Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Stereoselective synthesis of oxime containing Pd(II) compounds: Highly effective, selective and stereo-regulated cytotoxicity against carcinogenic PC-3 cells

Isabel de la Cueva-Alique,^a Elena de la Torre-Rubio,^a Laura Muñoz-Moreno,^b Alicia Calvo-Jareño,^a Adrián Pérez-Redondo,^a Lourdes Gude,^a Tomás Cuenca,^a Eva Royo^{*a}

^a Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Departamento de

Química Orgánica y Química Inorgánica, 28805 Alcalá de Henares, Madrid, Spain

^b Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de

Alcalá, 28805 Alcalá de Henares, Madrid, Spain

Selected characterization data:

- 1. Tables S1-S5 and Figure S1: Single-crystal X-ray diffraction data.
- 2. Figure S2: Numbered cyclohexane skeleton of amino oxime proligands.
- 3. Figure S3-S6: Selected NMR spectra of proligands a, b and a', b'.
- 4. Figures S7-S15: Selected NMR spectra of **1a** and **1a'** in chloroform-d1.
- 5. Figures S16-S22: Selected NMR spectra of **1b** and **1b'** in chloroform-d1.
- 6. Figure S23-S29: Selected NMR spectra of 2a and 2a' in chloroform-d1
- 7. Figure S30-S37: Selected NMR spectra of 2b and 2b' in chloroform-d1
- 8. Figure S38: Time-dependent ¹H NMR spectra, (pH* = 7.4) of **2b-1 + 2b'-2** in water-d2
- 9. Figure S39-S40: ¹H NMR spectra of **2b-1** + **2b-2** in water-d2 or methanol-d4
- 10. Figure S41-43: Selected NMR characterization spectra of 2b in water-d2
- 11. Figure S44-46: Selected NMR characterization spectra of 2b in methanol-d4
- Figures S47-S50: Time dependent UV-vis spectra of 1a, 1b, 2a and 2b in water (spectra of a-HCI and b-HCI are included for comparison)
- 13. Figure S51-S53: HR-ESI-MS spectra of 2a, 2a' and 2b

Selected FRET DNA melting assay data:

Figure S54: FRET DNA melting curves of 2a, 2a', 2b and 2b' with representative ds DNA (F10T)

Cell cycle assay data:

Figure S55: Analysis of cell cycle of PC-3 cells after treatment with cisplatin, 2a and 2a'.

	1a-1	1a'-1
Pd(1)–Cl(1)	2.274(2)	2.273(2)
Pd(1)–Cl(2)	2.294(2)	2.294(2)
Pd(1)–N(1)	2.048(5)	2.046(5)
Pd(1)–N(2)	1.992(6)	1.990(6)
N(2) - O(1)	1.378(7)	1.379(7)
C(1)–C(2)	1.532(9)	1.519(9)
Cl(1)–Pd(1)–Cl(2)	92.9(1)	92.9(1)
CI(1)–Pd(1)–N(1)	92.0(2)	92.0(2)
CI(1)–Pd(1)–N(2)	172.3(2)	172.3(2)
CI(2)–Pd(1)–N(1)	173.5(2)	173.7(2)
CI(2)-Pd(1)-N(2)	94.0(2)	94.0(2)
N(1)–Pd(1)–N(2)	81.3(2)	81.4(2)
Pd(1)–N(1)–C(1)	108.8(4)	108.7(4)
Pd(1)–N(2)–C(2)	118.7(5)	118.4(5)
N(1)–C(1)–C(2)	108.0(5)	108.3(5)
N(2)-C(2)-C(1)	116.1(6)	116.4(6)

Table S1. Selected Lengths (Å) and Angles (deg) for 1a-1 and 1a'-1.

