as follows: N-H···O_{as} in red, N-H···O_w in dark green, N-H···N in light blue, O-H···O_{as} in violett, O-H···N in dark blue.

Figure S15: Hydrogen bonding pattern of $Sr(NH_2SO_3)_2 \cdot 4H_2O$ viewed along [001] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow). Hydrogen bonds are displayed as broken lines with colour coding as follows: N-H···O_{as} in red, N-H···O_w in dark green, N-H···N in light blue, O-H···O_{as} in violett, O-H···N in dark blue.

Figure S16: The unit cell of $Sr(NH_2SO_3)_2 \cdot H_2O$ viewed along [010] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow, Sr atoms in grey, covalent bonds as yellow sticks and coordinate bonds as grey broken lines).

Figure S17: Coordination environment of Sr^{2+} in $Sr(NH_2SO_3)_2 \cdot H_2O$ (H atoms in white, N atoms in blue, O atoms in red, S atoms in yellow, Sr atom in grey, covalent bonds as yellow sticks and coordinate bonds as grey broken lines; displacement ellipsoids for all atoms but hydrogen correspond to 70% probability level)

Figure S18: Hydrogen bonding pattern of $Sr(NH_2SO_3)_2 \cdot H_2O$ viewed along [010] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow). Hydrogen bonds are displayed as broken lines with colour coding as follows: N-H···O_{as} in red, N-H···O_w in dark green, N-H···N in light blue, O-H···O_{as} in violett.

Figure S19: Hydrogen bonding pattern of $Sr(NH_2SO_3)_2 \cdot H_2O$ viewed along [100] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow). Hydrogen bonds are displayed as broken lines with colour coding as follows: N-H···O_{as} in red, N-H···O_w in dark green, N-H···N in light blue, O-H···O_{as} in violett.

Figure S20: The unit cell of β -Sr(NH₂SO₃)₂ viewed along [001] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow, Sr atoms in grey, covalent bonds as yellow sticks and coordinate bonds as grey broken lines).

Figure S21: Coordination environment of Sr^{2+} in β -Sr(NH₂SO₃) (H atoms in white, N atoms in blue, O atoms in red, S atoms in yellow, Sr atom in grey, covalent bonds as yellow sticks and coordinate bonds as grey broken lines; displacement ellipsoids for all atoms but hydrogen correspond to 70% probability level)

Figure S22: Zigzag chains of SrO₈ antiprisms condensed via edge.png-sharing in β -Sr(NH₂SO₃)₂ viewed along [100] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow, SrO₈ antiprisms in grey and covalent bonds as yellow sticks).

Figure S23: Rod packing of zigzag chains of SrO_8 antiprims condensed via edge.png-sharing in β -Sr(NH₂SO₃)₂ viewed along [001] (H atoms in white, N atoms in blue, O atoms in red, SO₃ antiprisms in yellow, SrO₈N polyhedra in grey and covalent bonds as yellow sticks).

Figure S24: Hydrogen bonding pattern of β -Sr(NH₂SO₃)₂ viewed along [010] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow). Hydrogen bonds are displayed as broken lines with colour coding as follows: N-H···O_{as} in red, N-H···N in light blue.

Figure S25: The unit cell of α -Sr(NH₂SO₃)₂ viewed along [001] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow, Sr atoms in grey, covalent bonds as yellow sticks and coordinate bonds as grey broken lines).

Figure S26: Coordination environment of Sr^{2+} in α -Sr(NH₂SO₃)₂ (H atoms in white, N atoms in blue, O atoms in red, S atoms in yellow, Sr atom in grey, covalent bonds as yellow sticks and coordinate bonds as grey broken lines; displacement ellipsoids for all atoms but hydrogen correspond to 70% probability level)

Figure S27: Zigzag chains of SrO_8N polyhedra condensed via edge.png-sharing in α -Sr $(NH_2SO_3)_2$ viewed along [100] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow, SrO₈N polyhedra in grey and covalent bonds as yellow sticks).

Figure S28: Rod packing of zigzag chains of SrO_8N polyhedra condensed via edge.png-sharing in α -Sr(NH₂SO₃)₂ viewed along [0 1 0] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow, SrO₈N polyhedra in grey and covalent bonds as yellow sticks).

Figure S29: Hydrogen bonding pattern of α -Sr(NH₂SO₃)₂ viewed along [010] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow). Hydrogen bonds are displayed as broken lines with colour coding as follows: N-H···O_{as} in red, N-H···N in light blue.

