Modifying the Internal Substituents of Self-Assembled Cages Controls their Molecular Recognition and Optical Properties

Connor Z. Woods, Hoi-Ting Wu, Courtney Ngai, Bryce da Camara, Ryan R. Julian and Richard J. Hooley*

Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A.

Electronic Supplementary Information

Table of Contents

I.	Characterization of Substrates and Products
II.	Photochemistry Data
III.	Binding Studies
IV.	Acid and Base Binding
V.	References

Figure S-1. Reaction scheme for the synthesis of cages 1-3.

Unfunctionalized Cage 1:

Figure *S*-2. ¹H NMR spectrum of *S*1 (600 MHz, 298 K, DMSO-*d*₆).

Figure *S***-3.** ¹³C NMR spectrum of *S***1** (100 MHz, 298 K, DMSO-*d*₆).

Figure *S***-5.** ¹³C NMR spectrum of **L1** (150 MHz, 298 K, DMSO-*d*₆).

Figure *S***-7.** ¹³C NMR spectrum of **1** (100 MHz, 298 K, CD₃CN).

Figure S-10. DOSY NMR spectrum of 1 (600 MHz, 298 K, CD₃CN). Diffusion constant; 2.30 x 10^{-6} cm²/sec.

Figure S-11. Full mass spectrum of 1 (CH₃CN).

Figure *S-12***.** Mass spectrum of predicted ions $[1]^{8+}$ and $[1 \cdot 1NTf_2]^{7+}$ stacked versus predicted peaks.

Figure *S-14*. ¹³C NMR spectrum of **B** (100 MHz, 298 K, DMSO-*d*₆).

Figure *S-16*. ¹³C NMR spectrum of *S2* (150 MHz, 298 K, DMSO-*d*₆).

Figure *S-18*. ¹³C NMR spectrum of L2 (150 MHz, 298 K, DMSO-*d*₆).

Figure S-23. HSQC NMR spectrum of 2 (600 MHz, 298 K, CD₃CN).

Figure S-25. DOSY NMR spectrum of 2 (600 MHz, 298 K, CD₃CN). Diffusion constant; 7.48 x 10^{-6} cm²/sec.

Figure S-26. Full mass spectrum of 2 (CH₃CN).

Figure *S***-28.** Mass spectra of predicted ions [2•1NTf₂⁻]⁷⁺ and [2•1NTf₂⁻]⁶⁺stacked versus predicted peaks.

Figure *S*-30. ¹³C NMR spectrum of C (150 MHz, 298 K, DMSO-*d*₆).

Figure *S-32*. ¹³C NMR spectrum of *S3* (100 MHz, 298 K, DMSO-*d*₆).

Figure *S***-34.** ¹³C NMR spectrum of **L3** (100 MHz, 298 K, DMSO-*d*₆).

9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 (ppm)

Figure S-39. HMBC NMR spectrum of 3 (400 MHz, 298 K, CD₃CN).

Figure S-41. DOSY NMR spectrum of 3 (600 MHz, 298 K, CD₃CN). Diffusion constant; 2.81 x 10^{-6} cm²/sec.

Figure S-42. Full mass spectrum of 3 (CH₃CN).

Figure *S***-43.** Mass spectra of predicted ions $[3]^{8+}$ and $[3 \cdot 1NTf_2 + 1H^+]^{8+}$ stacked versus predicted peaks.

Figure *S***-44.** Mass spectra of predicted ions $[3 \cdot 2NTf_2 + 2H^+]^{8+}$ and $[3 \cdot 3NTf_2 + 3H^+]^{8+}$ stacked versus predicted peaks.

Figure *S***-45.** Mass spectra of predicted ions $[3 \cdot 5Tf_2 + 5H^+]^{8+}$ and $[3 \cdot 5NTf_2 + 4H^+]^{7+}$ stacked versus predicted peaks.

II. Photochemistry Data

Figure S-46. UV-vis absorption spectrum of 1 µM 1 and fluorescence spectrum at 360 nm in CH₃CN.

Figure S-47. UV-vis absorption spectrum of 1 µM 2 and fluorescence spectrum at 360 nm in CH₃CN.

Figure S-48. UV-vis absorption spectrum of 1 µM 3 and fluorescence spectrum at 340 nm in CH₃CN.

Figure S-49. UV-vis absorption spectrum of 1 µM 4 and fluorescence spectrum at 350 nm in CH₃CN.