Table S2. Selected Lengths (Å) and Angles (deg) for ${\rm 1b}.$

1b-1		1b-2	
Pd(1)–Cl(1)	2.297(2)	Pd(2)–Cl(11)	2.278(3)
Pd(1)-Cl(2)	2.293(2)	Pd(2)–Cl(12)	2.297(2)
Pd(1)–N(1)	2.049(7)	Pd(2)–N(11)	2.052(8)
Pd(1)–N(2)	1.996(7)	Pd(2)–N(12)	1.972(7)
N(2)-O(1)	1.371(8)	N(12)–O(11)	1.381(9)
C(1)–C(2)	1.506(12)	C(21)–C(22)	1.524(12)
Cl(1)–Pd(1)–Cl(2)	94.8(1)	CI(11)–Pd(2)–CI(12)	91.8(1)
Cl(1)–Pd(1)–N(1)	92.7(2)	CI(11)–Pd(2)–N(11)	98.4(2)
Cl(1)–Pd(1)–N(2)	173.1(2)	CI(11)–Pd(2)–N(12)	177.5(2)
Cl(2)–Pd(1)–N(1)	172.1(2)	CI(12)–Pd(2)–N(11)	169.6(2)
CI(2)–Pd(1)–N(2)	91.9(2)	CI(12)–Pd(2)–N(12)	90.7(2)
N(1)–Pd(1)–N(2)	80.7(3)	N(11)–Pd(2)–N(12)	79.1(3)
Pd(1)–N(1)–C(1)	107.1(5)	Pd(2)–N(11)–C(21)	108.6(5)
Pd(1)–N(2)–C(2)	118.7(6)	Pd(2)–N(12)–C(22)	120.0(6)
N(1)-C(1)-C(2)	109.8(7)	N(11)–C(21)–C(22)	106.4(7)
N(2)-C(2)-C(1)	114.8(8)	N(12)-C(22)-C(21)	114.6(8)

Figure S1. ORTEP drawing of the ligand which crystallized with compound **2a'** with 50% probability ellipsoids. Hydrogens bonded to carbon atoms have been omitted for clarity.

Pd(1)–N(1)	2.077(3)	Pd(1)–N(21)	2.080(3)	_
Pd(1)–N(2)	1.973(3)	Pd(1)–N(22)	1.976(3)	
N(2)–O(1)	1.355(4)	N(22)–O(21)	1.343(4)	
C(1) - C(2)	1.507(6)	C(21)–C(22)	1.511(6)	
N(42)-O(41)	1.416(5)	C(41)–C(42)	1.517(6)	
. , . ,				
N(1)–Pd(1)–N(2)	81.4(1)	N(21)–Pd(1)–N(22)	81.1(1)	
N(1)–Pd(1)–N(21)	101.2(1)	N(2)–Pd(1)–N(22)	95.9(1)	
N(1)–Pd(1)–N(22)	176.2(1)	N(2)-Pd(1)-N(21)	172.6(1)	
Pd(1)–N(1)–C(1)	110.7(2)	Pd(1)–N(21)–C(21)	107.7(2)	
Pd(1)–N(2)–C(2)	118.6(3)	Pd(1)-N(22)-C(22)	119.0(3)	
N(1)-C(1)-C(2)	109.3(3)	N(21)-C(21)-C(22)	108.7(3)	
N(2) - C(2) - C(1)	117.1(4)	N(22)–C(22)–C(21)	116.3(4)	
N(41)-C(41)-C(42)	111.7(4)	N(42)-C(42)-C(41)	117.3(4)	
				-

Table S3. Selected Lengths (Å) and Angles (deg) for 2a'.

Table S4. Relevant hydrogen bonds^a for compounds 1a-1, 1a'-1, 1b-1, 1b-2 and 2a'

Compound	D–H···A	D…A/Å	H…A/Å	D–H…A/deg
1a-1	O(1)–H(1)⋯Cl(2)	3.182(6)		
1a'-1	O(1)–H(1)····Cl(2)	3.179(6)		
1b-1	O(1)–H(1)····Cl(2)	3.086(7)		
1b-2	O(11)–H(11)····Cl(12)	2.999(7)		
2a'	O(1)–H(1)····O(21)	2.438(4)	1.36(6)	173(5)
$a\Lambda = accontor: \Gamma$) – dopor			

 $^{a}A = acceptor; D = donor.$

Single-crystal X-ray diffraction data:

Table S5. Experimental of	data for the X-ray	/ diffraction studies on	1a-1,	, 1a'-1	, 1b and 2a'.
---------------------------	--------------------	--------------------------	-------	---------	---------------

