SUPPORTING INFORMATION

> Activator-Free Single-Component Co(I)-Catalysts for Regio- and Enantioselective Heterodimerization and Hydroacylation Reactions of 1,3-Dienes. New Reduction Procedures for Synthesis of [L]Co(I)-Complexes and Comparison to in-situ Generated Catalysts

Mahesh M. Parsutkar, Curtis E. Moore, and T. V. RajanBabu*

Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OHIO 43210, USA

rajanbabu.1@osu.edu

Table of Contents

General Methods S4
Preparation of Organic Reductant via Reductive Silylation S5
Preparation of Cobalt(II)-Complexes S7
Preparation of Cobalt(I)-Complexes S7
Synthesis of [(dppp)(Cl)Co[μ-(dppp)]Co(Cl)(dppp)] (12) by using 1,4-bis(trimethylsilyl)-1,4- dihydropyrazine S7
Synthesis of [(dppp)(CI)Co[μ-(dppp)]Co(Cl)(dppp)] (12) by using Liz N S8
Synthesis of [(dppe)(Cl)Co[μ-(dppe)]Co(Cl)(dppe)] (13) S9
Synthesis of [(S,S)-(BDPP)(CI)Co[$\mu-[(\mathrm{S}, \mathrm{S})-(\mathrm{BDPP})]] \mathrm{Co}(\mathrm{Cl})(\mathrm{S}, \mathrm{S})-(\mathrm{BDPP})]$ (14) S10
Synthesis of $\left\{[(R, R) \text {-QuinoxP*]cobalt }(\mu-\mathrm{Br})\}_{2}\right.$ (18) S11
Synthesis of $\{[(\mathrm{S}, \mathrm{S})-\mathrm{Ph}-\mathrm{BPE}] \text { cobalt }(\mu-\mathrm{Br})\}_{2}(19)$ S12
Synthesis of $\left\{[(R, R) \text { - } \mathrm{Pr} \text {-DuPhos]cobalt }(\mu-\mathrm{Cl})\}_{2}(20)^{4}\right.$ S14
Synthesis of [bis(N-aryliminoethyl-kN,N')pyridine-кN]CoCl (22) S15
Attempts towards the synthesis of $\mathrm{Co}(0)$-Complexes S16
Preparation of Cationic Cobalt(I) Complexes S17
$\left\{\left[(R, R) \text {-QuinoxP]cobalt(} \eta^{6}-\mathrm{C}_{6} \mathrm{D}_{6}\right)\right\}^{+}[\text {BARF] }]^{-}(23)$ S17
UV-Vis Spectroscopy of the $\mathrm{Co}(\mathrm{II})$ and $\mathrm{Co}(\mathrm{I})$ complexes S19
Figure S1. UV-Vis Spectra of 18, 19, and 20; Each of them showing two characteristic peaks in visible region (which are the characteristic for d^{8} system) S19
Figure S2. UV-Vis Spectra for relative rate of reduction; This study clearly shows that 11a is much better reductant as compared to Zn S20
Figure S3. Sensitivity of the $\mathrm{Co}(\mathrm{I})$ complexes to oxidation. UV-Vis spectra of 22 while expose to air S20
Table S1. Effect of counter ion on the rate of heterodimerization: The striking activator effect: ZnBr_{2} vs NaBARF S21
General procedures for catalytic reactions S22
Procedure A1. Typical procedure for checking the viability of reducing agents via hydrovinylation of linear diene [(E)-1,3-nonadiene] S22
Table S2: Optimization of unconventional reducing agents via $\mathrm{Co}(\mathrm{I})$-catalyzed hydrovinylation of diene S23
Procedure A2. Typical procedure for using lithium nitride as a reductant for $\mathrm{Co}(\mathrm{II})$ in heterodimerization of 1,3-diene and methyl acrylate S23