Figure S30: The unit cell of $Ba(NH_2SO_3)_2$ viewed along [0 0 1] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow, Sr atoms in grey, covalent bonds as yellow sticks and coordinate bonds as grey broken lines).

Figure S31: Coordination environment of Ba^{2+} in $Ba(NH_2SO_3)_2$ (H atoms in white, N atoms in blue, O atoms in red, S atoms in yellow, Ba atom in grey, covalent bonds as yellow sticks and coordinate bonds as grey broken lines; displacement ellipsoids for all atoms but hydrogen correspond to 70% probability level)

Figure S32: Chains of $BaO_{10}N$ polyhedra condensed via face.png-sharing in $Ba(NH_2SO_3)_2$ viewed along [100] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow, $BaO_{10}N$ polyhedra in grey and covalent bonds as yellow sticks).

Figure S33: Chains of $BaO_{10}N$ polyhedra condensed via face.png-sharing in $Ba(NH_2SO_3)_2$ viewed along [001] (H atoms in white, N atoms in blue, O atoms in red, SO₃N tetrahedra in yellow, $BaO_{10}N$ polyhedra in grey and covalent bonds as yellow sticks).

Figure S34: Hydrogen bonding pattern of $Ba(NH_2SO_3)_2$ viewed along $[0\,0\,1]$ (H atoms in white, N atoms in blue, O atoms in red, Ba atoms in gey and SO₃N tetrahedra in yellow). Hydrogen bonds are displayed as broken lines with colour coding as follows: N-H···O_{as} in red, N-H···N in light blue.

	(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)
0-0	1.44 - 1.45	1.44 - 1.47	1.45 - 1.46	1.45 - 1.46	1.45 - 1.46	1.44 - 1.46	1.45 - 1.47	1.45 - 1.46	1.44 - 1.46
$\sum_i r_i{=}1.46$									
N-N	1.65	1.64 - 1.65	1.63	1.62 - 1.64	1.63	1.63	1.61 - 1.63	1.63	1.63
$\sum_i r_i{=}1.58$									
O-s-gnq.C	111.2 - 113.8	110.4 - 113.9	111.2 - 112.4	109.8 - 112.9	111.6 - 112.4	109.4 - 113.7	107.0 - 113.1	109.0 - 113.6	109.8 - 113.4
O.png-s-N	104.4 - 109.7	104.8 - 109.9	105.2 - 108.9	104.7 - 112.3	105.5 - 108.7	104.9 - 110.3	104.6 - 111.0	104.2 - 111.8	104.3 - 111.0
Δ (S1/S2)	-0.49	-0.47/-0.55	-0.31	-0.59/-0.45	-0.34	-0.28/-0.44	-0.50/-0.49	-0.41/-0.44	-0.24
M-O/N*	2.04 - 2.09	2.02 - 2.10	2.43 - 2.50	2.23 - 2.44	2.55-2.60	2.56 - 2.66	2.53 - 2.79	2.55 - 3.04	2.69-3.33
Ĺ		0000			0	0			0

 $(\overline{0})$ Table S1: Selected interatomic distances in Å, angles in $^{\circ}$ and deviations from ideal tetrahedral symmetry Δ in % (calculated according to the method of Balić-Žunić

* M=Mg,Ca,Sr,Ba

Table S2: Interatomic distances d (in Å) and angles \measuredangle (in °) for hydrogen bonds between donor atom Dand acceptor atoms A in Mg(NH₂SO₃)₂·4H₂O (1), Mg(NH₂SO₃)₂·3H₂O (2), Ca(NH₂SO₃)₂·4H₂O (3), Ca(NH₂SO₃)₂·H₂O (4), Sr(NH₂SO₃)₂·4H₂O (5), Sr(NH₂SO₃)₂·H₂O (6), β -Sr(NH₂SO₃)₂ (7), α -Sr(NH₂SO₃)₂ (8) and Ba(NH₂SO₃)₂ (9).