· · · · · · · · · · · · · · · · · · ·	1a-1 ·2CHCl₃	1a'-1 ·2CHCl ₃	1b	2a' ·C ₁₆ H ₂₂ N ₂ O
CCDC code	2129232	2129233	2129234	2129235
Formula	C ₁₈ H ₂₄ Cl ₈ N ₂ OPd	C ₁₈ H ₂₄ Cl ₈ N ₂ OPd	C ₁₇ H ₂₄ Cl ₂ N ₂ OPd	C ₄₈ H ₆₅ CIN ₆ O ₃ Pd
Mr	674.39	674.39	449.68	915.91
<i>T</i> [K]	200(2)	200(2)	200(2)	200(2)
λ[Å]	0.71073	0.71073	0.71073	0.71073
crystal system	Monoclinic	Monoclinic	Orthorhombic	Orthorhombic
space group	<i>P</i> 2 ₁	P 2 ₁	P 2 ₁ 2 ₁ 2 ₁	<i>P</i> 2 ₁ 2 ₁ 2 ₁
a [Å]; α [º]	8.409(1)	8.407(1)	10.597(1)	13.050(1)
b [Å]; β [⁰]	12.953(2); 96.87(1)	12.955(1); 96.86(1)	12.258(1)	15.813(1)
c [Å]; γ [º]	12.427(1)	12.424(1)	28.259(2)	22.414(1)
V [Å ³]	1343.8(2)	1343.5(2)	3670.5(6)	4625.1(7)
Z	2	2	8	4
$ ho_{ m calcd}$ [g cm ⁻³]	1.667	1.667	1.627	1.315
μ _{ΜοΚα} [mm ⁻¹]	1.500	1.500	1.307	0.506
F(000)	672	672	1824	1928
crystal size [mm ³]	0.40×0.21×0.17	0.34×0.23×0.19	0.26×0.24×0.16	0.24×0.18×0.16
θ range (deg)	3.11 to 27.50	3.11 to 27.50	3.32 to 27.50	3.01 to 27.50
index ranges	-10 to 10,	-10 to 10,	-13 to 13,	-16 to 16,
	-16 to 16,	-16 to 16,	-15 to 15,	-20 to 20,
	-16 to 16	-16 to 16	-36 to 33	-28 to 29
Reflections collected	29581	30348	45975	58204
Unique data	$6100 [R_{int} = 0.074]$	6157 [R _{int} = 0.058]	8411 [R _{int} = 0.086]	10580 [R _{int} = 0.055]
obsd data [I>2σ(I)]	5146	5139	6361	8989
Goodness-of-fit on F ²	1.166	1.132	1.087	1.101
final R ^a indices $[I>2\sigma(I)]$	R1 = 0.042,	R1 = 0.040,	R1 = 0.053,	R1 = 0.037,
	wR2 = 0.086	wR2 = 0.078	wR2 = 0.095	wR2 = 0.064
R ^a indices (all data)	R1 = 0.062,	R1 = 0.062,	R1 = 0.087,	R1 = 0.055,
	wR2 = 0.098	wR2 = 0.090	wR2 = 0.109	wR2 = 0.071
largest diff. peak/hole[e.Å-3]	1.892/-1.157	1.796/-0.757	1.019/-0.842	0.700/-0.494

^a $R1=\Sigma||F_0|-|F_c||/[\Sigma|F_0]]$ $wR2=\{[\Sigma w(F_0^2-F_c^2)^2]/[\Sigma w(F_0^2)^2]\}^{1/2}$

Figure S2. Numbering of cyclohexane skeleton of amino oxime proligands.

R = Ph (**a**), Bn (**b**)

Figure S3.¹H NMR spectrum of a in CDCI₃.¹

Figure S4.¹H NMR spectrum of a' in CDCl₃.

¹ Chemical shifts of NO<u>H</u> and N<u>H</u> protons can vary depending on the sample concentration. This behavior is also observed in NMR spectra of oxime metal

compounds.

Figure S5.¹H NMR spectrum of **b** in CDCl₃.

Figure S6.¹H NMR spectrum of b' in CDCl₃.

S8

Figure S7.¹H NMR spectrum of pure 1a-1 in CDCl₃ (re-dissolved crystals).

Figure S8.¹H-¹⁵N HMBC NMR spectrum of pure 1a-1 in CDCl₃ (re-dissolved crystals).

Figure S9.¹³C APT NMR spectrum of pure 1a-1 in CDCl₃ (re-dissolved crystals)

Figure S10.¹H NMR spectrum of **1a-1** (major) +**1a-2** (minor) in CDCl₃ (crude solid obtained from synthetic reaction).