Table S3: Optimization of reaction conditions for heterodimerization of diene and methyl acrylate: $\mathrm{Li}_{3} \mathrm{~N}$ as a reducing agent S24
Procedure A3. Typical procedure for in situ generation of metal complex for heterodimerization S24
Procedure A4. Typical procedure for heterodimerization of linear diene with methyl acrylate S25
B1. Typical procedure for hydrovinylation of linear diene using isolated $\mathrm{Co}(\mathrm{I})$ complex 12. , 7,8 S26
Figure S4: Hydrovinylation of linear diene using isolated $\mathrm{Co}(\mathrm{I})$ complex 12 S26
Procedure B2. Use of isolated $\mathrm{Co}(\mathrm{I})$ complex (18) for heterodimerization of linear diene with methyl acrylate S27
Procedure B3. Use of isolated \{[(R,R)-QuinoxP]Co(I)($\left.\left.\eta^{6}-\mathrm{C}_{6} \mathrm{D}_{6}\right)\right\}+[B A R F]-(23)$ for heterodimerization of linear diene with methyl acrylate S28
Procedure C. Use of isolated $\left\{[(\mathrm{R}, \mathrm{R})\right.$-iPr-DuPhos $] \mathrm{Co}(\mathrm{I})-\eta^{4}$-(2,3-dimethylbutadiene)) $\}+$ [BARF]- (25) for hydroacylation of isoprene/2-siloxy 1,3-diene S29
Table S4. Activator-free, single-component (entries 1 and 5) and in situ generated [Co $\left.{ }^{\prime}\right]^{+}-$ catalysts for hydroacylation of isoprene and 2-trimethylsilyloxy-1,3-butadiene ${ }^{\text {a }}$ S30
Procedure D1. Use of isolated $\left\{[(\mathrm{R}, \mathrm{R})\right.$-iPr-DuPhos $] \mathrm{Co}(\mathrm{I})-\eta^{4}$-(2,3-dimethylbutadiene)) \}+ [BARF]- (25) for hydroboration of 2,3-dimethylbuta-1,3-diene S31
Procedure D2. Use of in-situ generated $\mathrm{Co}(\mathrm{I})$ complex for hydroboration of 2,3-dimethylbuta- 1,3-diene S31
Table S5: Catalytic activity of single-component catalyst \{[(R,R)-Pr-DuPhos]cobalt- $\eta^{4}-(2,3-$ dimethylbutadiene)) $\}^{+}[B A R F]^{-}(25)$ in an asymmetric hydroboration reaction ${ }^{\text {a }}$ S33
References S33
X-Ray Crystallographic Analysis of Single-State Crystal Structures of Neutral Co(I)-Complexes and Cationic $\mathrm{Co}(\mathrm{I})$-Complexes S34
Table S6 for [(dppp)(Cl)Co[μ-(dppp)]Co(Cl)(dppp)] (12) S35
Table S7 for [(dppe)(Cl)Co[μ-(dppe)]Co(Cl)(dppe)] (13) S39
Table S8 for $\{[(R, R) \text {-QuinoxP* }] \operatorname{cobalt}(\mathrm{I})(\mu-\mathrm{Br})\}_{2}(18)$ S43
Table S9 for $\{[(S, S)-\mathrm{Ph}-\mathrm{BPE}] \text { cobalt(I) }(\mu-\mathrm{Br})\}_{2}$ (19) S47
Table S10 for [bis(N-aryliminoethyl- $\kappa \mathrm{N}, \mathrm{N}$ ')pyridine-к N$] \mathrm{CoCl}$ (22) S51
Table S11 for $\left\{\left[(R, R) \text {-QuinoxP]cobalt(I)(} \eta^{6}-\mathrm{C}_{6} \mathrm{D}_{6}\right)\right\}^{+}[\mathrm{BArF}]^{-}$(23) S55
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMRs of key compounds S56
GC and CSP-GC traces for catalytic reactions S75