D-H	A	$d(\mathrm{H}\text{-}A)$	$\measuredangle D \mathrm{H}A$	d(D-A)	D-H	A	$d(\mathrm{H}\text{-}A)$	$\measuredangle D \mathrm{H}A$	d(D-A)
(1)					(6)				
N1-HN11	O2	2.48	150.6	3.36	OW-HW2	O22	1.93	163.8	2.87
N1-HN11	O3	2.43	150.6	3.31	OW-HW2	O22	1.93	163.8	2.87
N1-HN12	O2	2.20	154.7	3.10	OW-HW1	O21	1.95	155.7	2.86
OW1-HW11	OW2	2.01	168.1	2.82	N1-H12	N2	2.31	137.0	3.10
OW1-HW12	O2	1.99	161.9	2.75	OW-HW1	O11	2.33	113.1	2.85
OW2-HW21	O3	2.08	153.2	2.74	N2-H22	O12	2.46	168.8	3.45
OW2-HW22	N1	2.11	159.7	2.90	N1-H11	O22	2.50	119.1	3.11
					N2-H21	OW	2.52	142.5	3.34
					N2-H21	N1	2.53	128.1	3.23
(2)					(7)				
OW2-HW21	O21	1.65	165.6	2.73	N1-H11	O11	1.93	108.7	2.44
OW1-HW12	O12	1.80	171.6	2.74	N1-H12	N2	2.11	150.4	3.01
OW3-HW31	O22	1.81	169.7	2.76	N1-H12	O12	2.41	80.7	2.45
OW2-HW22	013	1.94	168.3	2.89	N1-H13	011	2.27	129.4	3.13
OW1-HW11	N1	1.96	160.4	2.89	N1-H14	N2	2.51	110.5	3.03
OW3-HW32	OW1	2.04	161.0	2.97	N1-H14	013	2.34	89.1	2.54
N1-H12	012	$\frac{2.01}{2.07}$	164.9	$\frac{2.01}{3.02}$	N2-H21	012	2.31	162.0	3.34
N1-H11	N2	2.01 2.14	178.4	3.10	N2-H21	012	2.30 2.38	133.4	3 15
N2-H22	021	2.11	152.7	3.06	N2-H21	021	$\frac{2.50}{2.50}$	80.0	2.53
N2-H21	021 022	2.10 2.21	102.1 146.7	3.06	N2-H21	012	2.00 2.33	156.1	3.26
112 1121	022	2.21	110.1	0.00	N2-H22	012	2.00 2.36	8/11	0.20 2.46
					N2-H22	013	2.00 2.38	137.7	2.40 3.18
(2)					(0)	010	2.00	101.1	
(3)	00	1.00	171.0	0.00	(8) N1 1111	091	0.19	1545	2.06
$OW1-\PiW11$	02	1.98	1(1.2	2.80	N1-П11 N1-Ц10	021 N0	2.15	104.0	3.00 2.00
OW1-HW12	O2	2.00	109.4	2.90	NI-HIZ	N2	2.20	144.3	3.00
OW2-HW21	OWI	2.10	167.3	2.96	N2-H22	023	2.34	149.2	3.23
N1-H12		2.11	159.2	3.05	N2-H22	013	2.42	122.0	3.00
NI-HII	OW2	2.20	147.8	3.08	N1-H12	022	2.48	112.2	3.38
N1-H13	ΝI	2.25	155.5	3.17	N2-H21	023	2.54	73.0	2.44
					NI-H12	012	2.55	75.2	2.49
(4)					(9)				
N1-H12	O11	2.10	108.6	3.07	N1-H12	O13	2.14	143.3	2.99
OW-HW2	O12	1.96	158.2	2.89	N2-H22	O22	2.29	142.9	3.13
N2-H22	N1	2.28	153.1	3.19	N1-H11	O23	2.29	161.0	3.23
OW-HW1	O22	2.30	168.1	3.02	N2-H21	O23	2.36	83.5	2.46
N2-H21	O23	2.37	134.5	3.14	N1-H11	O21	2.46	137.9	3.26
OW-HW1	O21	2.42	133.7	3.17	N2-H21	O12	2.47	116.7	3.05
N1-H11	N2	2.61	148.4	3.48	N2-H21	O23	2.55	115.4	3.11
					N1-H12	N1	2.58	118.5	3.17
(5)									
OW2-HW22	O1	2.06	166.5	2.89					
OW2-HW21	O1	2.07	170.4	2.87					
OW1-HW11	O1	2.17	152.8	2.92					
OW1-HW12	OW2	2.22	154.7	2.94					
N1-H11	O3	2.18	153.7	3.09					
N1-H12	OW1	2.22	158.1	3.15					
N1-H13	N1	2.28	164.3	3.24					