Figure S11.¹H NMR spectrum of 1a'-1 (major) +1a'-2 (minor) in CDCl₃ (crude solid obtained from synthetic reaction).

Figure S12.¹H-¹⁵N HMBC NMR spectrum of **1a-1** (major) +**1a-2** (minor) in CDCl₃ (crude solid obtained from the synthetic reaction), (full and expanded). Example of <u>CH₃CqNH and CH₂(3) assignment.</u>

Figure S13. ¹³C APT NMR spectrum of 1a-1 (major) +1a-2 (minor) in CDCl₃ (crude solid obtained from synthetic reaction) (full and expanded).

Figure S14.¹H-¹³C HSQC NMR spectrum of 1a-1 (major) +1a-2 (minor) in CDCl₃ (crude

solid obtained from synthetic reaction).

Figure S15. ¹H-¹H NOESY NMR spectrum of 1a-1 (major) +1a-2 (minor) in CDCl₃ (crude solid obtained from the synthesis reaction).

Figure S16. ¹H NMR spectrum of 1b-1 (minor) +1b-2 (major) in CDCl₃.

Figure S17. ¹H NMR spectrum of 1b'-1 (minor) +1b'-2 (major) in CDCl₃.

Figure S18. ¹H-¹⁵N HMBC NMR spectrum of 1b-1 (minor) +1b-2 (major) in CDCl₃.

Figure S19. ¹H-¹³C HSQC NMR spectrum of 1b-1 (minor) +1b-2 (major) in CDCl₃.

Figure S20. ¹H-¹³C HMBC NMR spectrum of **1b-1** (minor) +**1b-2** (major) in CDCl₃. Example of NO<u>H</u> and C<u>H₂(6)</u> assignment.

Figure S21. ¹H-¹H COSY NMR spectrum of **1b-1** (minor) +**1b-2** (major) in CDCl₃ (example of N<u>H</u> assignment)

Figure S22. ¹H-¹H NOESY NMR spectrum of **1b-1** (minor) +**1b-2** (major) in CDCl₃ (full and expanded)

Figure S23.¹H NMR spectrum of 2a in CDCl₃.

Figure S24.¹H NMR spectrum of 2a' in CDCl₃.

Figure S26. ¹³C-¹H HSQC NMR spectrum of 2a in CDCl₃.

Figure S27.¹⁵N-¹H HMBC NMR spectrum of 2a in CDCl₃.

Figure S28. ¹H-¹H COSY NMR spectrum of 2a in CDCl₃.

S21

Figure S29. 2D NOESY NMR spectrum of 2a in CDCI3

Figure S30.¹H NMR spectrum of 2b-1 (major) + 2b-2 (minor) in CDCI₃.

expanded)

Figure S33. $^{1}\text{H}\,^{13}\text{C}$ HSQC NMR spectrum of 2b-1~(major)+2b-2~(minor) in CDCl3 (full and

expanded)

Figure S34.¹³C-¹H HMBC NMR spectrum of 2b-1 (major) + 2b-2 (minor) in CDCl₃.

Figure S35.¹⁵N-¹H HMBC NMR spectrum of 2b-1 (major) + 2b-2 (minor) in CDCI₃ (full and expanded)

Figure S36. ¹H-¹H COSY NMR spectrum of 2b-1 (major) + 2b-2 (minor) in CDCl₃.

Figure S37. 2D NOESY NMR spectrum of 2b-1 (major) + 2b-2 (minor) in CDCl₃.

Figure S38. Time-dependent ¹H NMR spectra of **2b-1** (minor) + **2b-2** (major) (5 mM) in water- d_2 (pH* = 7.3).

Figure S39. ¹H NMR spectrum of 2b-1 (minor) + 2b-2 (major) in water- d_2 .

Figure S40. ¹H NMR spectrum of 2b-1 (*minor*) + 2b-2 (major) in methanol-d₄.

Figure S41. ¹³C APT NMR spectrum of 2b-1 (*minor*) + 2b-2 (major) in water- d_2 .

Figure S42. ¹³C-¹H HSQC NMR spectrum of **2b-1** (*minor*) + **2b-2** (major) in water- d_2 (full and expanded)

Figure S43. ¹⁵N-¹H HMBC NMR spectrum of 2b-1 (*minor*) + 2b-2 (major) in water- d_2 .