General Methods

All manipulations of moisture- and oxygen-sensitive materials were conducted using standard Schlenk technique under an argon atmosphere or in a glovebox under nitrogen atmosphere maintained at $<5 \mathrm{ppm} \mathrm{O}_{2}$. The Schlenk line was equipped with a vacuum pump maintained between 0.2 - and $0.01-\mathrm{mm} \mathrm{Hg}$ for all evacuation and drying of air sensitive compounds. All glassware was cleaned by soaking in a base bath overnight, rinsing with water, then soaking in an acid bath (1 h), then water again and finally acetone, then dried in an oven kept at $160^{\circ} \mathrm{C}$ overnight. Glass vials used for reactions were purchased from VWR ($8 \mathrm{~mL}, 17 \mathrm{x}$ 60 mm [O.D. $\times \mathrm{H}$), screw-thread sample vials, PTFE-faced silicone septa), the caps were dried in a desiccator overnight while the vials were dried in an oven at $140{ }^{\circ} \mathrm{C}$ for 24 h before transferring into the glovebox. Gas chromatographic analysis of reaction mixtures was done on an Agilent 6850 Network G.C. equipped with an HP-1 methyl siloxane column ($30 \mathrm{~m}, 0.32 \mathrm{~mm}$ I.D, $0.25 \mu \mathrm{~m}), \mathrm{H}_{2}$ carrier gas, FID at $300^{\circ} \mathrm{C}$ or an HP 5890 GC equipped with HP-5MS column ($30 \mathrm{~m}, 0.32 \mathrm{~mm}$ I.D, $0.25 \mu \mathrm{~m}$) and hydrogen as carrier gas with FID-detector at $250{ }^{\circ} \mathrm{C}$. GCMSD analysis was performed on a 6850 GC-5975 MSD equipped with an El-ionizer. Enantiomeric ratios of chiral compounds were determined by chiral gas chromatographic analyses which were performed on an Agilent 7850 A equipped with a cyclosil-B column, hydrogen carrier gas, using an FID detector at $250^{\circ} \mathrm{C}$. Proton, fluorine, and phosphorous nuclear magnetic resonance spectra (${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR) were recorded on a Bruker Avance III HD Ascend 600 MHz or 400 MHz . Solvent resonance was used as internal standard (${ }^{1} \mathrm{H}$ $\mathrm{NMR}, \mathrm{CDCl}_{3}$ at $7.26 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}$ at $7.16 \mathrm{ppm},{ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}$ at $77.16 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}$ at 128.06 ppm). Solution state effective magnetic moment was obtained by Evans method (sealed capillary half-filled with $2 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was inserted in NMR-tube and ${ }^{1} \mathrm{H}$ NMR spectrum of given complex was recorded in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$).

Methylene chloride was distilled over CaH_{2} and stored in the glovebox over activated $4 \AA$ molecular sieves or used for reactions out of the box when freshly distilled. $\mathrm{Et}_{2} \mathrm{O}, \mathrm{THF}$, and hexanes were distilled and stored over molecular sieves for prolonged used in the glovebox. Activated zinc dust was prepared by washing with dilute aqueous $\mathrm{HCl}(1-2 \mathrm{~N})$, washing with distil water several times, and finally with copious amounts of acetone and the resulting solid transferred into a Schlenk flask and all volatiles removed under vacuum. The solid was further dried under vacuum at ca. $90^{\circ} \mathrm{C}$ for at least 12 h , then allowed to cool to ambient temperature and transferred into the glovebox. Zinc dust for reactions were prepared by taking chunks of activated zinc and making a powder using a mortar and pistil inside the box. Sodium tetrakis[3,5 bis(trifluoromethyl)phenyl]borate (NaBARF) was prepared using reported procedure. ${ }^{1}$ All the ligands were obtained from commercial sources.

The single crystal X-ray diffraction studies were carried out on a Nonius Kappa diffractometer equipped with a Bruker APEX-II CCD and Mo K_{α} radiation ($\lambda=0.71073 \AA$). A desired single crystal suitable for X-ray diffraction were coated with polytoluene oil in a glovebox and was then quickly transferred and mounted on a MiTeGen Micromount with CHRISTO-LUBE MCG 1024 oil. Data were collected in a nitrogen gas stream at $100(2) \mathrm{K}$ using ϕ and ϖ scans. The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model consistent with the proposed structure.