Table S3: Crystal	data and structure refi	nement of Ba(NH,SO,), at $T = 200 { m K}$, $300 { m K}$.	400 K and 500 K.
T/K	200	300	400	500
Formula	$\mathrm{H_4BaN_2O_6S_2}$	$\mathrm{H_4BaN_2O_6S_2}$	$\mathrm{H_4BaN_2O_6S_2}$	$H_4BaN_2O_6S_2$
<i>M</i> _r /g·mol ⁻ crvstal size /mm ³	329.51 $0.18x0.02x0.01$	329.51 0.02 $\times 0.18 \times 0.02 \times 0.01$	329.510.18x $0.02x0.01$	329.51 0.18x0.02x0.01
crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic
space group	$Pna2_1 \ Pna2_1$	$Pna2_1$	$Pna2_1$	
$a \setminus ext{A}$	10.5739(6)	10.5749(8)	10.5788(6)	10.5848(10)
$b \mid m{\AA}$	13.3639(7)	13.3927(10)	13.4398(7)	13.4915(16)
$c \ / \ m{ m \AA}$	4.8015(3)	4.8168(4)	4.8350(3)	4.8551(6)
$V \setminus { m \AA}^3$	678.49(7)	682.19(9)	687.43(7)	693.33(14)
Ζ	4	4	4	4
$D_{calc} \; / \; \mathrm{g}{\cdot}\mathrm{cm}^{-1}$	3.225	3.208	3.184	3.157
$\mu({ m Mo-K}_lpha) \ / \ { m cm}^{-1}$	4.842	6.421	6.372	6.318
$F(000) \ / \ { m e}$	462	616	616	616
hkl range	$[-20,14], [-25,24], \pm 9$	$[-20,13], [-25,24], \pm 9$	$[-20, 13], [-25, 24], \pm 9$	$[-12, 18], [-23, 23], \pm 8$
$[(\sin heta)/\lambda]_{ m max} \; / \; { m \AA}^3$	0.96	0.96	0.96	0.88
measured reflections	18546	18652	18938	15615
unique reflections	4956	4979	5007	3975
Flack x	0.056(13)	0.062(11)	0.049(14)	0.055(14)
$R_{ m int} \; / \; R_{ m sigma}$	0.074/0.074	0.067/0.067	0.084/0.085	0.76/0.71
refined parameters	113	113	113	113
$R_1(F) \ / \ wR_2(F^2)$	0.67/0.75	0.064/0.070	0.097/0.089	0.092/0.071
$GoF (F^2)$	0.99	0.95	1.00	0.98
$\Delta ho_{ m fin}~/~{ m e}\cdot m \AA^{-3}$	1.85/-1.83	1.55/-1.85	1.18 / -1.44	1.11/-1.27
$(\max./\min.)$				

8.55 .05x0.05 oclinic	.05x0.05 oclinic 2, <i>/n</i>	oclinic $2_1/n$	$2_1/n_c$	2. / T_	33(5)	72(4)	26(6)	06	28(4)	06	87(6)	4	8(2)	682	213	.26	,7], [0,9]	.52	28	28	.34	(/0.073	74	1/0.106	.13	/-0.37	
\mathbf{S}_4	28	0.20x0	mone	P_2	8.69	7.15	8.78	0.	92.6	0.	545.		273	1.	1.	2	±8, [0	0	9	9	0	0.132	-	0.066		$ A^{-3} 0.47$	
ormula	$M_{ m r}/{ m g\cdot mol^{-1}}$	$ m rystal$ size $ m /mm^3$	rystal system	pace group	$\iota \setminus m \AA$	Å	: / Å	o / X	o / 6	0 / /	/ / Å ³	N	- / K	${\cal O}_{calc} \ / \ { m g}{ m cm}^{-1}$	$\iota({ m Mo-K}_lpha)\ /\ { m cm}^{-1}$	$7(000) \ / \ e$	<i>ikl</i> range	$(\sin heta)/\lambda]_{ m max} \ / \ { m \AA}^3$	neasured reflections	unique reflections	3ASF	${ m R_{int}}~/~R_{ m sigma}$	efined parameters	$R_1(F) \setminus wR_2(F^2)$	$3oF (F^2)$	$\Delta ho_{ m fin} ~(m max./ m min.) ~ 0$	

Table S5: Wavenumbers $\nu / \text{ cm}^{-1}$ of all peaks observed via FT-IR respectively Raman spectroscopy as well as assigned modes with major contributions for the vibrations of Mg(NH₂SO₃)₂ · 4 H₂O (1), Mg(NH₂SO₃)₂ · 3 H₂O (2), Ca(NH₂SO₃)₂ · 4 H₂O (3), Ca(NH₂SO₃)₂ · H₂O (4), Sr(NH₂SO₃)₂ · H₂O (6), β -Sr(NH₂SO₃)₂ (7), α -Sr(NH₂SO₃)₂ (8) and Ba(NH₂SO₃)₂ (9).

