Chemical sensors based on Periodic Mesoporous Organosilica @ NaYF4: Ln3+ nanocomposites

Wanlu Liu,^[a, b, c] Anna M. Kaczmarek,^{*[b]} Pascal Van Der Voort,^[c] and Rik Van Deun^{*[a]}

- [a] L³ Luminescent Lanthanide Lab, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium.
- [b] NanoSensing Group, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium.
- [c] Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium.

Scheme S1. Synthesis route of ethane PMO nanoparticles.

Figure S1. Powder XRD pattern of ethane PMO used for the preparation of PMO@NaYF₄: Yb^{3+} , Ln^{3+} (Ln =Er, Tm, Ho) nanocomposites.

Figure S2. Particle size distribution diagram of ethane PMO nanoparticles.

Figure S3. Powder XRD patterns of PMO@NaYF₄: Yb^{3+} , Ho^{3+} synthesized three times under the same synthesis conditions.

Figure S4. Thermogravimetric analysis of PMO@NaYF₄: Yb³⁺, Er³⁺.

Figure S5. The Stern-Volmer plots of PMO@NaYF₄: Yb³⁺, Er^{3+} in the presence of Hg²⁺ ions at different temperatures (25 °C and 45 °C). An increase of the slope with temperature increase suggests presence of dynamic quenching mechanism.

Figure S6. Luminescence emission intensity of PMO@NaYF₄: Yb^{3+} , Er^{3+} in the presence of a single competing ion (red bars) and in the mixture of Hg^{2+} and competing ions (black bars).

Figure S7. Combined powder XRD patterns of PMO@NaYF₄: Yb³⁺, Tm³⁺ before and after sensing experiments.

Figure S8. Absorption spectra of isopropanol containing varied water content.

Figure S9. Absorption spectra of n-butanol containing varied water content.

Figure S10. Absorption spectra of ethanol containing varied water content.

1					
Sensors	Structure property	Need to pre-	Linear	Limit of	Def
		synthesize UCNPs?	range (µM)	detection (μM)	Kel.
A-DMSA-UCNPs	Core-Shell	Yes	24-120	2.47	1
A-PAA-UCNPs	Core-Shell	Yes	13.4-40	8.15	1
Ru-UCNP@HmSiO2-PEI	Core-Shell	Yes	0-46	0.16	2
UCNPs-aptamers-GNPs	Mixture	Yes	0.2-20	0.06	3
UCNP/ QDs	Composites	Yes	0.01-2.8	0.015	4
PMO@NaYF4: Yb ³⁺ , Er ³⁺	Composites;	No	0-214.6	24.4	This

Table S1. Comparison of various upconverison luminescence sensors for Hg²⁺detection

porous work			
	porous		work

Sensors	Measured media	Linear range (v/v)	Limit of detection (v/v)	Ref.
Lignin-derived red- emitting CDs	Ethanol	10-60%	0.36	5
MOF:Tb	Ethanol	0-11.76%	1.12%	6
FS@ZIF-9/Co-formate	Ethanol isopropanol	0-10%	0.43% 0.63%	7
Eu ³⁺ @UiO-66-NH ₂ -IM	Ethanol	0-2%	0.088%	8
PMO@NaYF4: Yb ³⁺ , Er ³⁺	Isopropanol n-butanol	0-0.75%	0.21% 0.18%	This work
PMO@NaYF4: Yb ³⁺ , Ho ³⁺	Ethanol	0-0.75%	0.29%	This work

Table S2. Comparison of various materials for determination of water content in organic solvents

References

- 1 C. Yang, Y. Li, N. Wu, Y. Zhang, W. Feng, M. Yu and Z. Li, *Sens. Actuators, B*, 2021, **326**, 128841.
- X. Ge, L. Sun, B. Ma, D. Jin, L. Dong, L. Shi, N. Li, H. Chen and W. Huang, *Nanoscale*, 2015, 7, 13877-13887.
- 3 Y. Liu, Q. Ouyang, H. Li, M. Chen, Z. Zhang and Q. Chen, *J. Agric. Food Chem.*, 2018, **66**, 6188-6195.
- 4 S. Cui, S. Xu, H. Song, W. Xu, X. Chen, D. Zhou, Z. Yin and W. Han, *RSC Adv.*, 2015, **5**, 99099-99106.
- 5 J. Wang, J. Wang, W. Xiao, Z. Geng, D. Tan, L. Wei, J. Li, L. Xue, X. Wang and J. Zhu, *Anal. Methods*, 2020, **12**, 3218-3224.
- 6 P. Majee, P. Daga, D. K. Singha, D. Saha, P. Mahata and S. K. Mondal, *J. Photochem. Photobiol.*, *A*, 2020, **402**, 112830.
- X. Zhao, M. Zheng, Y. Zhao, T. Wang, J. Li, Z. Xie, Y. Zhang, Z. Liu, X. Wang, Z. Gao and H.
 Huang, *Microporous Mesoporous Mater.*, 2019, **290**, 109624.
- 8 S.-Y. Zhu and B. Yan, *Ind. Eng. Chem. Res.*, 2018, **57**, 16564-16571.