Electronic Supplementary Information

Deaggregation properties and transmetalation studies of a zinc(II) salen-type Schiff-base complex

Ivan Pietro Oliveri, Giuseppe Consiglio, Gabriella Munzi, Salvatore Failla and Santo Di Bella *

Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy

E-mail: sdibella@unict.it

Fig. S1 Optical absorption titration spectra of 1 (20.0 μ M solution in CHCl₃) upon progressive addition of isopropylamine. The concentration of isopropylamine added varied from 0 to 280 μ M. Inset: variation of the absorbance at 600 nm as a function of the concentration of isopropylamine added and fit of the binding isotherm (red line). A log K value of 5.40 is achieved.

Fig. S2 Optical absorption titration spectra of 1 (40.0 μ M solution in CHCl₃) upon progressive addition of DMF. The concentration of DMF added varied from 0 to 3.20 mM. Inset: variation of the absorbance at 583 nm as a function of the concentration of DMF added and fit of the binding isotherm (red line).

Fig. S3 Optical absorption titration spectra of 1 (40.0 μ M solution in CHCl₃) upon progressive addition of MeCN. The concentration of MeCN added varied from 0 to 1.50 M. Inset: variation of the absorbance at 585 nm as a function of the concentration of MeCN added and fit of the binding isotherm (red line).

Fig. S4 (a) ¹H NMR spectra of **1** $(1.0 \times 10^{-4} \text{ M})$ in CD₃CN, and upon the addition of half molar (b), an equimolar (c), and 2-fold molar excess (d) amount of a D₂O solution of Cu(NO₃)₂.

Fig. S5 Optical absorption spectra of 1 (40.0 μ M solution in MeCN) before and after the addition of 2-fold molar excess of Al³⁺, Fe³⁺, and Hg²⁺ cations (as aqueous solutions of nitrate salts).

Fig. S6 Optical absorption titration spectra of 1 (40.0 μ M solution in MeCN) upon progressive addition of an aqueous solution of HClO₄. The concentration of HClO₄ added varied from 0 to 100 μ M.

Fig. S7 Optical absorption spectra of 1 (40.0 μ M solution in MeCN), before and after the addition of 2-fold molar excess of an aqueous solution of Ni²⁺ ions (as nitrate salt), heated at 60 °C, under stirring, recorded after 1 and 3 hours.

Fig. S8 ESI-MS spectra of MeCN solutions of **1** recorded immediately after the addition of 2-fold molar excess of MnCl₂ (top), FeCl₂ (middle), and CoCl₂, recorded after 30 min (bottom)

Fig. S9 ESI-MS spectra of MeCN solutions of **1** recorded immediately after the addition of 2-fold molar excess of MgCl₂ (top), CuCl₂ (middle), and NiCl₂, recorded after 30 min (bottom)

Fig. S10 ¹H NMR spectra of 1 (1.0×10^{-4} M in CD₃CN), before (top) and after (middle) the addition of 2-fold molar excess of a D₂O solution of NiCl₂. The ¹H NMR spectrum of Ni(salmal) (bottom) (1.0×10^{-4} M solution in CD₃CN) is reported for comparison.

Fig. S11 (a) ¹H NMR spectra of **1** $(1.0 \times 10^{-4} \text{ M})$ in CD₃CN, and upon the addition of half molar (b), an equimolar (c), and 2-fold molar excess (d) amount of a D₂O solution of CoCl₂.

Fig. S12 Comparison of ¹H NMR spectra of 1 (1.0×10^{-4} M, in CD₃CN) before (top), after the addition of 2-fold molar excess of a D₂O solution of Co(NO₃)₂, recorded 24 hours later (middle), and after the addition of 2-fold molar excess of a D₂O solution of CoCl₂, recorded 30 min later (bottom).

Fig. S13 Optical absorption spectra of 1 (40.0 μ M solution in MeCN) before (—), and after (—) the addition of 2-fold molar excess of an aqueous solution of MgCl₂, and recorded 24 hours later (—).

Fig. S14 Optical absorption titration spectra of 1 (40.0 μ M solution in MeCN) with addition of an aqueous solution of TBAC1. The concentration of TBAC1 added varied from 0 to 66.0 μ M.

Fig. S15 Comparison of optical absorption spectra of 1 (40.0 μ M solution in MeCN), before (—) and after the addition of 2-fold molar excess of NiCl₂ (—), or after the addition of 2-fold molar excess Ni(ClO₄)₂, followed by the addition of an equimolar amount (with respect to perchlorate salt) of NaCl (---).

Fig. S16 Optical absorption spectra of 1 (40.0 μ M solution in DMF) before and after the addition of 2-fold molar excess of several cations (as aqueous solutions of nitrate salts).

Fig. S17 Optical absorption spectra of 1 (40.0 μ M solution in DMF) before and after the addition of 2-fold molar excess of an aqueous solution of Cu(NO₃)₂, recorded 20 hours later.

Fig. S18 Optical absorption spectra of 1 (40.0 μ M solution in DMF) before and after the addition of 2-fold molar excess of several cations (as aqueous solutions of chloride salts).

Fig. S19 Optical absorption titration spectra of 1 (40.0 μ M solution in DMF) with addition of an aqueous solution of TBAC1. The concentration of TBAC1 added varied from 0 to 146 μ M.

Fig. S20 Optical absorption spectra of 1 (40 μ M solution in DMF) before and after the addition of 2-fold molar excess of an aqueous solution of NiCl₂, recorded 50 hours later.

Fig. S21 Optical absorption titration spectra of 1 (40.0 μ M solution in DMF) upon progressive addition of an aqueous solution of HClO₄. The concentration of HClO₄ added varied from 0 to 150 μ M.