4 4 		~ ~ ~											
	mode assignment	FT-	(1)	(2)	(3)	(4)	(9)	(2)	(6)	Raman (4)	((2)	(6)
		IR	n r			• •		х. У				s. r	х г
	H_2O as. str.			3487	3570	3590	3498			35	80		
	$H_2O s. str.$		3404	3390	3500	3521	3464			35	26		
	$\rm NH_2$ as. str.		3293	3305	3309	3340	3373	3367	3348	33	40	3369	3350
				3282			3356	3342				3345	
	$\rm NH_2$ s. str.		3226	3240	3248	3251	3286	3251	3277	32	41	3254	3277
				3074			3267	3188				3182	3277
								3099		30	98		
	H_2O bend.		1665	1645	$1620\\1614$	1620	1633			16	14		
	$\rm NH_2$ bend.		1535	1574	1554	1572	1550	1568	1558			1570	1556
				1531 1294				1441	1470				
	SO_3 as. str.		1211	1226	1255	1245	1257	1252	1250	12	88	1245	
	SO_3 s. str.			1198	1232	1209	1236	1230	1200	12	03	1228	1207
			1198	1209	1226								
	$\rm NH_2$ as. rock.		1140	1157	1161	1184	1163	1187	1160			1139	1168
				1142	1130		1126	1141	1108				1115
	SO ₃ s. str.		1058	1182	1049	1107	1101	1080	1059	10	88	1081	1060
				1068		1072	1053	1049	1045			1056	1053
	NH ₂ s. wag.		956	954	887	904	910	916	916	92	0	916	920
								883	885 856			883	
	S-N str.		792	814	800	789	785	725	743	22	2		763
			200	706	663	750	741	705					
							650						
	SO ₃ as. def.		576	575	584	009	606	596	594	59	0	595	595
			552	550	540	561	584	577	575	57	9	567	576
							557	566	552	56	2	567	557
							546	550		55	9	551	
	SO_3 s. def.		490	480		486	457	469		473 46	6	468	
			445	445		446	434	413	430			412	428
	SO ₃ as. rock.		410	416			405		405	39	9		407
	SO_3 s. rock.		402							35	9	397	391
	S-N tors.									30	0	312	
	ext.									17	9	173	153

data and structure refinement of $Mg(NH_2SO_3)_2 \cdot 4H_2O(1, CSD-2118236), Mg(NH_2SO_3)_2 \cdot 3H_2O(2, CSD-2118237), Ca(NH_2SO_3)_2 \cdot 4H_2O(3, CSD-2118237), Ca(NH_2SO_3)_2 \cdot 4H_2O(3, CSD-2118237), Ca(NH_2SO_3)_2 \cdot 4H_2O(3, CSD-2118236), Mg(NH_2SO_3)_2 \cdot 4H_2O(3, CSD-2118237), Ca(NH_2SO_3)_2 \cdot 4H_2O(3, CSD-2118236), Mg(NH_2SO_3)_2 \cdot 4H_2O(3, CSD-2118237), Ca(NH_2SO_3)_2 \cdot 4H_2O(3, CSD-2118236), Mg(NH_2SO_3)_2 \cdot 4H_2O(3, CSD-2118236))$	$118238), Ca(NH_2SO_3)_2 \cdot H_2O (4, CSD-2118239), Sr(NH_2SO_3)_2 \cdot 4H_2O (5, CSD-2118240), Sr(NH_2SO_3)_2 \cdot H_2O (6, CSD-2118241), \beta-Sr(NH_2SO_3)_2 (7, CSD$	118242 , α -Sr(NH ₂ SO ₃) ₂ (8, CSD-2118243) and Ba(NH ₂ SO ₃) ₂ (9, CSD-2118244).
Table S6: Crystal data and stru	CSD-2118238), Ca(N)	CSD-2118242), α -Sr(l