Preparation of Organic Reductant via Reductive Silylation

All reducing agents were synthesized from commercially available starting materials by reported methods with some modification. ${ }^{2}$

1,4-Bis(trimethylsilyl)-1,4-dihydropyrazine (11a)

At $0^{\circ} \mathrm{C}$, solution of Pyrazine ($5 \mathrm{~g}, 62.5 \mathrm{mmol}$) in THF (20 mL) was added dropwise to a mixture of Li (3 equiv., $187.5 \mathrm{mmol}, 1.3 \mathrm{~g}$), TMSCI (3 equiv., $187.5 \mathrm{mmol}, 24.8 \mathrm{~mL}$) and THF $(20 \mathrm{~mL})$ over a period of 1 h . The resulting mixture allowed to come to room temperature and was stirred for 24 h at rt . Upon completion of reaction, the unreacted Li and precipitated LiCl were filtered off under inert atmosphere inside N_{2}-filled the glovebox. The filtrate was evacuated under high vacuum and solid yellow residue was recrystallized from diethyl ether at $-35{ }^{\circ} \mathrm{C}$ to obtain the pure titled compound as yellow needles (11.6 g, 82\% yield).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 4.70(\mathrm{~s}, 4 \mathrm{H}),-0.03(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 115.5$ $(4 x C),-1.7(6 x C)$.

2,3,5,6-Tetramethyl-1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (11b)

At $0^{\circ} \mathrm{C}$, a solution of 2,3,5,6-tetramethylpyrazine ($1 \mathrm{~g}, 7.34 \mathrm{mmol}$) in THF (10 mL) was added dropwise to a mixture of $\mathrm{K}(0.86 \mathrm{~g}, 22 \mathrm{mmol})$, TMSCI (3 equiv., $22 \mathrm{mmol}, 2.8 \mathrm{~mL}$) and THF (10 mL) over a period of 30 min . The resulting mixture allowed to come to room temperature and was stirred for 24 h at rt . Upon completion of reaction, the unreacted K and precipitated KCl were filtered off under inert atmosphere inside N_{2}-filled the glovebox. The filtrate was evacuated
under high vacuum and solid residue was sublimed by using bulb-to-bulb distillation set up under reduced pressure to afford pure titled compound as a white solid ($1.5 \mathrm{~g}, 72 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 1.69$ (s, 12H), 0.23 (s, 18H); ${ }^{13} \mathrm{C}$ NMR (150 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 127.0$ ($4 x C$), 19.1 ($4 x C$), 1.8 ($6 x C$).

Preparation of Cobalt(II)-Complexes

All cobalt(II)-complexes were prepared by following our previously reported procedures: ${ }^{3}$ in the glovebox, anhydrous $\mathrm{CoX}_{2}(0.95 \mathrm{eq})$ was dissolved in dry distilled THF. In another flask, the ligand (1.0 eq) was dissolved in dry distilled THF and added slowly to a stirring solution of the CoX ${ }_{2}$. After the addition, the resultant mixture was stirred overnight (18-24 h), after which the complex may be precipitated. Stirring was stopped and hexanes added to the mixture, shaken thoroughly, and allowed to sit for $\sim 10 \mathrm{~min}$. The supernatant was decanted, and the resultant precipitate washed with diethyl ether until the supernatant was almost colorless. Solvent was stripped and the solid dried under high vacuum $(\sim 0.1 \mathrm{~mm} \mathrm{Hg})$ for 12 to 24 h to afford desired complex.