Figure S44. ¹³C APT NMR spectrum of 2b-1 (minor) + 2b-2 (major) in methanol- d_4

Figure S45. ¹H-¹³C HSQC NMR spectrum of **2b-1** (minor) + **2b-2** (major) in methanol- d_4 . Full and expanded

Figure S46. ¹H-¹⁵N HMBC NMR spectrum of 2b-1 (minor) + 2b-2 (major) in methanol- d_4 .

Figure S47. Time dependent UV-vis spectra in water of 1a and comparison with UV-vis spectrum in water of a-HCI.

Figure S48. Time dependent UV-vis spectra in water of 1b and comparison with UV-Vis spectrum in water of b-HCI.

Figure S50. Time dependent UV-vis spectra in water of 2b.

Figure S51. HR-ESI MS in water of 2a, full spectra, expanded and simulated peak for $(C_{32}H_{43}N_4O_2Pd)$, [M-Cl]⁺.

 10c				
MASA TEORICA	MASA EXPERIMENTAL	ERROR (ppm)	ERROR (amu)	
619.241	619.2421	-1.7764	0.0011	
620.2427	620.2435	-1.2898	0.0008	
621.2419	621.2428	-1.4487	0.0009	
622.2447	622.2454	-1.1250	0.0007	
623.2415	623.2424	-1.4441	0.0009	
624.2447	624.2452	-0.8010	0.0005	
625.2432	625.2439	-1.1196	0.0007	
626.2463	626.2466	-0.4790	0.0003	

S37

Figure S52. HR-ESI MS in water of 2a', full spectra, expanded and simulated peak for $(C_{32}H_{43}N_4O_2Pd)$, [M-CI]⁺.

10c ⁻				
MASA TEORICA	MASA EXPERIMENTAL	ERROR (ppm)	ERROR (amu)	
617.2437	617.2448	-1.7821	0.0011	
618.2468	618.2478	-1.6175	0.001	
619.2421	619.2429	-1.2919	0.0008	
620.2435	620.244	-0.8061	0.0005	
621.2428	621.2431	-0.4829	0.0003	
622.2454	622.2461	-1.1250	0.0007	
623.2424	623.2428	-0.6418	0.0004	
624.2452	624.246	-1.2815	0.0008	
625.2439	625.2445	-0.9596	0.0006	
626.2466	626.2475	-1.4371	0.0009	

Figure S53. HR-ESI MS in water of **2b**, full spectra, theoretical and experimental mass for $(C_{34}H_{47}N_4O_2Pd)$, [M-CI]⁺.

PdBnHCl

MASA TEORICA	MASA EXPERIMENTAL	ERROR (ppm)	ERROR (amu)		
647.2734	647.2733	0.1545	-0.0001	6	
648.2748	648.2756	-1.2340	0.0008		
649.2741	649.2749	-1.2321	0.0008		
650.2767	650.275	2.6143	-0.0017		
651.2738	651.2727	1.6890	-0.0011		
652.2766	652.272	7.0522	-0.0046		
653.2753	653.2716	5.6638	-0.0037		

Figure S54. FRET DNA melting curves of 2a, 2a', 2b and 2b'at 10 μ M concentration with ds DNA (F10T, 0.2 μ M).

Figure S55: Analysis of cell cycle of PC-3 cells after treatment with cisplatin, **2a** and **2a**'. Cells were treated for 48 h with **2a** (0.79 μ M) or **2a**' (0.17 μ M). The results are shown as percentage of cells in each phase of the cycle as compared to untreated control cells. Data in the table are the means ± SEM of four independent experiments; *p < 0.05; ***p < 0.001 vs. control.

	SubG0	G1	S	G2/M
CONTROL	0.3 ± 0.01	63.64 ± 0.72	12.56 ± 0.33	23.87 ± 0.83
Cisplatin	4.5 ± 0.22***	22.88 ± 1.03***	37.02 ± 1.25***	38.34 ± 1.99***
2a	1.4 ± 0.78	48.59 ± 2.30***	18.82 ± 1.45***	32.58 ± 2.55***
2a'	2.4 ± 0.34*	37.99 ± 1.11***	21.13 ± 1.89***	40.64 ± 2.32***