CSD-2118	$(242), \alpha$ -Sr(NH ₂ S)	$O_3)_2$ (8, CSD–21	18243) and Ba(N	$H_2SO_3)_2$ (9, CS	D-2118244).				
	(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)
Formula	${ m H_{12}MgN_2O_{10}S_2}$	${ m H_{10}MgN_2O_9S_2}$	${ m H_{12}CaN_2O_{10}S_2}$	$\mathrm{H_6CaN_2O_7S_2}$	${ m H_{12}N_2O_{10}S_2Sr}_{25106}$	$\mathrm{H_6N_2O_7S_2Sr}$	${ m H_4N_2O_6S_2Sr}$	${ m H_4N_2O_6S_2Sr}$	$\mathrm{H_4BaN_2O_6S_2}$
$M_{\rm r}/{ m grinol}$ - $M_{\rm r}/{ m grinol}$	200.00 0 2010 0510 05	232.31 0 1 4 20 1 3 20 00	304.32 0 95 ~0 10 ~0 05	0.0012.002	0.100 0.95×0.10×0.05	291.19 0 26m0 16m0 11	219.19 0 90m0 04m0 04	219.19 0 15.0 02.0 02	0 18×0 09×0 01
crystal system	0.20X0.03X0.03 monoclinic	U.14XU.13XU.U9 triclinic	w.23×0.10×0.03 monoclinic	orthorhombic	0.20×0.10×0.00 monoclinic	u.30x0.10x0.11 monoclinic	0.20X0.04X0.04 monoclinic	www.wexw.we monoclinic	orthorhombic
space group	$P2_1/c$	$P\bar{1}$	C2/c	$P2_{1}2_{1}2_{1}$	C2/c	$P2_1/c$	Pc	$P2_1$	$Pna2_1$
$a \setminus extsf{A}$	6.1147(3)	5.2305(5)	11.6250(4)	7.960(2)	11.9293(8)	7.0842(3)	7.0050(2)	7.0047(3)	10.5749(8)
$b \neq \mathrm{\AA}$	5.2369(3)	8.0012(9)	7.7639(3)	8.143(2)	7.8827(5)	7.2765(3)	7.0430(2)	7.0574(3)	13.3927(10)
$c \ angle$ Å	15.3002(8)	10.9903(14)	11.6238(4)	11.995(2)	11.8664(8)	14.8525(6)	7.2915(2)	7.1430(3)	4.8168(4)
$lpha \ / \circ$	90 6	95.057(7)	00	60	90	60	<u> </u>	06	<u> </u>
β / °	91.574(2)	96.011(5)	98.957(2)	00	99.593(3)	102.8013(15)	107.7870(10)	107.246(3)	90
$^{\circ}/\lambda$	90	92.464(5)	00	00	90	90	90	00	90
$V \setminus m \AA^3$	489.76(4)	455.00(9)	1036.32(6)	777.5(3)	1100.25(13)	746.59(5)	342.539(17)	337.24(3)	682.19(9)
Ζ	2	2	4	4	4	4	2	2	4
$T \ / \ { m K}$	288(2)	298(2)	266(2)	298(2)	297(2)	250(2)	297(2)	296(2)	283
$D_{calc} \; / \; { m g\cdot cm^{-1}}$	1.957	1.843	1.950	2.138	2.124	2.649	2.713	2.755	3.208
$\mu({ m Mo-K}_lpha)\ /\ { m cm}^{-1}$	0.654	0.674	1.052	1.350	5.321	7.787	8.467	8.600	6.421
$F(000) \ / \ { m e}$	300	260	632	512	704	584	272	272	616
hkl range	$\pm 9, \pm 7$	$\pm 8, \pm 13$	$\pm 15, \pm 10$	$\pm 12, \pm 12$	[-14, 13], [0, 9]	$\pm 11, \pm 11$	$\pm 18, \pm 18$	$\pm 8, \pm 8$	[-20, 13], [-25, 24]
	± 23	± 18	± 15	± 18	[0, 14]	± 24	± 19	± 8	± 6
$[(\sin heta)/\lambda]_{ m max} \;/\; { m \AA}^3$	0.76	0.85	0.68	0.76	0.59	0.82	1.31	0.60	0.96
measured reflections	13322	86846	28865	18016	1713	79259	145939	8517	18652
unique reflections	1758	4627	1386	2823	626	3466	12344	1255	4979
Flack x					0.03(2)		0.035(5)		0.062(11)
BASF					0.03(2)			0.43(12)	
$R_{ m int} \;/\; R_{ m sigma}$	0.049/0.033	0.062/0.024	0.10/0.03	0.056/0.038	0.082/0.015	0.067/0.022	0.057/0.038	0.082/0.042	0.067/0.067
refined parameters	89	157	91	127	97	128	119	113	113
$R_1(F) \ / \ wR_2(F^2)$	0.048/0.089	0.048/0.085	0.052/0.070	0.044/0.083	0.019/0.041	0.033/0.055	0.05/0.110	0.032/0.049	0.064/0.070
$GoF(F^2)$	1.07	1.09	1.11	1.12	1.15	1.09	1.09	1.05	0.95
$\Delta ho_{ m fin} \ / \ { m e} \cdot { m \AA}^{-3}$	0.41/-0.48	0.51/-0.46	0.29/- 0.45	0.71/-0.42	0.23/- 0.30	0.78/- 0.55	1.76/-1.49	0.40/-0.32	1.55/-1.85
(max./min.)									