Figure S-50. UV-vis absorption spectrum of 1 µM 5 and fluorescence spectrum at 333 nm in CH₃CN.

Figure S-51. Fluorescence spectra of cages 1-5 relative to max emissions and normalized emissions.

Figure *S***-52.** Fluorescence spectra of the titration of DABCO into a 0.2 μ M solution of cage **3** in CH₃CN. DABCO was added in 0.4 μ L aliquots from a 3 mM stock solution in CH₃CN.

III. Binding Studies

Table *S*-*1*: Binding affinities of guests **6-14** in cages **1-3**,^a including binding results from fitting to a 1:1 and 1:2 algorithm in each case. Entries in red were deemed "poor fits" and not shown in Table 1 (main text) due to excessive fitting errors.

	Cage 1		Cage 2		Cage 3	
Guest	K _a (1:1), x 10 ³ M ⁻¹	K ₁₁ , K ₁₂ (1:2), x 10 ³ M ⁻¹	K _a (1:1), x 10 ³ M ⁻¹	K ₁₁ , K ₁₂ (1:2), x 10 ³ M ⁻¹	K _a (1:1), x 10 ³ M ⁻¹	K ₁₁ , K ₁₂ (1:2), x 10 ³ M ⁻¹
6	120 ± 6.8	K ₁₁ : 89 ± 2.8 K ₁₂ : 1.7 ± 0.1	110 ± 5.9	K ₁₁ : 51 ± 2.1 K ₁₂ : 64 ± 13	99 ± 5.7	K ₁₁ : 110 ± 7.7 K ₁₂ : 2.0 ± 0.4
	100 ± 5.5	K ₁₁ : 210 ± 8.8 K ₁₂ : 23 ± 0.6	80 ± 3.8	K ₁₁ : 1800 ± 1300 K ₁₂ : 54 ± 3.0	110 ± 4.2	K ₁₁ : 88 ± 5.6 K ₁₂ : 37 ± 18
Br Br	74 x ± 3.6	K ₁₁ : 160 ± 13 K ₁₂ : 2.1 ± 0.2	83 ± 3.6	K ₁₁ : 130 ± 11 K ₁₂ : 0.5 ± 0.08	58 ± 2.4	K ₁₁ : 64 ± 3.2 K ₁₂ : 6.8 ± 1.1
Br CO ₂ C CO ₂ Et	160 ± 11	K ₁₁ : 650 ± 220 K ₁₂ : 110 ± 9.9	61 ± 1.2	K ₁₁ : 430 ± 29 K ₁₂ : 100 ± 3.9	70 ± 2.5	K ₁₁ : 120 ± 4.8 K ₁₂ : 0.7 ± 0.04
<i>n</i> -octyISH 10	320 ± 28	K ₁₁ : 5800 ± 1600 K ₁₂ : 2.8 ± 0.2	140 ± 14	K ₁₁ : 12000 ± 8300 K ₁₂ : -39 ± -2.3	230 ± 18	K ₁₁ : 56000 ± 190000 K ₁₂ : 90 ± 12
adamantanone 11	1600 ± 290	K ₁₁ : 250000 ± 420000 K ₁₂ : 210 ± 15	720 ± 74	K ₁₁ : 6600 ± 1700 K ₁₂ : 300 ± 17	440 ± 26	K ₁₁ : 1500 ± 230 K ₁₂ : 89 ± 6.8
adamantanol 12	1800 ± 360	K ₁₁ : 63000 ± 75000 K ₁₂ : 150 ± 19	540 ± 64	K ₁₁ : 260000 ± 620000 K ₁₂ : 161 ± 8.1	490 ± 27	K ₁₁ : 680 ± 37 K ₁₂ : 120 ± 7.6
13	18 ± 0.7	K ₁₁ : 26 ± 0.8 K ₁₂ : 370 ± 27	77 ± 3.2	K ₁₁ : 300 ± 41 K ₁₂ : 59 ± 2.7	86 ± 5.2	K ₁₁ : 76 ± 4.0 K ₁₂ : 0.5 ± 0.05
	120 ± 9.2	K ₁₁ : 49 ± 2.7 K ₁₂ : 4.8 ± 0.4	100 ± 9.1	K ₁₁ : 18 ± 8.2 K ₁₂ : 910 ± 450	79 ± 3.8	K ₁₁ : 440 ± 160 K ₁₂ : 90 ± 6.3

^ain CH₃CN, $[1-3] = 1.0 \mu$ M, absorbance changes measured at 325 nm and 365 nm, affinities calculated via the Nelder-Mead method.¹⁻³

UV/Vis Titrations of Guests into cage 1:

Figure S-53. UV-Vis absorption spectra of the titrations of guests 6–11 into 1 μ M solutions of cage 1 in CH₃CN. Guests were added in 0.5 or 1 μ L aliquots from 3 or 9 mM stock solutions in CH₃CN.