Figure S35: X-ray powder diffraction pattern of $Mg(NH_2SO_3)_2 \cdot 4H_2O$ shown in black compared with a calculated pattern based on single-crystal data shown in red.

Figure S36: X-ray powder diffraction pattern of $Mg(NH_2SO_3)_2 \cdot 3H_2O$ shown in black compared with a calculated pattern based on single-crystal data shown in red.

Figure S37: X-ray powder diffraction pattern of $Ca(NH_2SO_3)_2 \cdot 4H_2O$ shown in black compared with a calculated pattern based on single-crystal data shown in red. Reflections belonging to $Ca(NH_2SO_3)_2 \cdot H_2O$ are marked with *.

Figure S38: X-ray powder diffraction pattern of $Ca(NH_2SO_3)_2 \cdot H_2O$ shown in black compared with a calculated pattern based on single-crystal data shown in red.

Figure S39: X-ray powder diffraction pattern of $Sr(NH_2SO_3)_2 \cdot H_2O$ shown in black compared with a calculated pattern based on single-crystal data shown in red.

Figure S40: X-ray powder diffraction pattern of β -Sr(NH₂SO₃)₂ shown in black compared with a calculated pattern based on single-crystal data shown in red.

Figure S41: X-ray powder diffraction pattern of α -Sr(NH₂SO₃)₂ shown in black compared with a calculated pattern based on single-crystal data shown in red.

Figure S42: X-ray powder diffraction pattern of $Ba(NH_2SO_3)_2$ shown in black compared with a calculated pattern based on single-crystal data shown in red.

Figure S43: X-ray powder diffraction pattern of a finely ground samle of $Sr(NH_2SO_3)_2 \cdot H_2O$ aged over the course of six days on air.

Figure S44: X-ray powder diffraction pattern of a sample of β -Sr(NH₂SO₃)₂ heated to 220 °C shown in black compared with a calculated pattern based on single-crystal data shown in red.

Figure S45: FT-IR spectrum of $\rm Mg(\rm NH_2SO_3)_2\cdot 4\, \rm H_2O.$

Figure S46: FT-IR spectrum of $\rm Mg(\rm NH_2SO_3)_2\cdot 3\, \rm H_2O.$

Figure S47: FT-IR spectrum of $\rm Ca(\rm NH_2SO_3)_2\cdot 4\, \rm H_2O.$

Figure S48: FT-IR spectrum of $\mathrm{Ca}(\mathrm{NH}_2\mathrm{SO}_3)_2\cdot\mathrm{H}_2\mathrm{O}.$

Figure S49: FT-IR spectrum of $\rm Sr(\rm NH_2SO_3)_2\cdot H_2O.$

Figure S50: FT-IR spectrum of $\beta\text{-}\mathrm{Sr}(\mathrm{NH}_2\mathrm{SO}_3)_2.$

Figure S51: FT-IR spectrum of $Ba(NH_2SO_3)_2$.

Figure S52: Raman spectrum of $\rm Ca(\rm NH_2SO_3)_2 \cdot \rm H_2O.$

Figure S53: Raman spectrum of $\rm Sr(\rm NH_2SO_3)_2 \cdot \rm H_2O.$

Figure S54: FT-IR spectrum of a sample of β -Sr(NH₂SO₃)₂ heated to 220 °C (black line) compared with a FT-IR spectrum of (NH₄)₂SO₄ (red line).

Figure S55: UV-Vis spectrum of $\rm Mg(\rm NH_2SO_3)_2\cdot 3\, H_2O.$

Figure S56: UV-Vis spectrum of $\rm Ca(\rm NH_2SO_3)_2\cdot H_2O.$

Figure S57: UV-Vis spectrum of $\rm Sr(\rm NH_2SO_3)_2 \cdot H_2O.$

Figure S58: UV-Vis spectrum of $\beta\text{-}\mathrm{Sr}(\mathrm{NH}_2\mathrm{SO}_3)_2.$

Figure S59: UV-Vis spectrum of ${\rm Ba}({\rm NH}_2{\rm SO}_3)_2.$

Figure S60: TG curve of $\rm Mg(\rm NH_2SO_3)_2\cdot 4\, \rm H_2O.$

Figure S61: TG curve of $\rm Mg(\rm NH_2SO_3)_2\cdot 3\, \rm H_2O.$

Figure S62: TG curve of $\rm Ca(\rm NH_2SO_3)_2\cdot 4\, \rm H_2O.$

Figure S63: TG curve of $\rm Ca(\rm NH_2SO_3)_2 \cdot \rm H_2O.$

Figure S64: Room temperature isothermal thermogram of a single-crystal of $Sr(NH_2SO_3)_2 \cdot 4H_2O$.

Figure S65: TG curve of $\rm Sr(\rm NH_2SO_3)_2 \cdot H_2O.$

Figure S66: TG curve of $Sr(NH_2SO_3)_2$.

Figure S67: TG curve of $Ba(NH_2SO_3)_2$.

Figure S68: X-ray powder diffraction pattern of the pyrolysis residue of $Mg(NH_2SO_3)_2 \cdot 4H_2O$ after TGA shown in black compared with a calculated pattern of β -MgSO₄ based on single-crystal data[3] shown in red. Reflections belonging to α -MgSO₄[4] are marked with a blue asterisk.

Figure S69: X-ray powder diffraction pattern of the pyrolysis residue of $Mg(NH_2SO_3)_2 \cdot 3H_2O$ after TGA shown in black compared with a calculated pattern of β -MgSO₄ based on single-crystal data[3] shown in red. Reflections belonging to α -MgSO₄[4] are marked with a blue asterisk.

Figure S70: X-ray powder diffraction pattern of the decomposition product of $Ca(NH_2SO_3)_2 \cdot 4H_2O$ heated to 300 °C shown in black compared with a calculated pattern of synthetic calciolangbeinite $K_2Ca_2(SO_4)_3$ based on single-crystal data[5] shown in red.

Figure S71: X-ray powder diffraction pattern of the decompostion product of $Ca(NH_2SO_3)_2 \cdot H_2O$ after TGA shown in black compared with a calculated pattern of synthetic anhydrite $CaSO_4$ based on single-crystal data[6] shown in red.

Figure S72: X-ray powder diffraction pattern of the pyrolysis residue of $Sr(NH_2SO_3)_2 \cdot H_2O$ after TGA shown in black compared with a calculated pattern of synthetic celestine $SrSO_4$ based on single-crystal data[7] shown in red.

Figure S73: X-ray powder diffraction pattern of the pyrolysis residue of $Ba(NH_2SO_3)_2$ after TGA shown in black compared with a calculated pattern of synthetic barite $BaSO_4$ based on single-crystal data[8] shown in red.

Figure S74: Photograph of $Sr(NH_2SO_3)_2 \cdot 4H_2O$ as synthesised inside a 100 ml beaker (50 mm in diameter).

Figure S75: a) Light microscopy image of S_4N_4 crystallised on the wall of an ampoule. b) Photograph of the ampoule with yellow S_4N_4 crystallised on the wall of an ampoule over $SrSO_4$ on the bottom. c) Specimen selected for single-crystal XRD study in Lindemann-glass capillary (0.3 mm diameter).

References

- [1] T. Balić-Žunić and E. Makovicky. Determination of the centroid or 'the best centre' of a coordination polyhedron. Acta Crystallogr., Sect. B: Struct. Sci., 52:78 – 81, 1996.
- [2] E. Makovicky and Balić-Žunić. New measure of distortion for coordination polyhedra. Acta Crystallogr., Sect. B: Struct. Sci., 54:766–773, 1998.
- [3] M. Weil. The high-temperature modification of magnesium sulfate (β-mgso4) from single-crystal data. Acta Crystallogr., Sect. E: Crystallogr. Commun., 63:i172, 2007.
- [4] P. J. Rentzeperis and C. T. Soldatos. The crystal structure of the anhydrous magnesium sulphate. Acta Crystallogr., 11:686–688, 1958.
- [5] D. Speer and E. Salje. Phase transitions in langbeinites i: Crystal chemistry and structures of k-double sulfates of the langbeinite type $m_2^{++}k_2(so_4)_3$, m = mg, ni, co, zn, ca. *Phys. Chem. Minerals*, 13:17–24, 1986.
- [6] H. Morikawa, I. Minato, T. Tomita, and S. Iwai. Anhydrite: a refinement. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 31(8):2164–2165, 1975.
- [7] S.D. Jacobsen, J.R. Smyth, R.J. Swope, and R.T. Downs. Rigid-body character of the so₄ groups in celestine, anglesite and barite. *Can. Mineral.*, pages 1053–1060, 1998.
- [8] R. J. Hill. A further refinement of the barite structure. Can. Miner., 15:522–526, 1977.