Figure *S***-54.** UV-Vis absorption spectrum of the titration of **12** into 1 μ M solutions of cage 1 in CH₃CN. Guest was added in 0.5 and 1 μ L aliquots from a 3 mM stock solution in CH₃CN.

UV/Vis Titrations of Guests into cage 2:

Figure S-55. UV-Vis absorption spectra of the titrations of guests **6–9** into 1 μ M solutions of cage **2** in CH₃CN. Guests were added in 1 μ L aliquots from a 9 mM stock solution in CH₃CN.

Figure *S***-56.** UV-Vis absorption spectra of the titrations **10–12** into 1 μ M solutions of cage **2** in CH₃CN. Guests were added in 0.5 and 1 μ L aliquots from a 3 mM stock solution in CH₃CN.

UV/Vis Titrations of Guests into cage 3:

Figure *S***-57.** UV-Vis absorption spectra of the titrations of **6** and **7** into 1 μ M solutions of cage **3** in CH₃CN. Guests were added in 1 μ L aliquots from a 9 mM stock solution in CH₃CN.

Figure *S***-58.** UV-Vis absorption spectra of the titrations of **8**–12 into 1 μ M solutions of cage **3** in CH₃CN. Guests were added in 0.5 and 1 μ L aliquots from a 3 and 9 mM stock solutions in CH₃CN.

Figure S-59. UV-Vis absorption spectra of the titrations of **11** and **12** into 1 μ M solutions of cage **4** in CH₃CN. Guests were added in 1 μ L aliquots from a 3 mM stock solution in CH₃CN.

Figure *S***-60.** UV-Vis absorption spectra of the titrations of **6**, **7**, and **10** into 1 μ M solutions of cage **5** in CH₃CN. Guests were added in 1 μ L aliquots from 3 and 9 mM stock solutions in CH₃CN.

IV. Acid and Base Binding

Figure S-61. UV-Vis absorption spectra of the titration of **13** and **14** into 1 μ M solutions of cage **1** in CH₃CN. Guests were added in 1 μ L aliquots from a 9 mM stock solution in CH₃CN.

Figure S-62. UV-Vis absorption spectra of the titration of **13** and **14** into 1 μ M solutions of cage **2** in CH₃CN. Guests were added in 1 μ L aliquots from a 9 mM stock solution in CH₃CN.

3

Figure S-63. UV-Vis absorption spectra of the titration of **13** and **14** into 1 μ M solutions of cage **3** in CH₃CN. Guests were added in 1 μ L aliquots from a 9 mM stock solution in CH₃CN.

Figure *S***-64.** UV-Vis absorption spectrum of the titration of **13** into 1 μ M solutions of cage **5** in CH₃CN. Guest was added in 1 μ L aliquots from a 9 mM stock solution in CH₃CN.

Figure *S***-65.** ¹H NMR of the titration of DABCO into a 0.9 M solution of cage 2 in CD₃CN. DABCO was added in 1 μ L aliquots from a 9 mM stock solution in CD₃CN.

Figure *S***-66.** ¹H NMR of the titration of DABCO into a 0.9 M solution of cage 3 in CD₃CN. DABCO was added in 1 μ L aliquots from a 9 mM stock solution in CD₃CN.

Figure *S***-67.** ¹H NMR of the titration of pivalic acid into a 0.9 M solution of cage **2** in CD₃CN. Pivalic acid was added in 1 μ L aliquots from a 9 mM stock solution in CD₃CN.

Figure *S***-68.** ¹H NMR of the titration of pivalic acid into a 0.9 M solution of cage **3** in CD₃CN. Pivalic acid was added in 1 μ L aliquots from a 9 mM stock solution in CD₃CN.

V. References

- 1. Association constants calculated using BindFit software found at http://supramolecular.org.
- 2. P. Thordarson, *Chem. Soc. Rev.* 2011, **40**, 1305–1323.
- 3. D. B. Hibbert, P. Thordarson, *Chem. Commun.* 2016, **52**, 12792–12805.