Preparation of Cobalt(I)-Complexes

Synthesis of [(dppp)(Cl)Co[μ-(dppp)]Co(CI)(dppp)] (12) by using 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine

In the glovebox, a $25-\mathrm{mL}$ Schlenk flask was charged with a magnetic stir bar, anhydrous CoCl_{2} (200 mg, $1.54 \mathrm{mmol}, 1$ equiv.) and dry freshly distilled THF (0.5 M). The resulting mixture was stirred until all the CoCl_{2} dissolved to afford a homogenous solution. In another flask, the ligand, dppp ($992 \mathrm{mg}, 2.38 \mathrm{mmol}, 1.55$ equiv.) was dissolved in dry distilled THF (0.5 M) and added slowly to a stirring solution of the CoCl_{2}. After
the addition, the resultant blue mixture was stirred for 15 minutes followed by the addition of 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine ($696 \mathrm{mg}, 3.08 \mathrm{mmol}, 2$ equiv.). Upon which the color changed from blue to green. The resulting green solution stirred overnight. Stirring was stopped and solvent was stripped, washed with hexanes (1-2 mL), and the solid dried under high vacuum ($\sim 0.1 \mathrm{~mm} \mathrm{Hg}$) for $2-3 \mathrm{~h}$ to afford desired crude complex. The crude complex thus obtained was then dissolved in minimum amount of THF and filtered inside the glovebox. To the filtrate was then diffused hexanes (by slow evaporation of hexane into a THF solution placed in an atmosphere of hexane) to afford the green crystals ($958 \mathrm{mg}, 87 \%$ yield). The green crystal was then characterized by X-ray Crystallography (CCDC \# 1873380). Solution state effective magnetic moment $\mu_{\text {eff }}(298 \mathrm{~K})=4.57$ B.M.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 17.54\left(\Delta_{1 / 2}=94 \mathrm{~Hz}\right), 15.47\left(\Delta_{1 / 2}=11 \mathrm{~Hz}\right), 14.93\left(\Delta_{1 / 2}=154 \mathrm{~Hz}\right)$, $14.46\left(\Delta_{1 / 2}=120 \mathrm{~Hz}\right), 11.15\left(\Delta_{1 / 2}=75 \mathrm{~Hz}\right), 10.16\left(\Delta_{1 / 2}=149 \mathrm{~Hz}\right), 7.49\left(\Delta_{1 / 2}=87 \mathrm{~Hz}\right), 7.41\left(\Delta_{1 / 2}=\right.$ $69 \mathrm{~Hz})$, $3.68\left(\Delta_{1 / 2}=22 \mathrm{~Hz}\right), 3.28\left(\Delta_{1 / 2}=54 \mathrm{~Hz}\right), 2.79\left(\Delta_{1 / 2}=34 \mathrm{~Hz}\right)$, $2.43\left(\Delta_{1 / 2}=80 \mathrm{~Hz}\right), 1.82\left(\Delta_{1 / 2}\right.$ $=22 \mathrm{~Hz}), 1.27\left(\Delta_{1 / 2}=74 \mathrm{~Hz}\right), 0.13\left(\Delta_{1 / 2}=29 \mathrm{~Hz}\right), 0.09\left(\Delta_{1 / 2}=20 \mathrm{~Hz}\right),-3.94\left(\Delta_{1 / 2}=111 \mathrm{~Hz}\right),-4.95$ $\left(\Delta_{1 / 2}=56 \mathrm{~Hz}\right),-18.70\left(\Delta_{1 / 2}=6 \mathrm{~Hz}\right)$.

Synthesis of [(dppp)(CI)Co[μ-(dppp)]Co(Cl)(dppp)] (12) by using $\mathrm{Li}_{3} \mathrm{~N}$

By following the same procedure as above with modification of reducing agent, it is prepared as follows:

In the glovebox, a $25-\mathrm{mL}$ Schlenk flask was charged with a magnetic stir bar, anhydrous CoCl_{2} ($100 \mathrm{mg}, 0.77 \mathrm{mmol}, 1$ equiv.) and dry freshly distilled THF (0.5 M). The resulting mixture was stirred until all the CoCl_{2} dissolved to afford a homogenous solution. In another flask, the ligand, dppp (496mg, $1.19 \mathrm{mmol}, 1.55$
equiv.) was dissolved in dry distilled THF (0.5 M) and added slowly to a stirring solution of the CoCl_{2}. After the addition, the resultant blue mixture was stirred for 15 minutes followed by the addition of $\mathrm{Li}_{3} \mathrm{~N}$ ($14 \mathrm{mg}, 0.4 \mathrm{mmol}, 0.52$ equiv.), upon which the color changed from blue to green. The resulting green solution stirred overnight. Stirring was stopped and mixture was filtered out with fret funnel over celite. The resulting filtrate was stripped, washed with hexanes (1-2 mL), and the solid dried under high vacuum $(\sim 0.1 \mathrm{~mm} \mathrm{Hg})$ for 2-3 h to afford desired crude complex (545 mg, 77\% yield). Some portion of the crude complex was then dissolved in minimum amount of THF and filtered inside the glovebox. To the filtrate was then diffused hexanes (by slow evaporation of hexane into a THF solution placed in an atmosphere of hexane) to afford the green crystals. The green crystal was then characterized by X-ray Crystallography. This crystal structure has been previously reported by our group. ${ }^{3}$

The crystal was an olive-green rectangular rod. All work was done at 150 K . The initial unit cell was determined to be primitive triclinic with cell constants of $a=21.25$ Ang., $b=21.49, c=$ 23.69, alpha $=66.38$ deg., beta $=65.92$ deg., and gamma $=71.77$ deg. Since this cell matches that for our previously determined structure of the same compound (CCDC \# 1873380), no data collection was done.

Synthesis of [(dppe)(CI)Co[μ-(dppe)]Co(Cl)(dppe)] (13)

In the glovebox, a 20-mL scintillation vial was charged with a magnetic stir bar, anhydrous CoCl_{2} ($31 \mathrm{mg}, 0.24 \mathrm{mmol}, 1$ equiv.) and dry freshly distilled THF
 (1 mL). The resulting mixture was stirred until all the CoCl_{2} dissolved to afford a homogenous solution. In another vial, the ligand, dppe ($147 \mathrm{mg}, 0.37 \mathrm{mmol}, 1.55$ equiv.) was dissolved in dry distilled THF (3 mL) and added slowly to a stirring solution of the CoCl_{2}. After the addition, the resultant mixture was stirred for 15 minutes followed by the addition of 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (107
$\mathrm{mg}, 0.48 \mathrm{mmol}, 2$ equiv.) upon which the color changed from green to brownish yellow. The resulting brownish yellow solution stirred for 6 h . Stirring was stopped, solvent was stripped, washed with hexanes ($1-2 \mathrm{~mL}$), and the solid dried under high vacuum ($\sim 0.1 \mathrm{~mm} \mathrm{Hg}$) for 2-3 h to afford desired crude complex (crude 80\% yield). The crude complex thus obtained was then dissolved in minimum amount of THF and filtered inside the glovebox. To the filtrate was then diffused hexanes (by slow evaporation of hexane into a THF solution placed in an atmosphere of hexane) to afford the yellowish green crystals ($79 \mathrm{mg}, 48 \%$ yield). The green crystal was then characterized by X-ray Crystallography (CCDC \# 1966496). Solution state effective magnetic moment $\mu_{\text {eff }}(301 \mathrm{~K})=3.46$ B.M.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 13.76\left(\Delta_{1 / 2}=122 \mathrm{~Hz}\right), 11.75\left(\Delta_{1 / 2}=141 \mathrm{~Hz}\right), 10.53\left(\Delta_{1 / 2}=260\right.$ $\mathrm{Hz})$, $3.27\left(\Delta_{1 / 2}=145 \mathrm{~Hz}\right), 2.20\left(\Delta_{1 / 2}=164 \mathrm{~Hz}\right), 1.41\left(\Delta_{1 / 2}=65 \mathrm{~Hz}\right), 0.91\left(\Delta_{1 / 2}=130 \mathrm{~Hz}\right),-4.22$ $\left(\Delta_{1 / 2}=187 \mathrm{~Hz}\right),-5.61\left(\Delta_{1 / 2}=11 \mathrm{~Hz}\right)$.

Synthesis of [(S,S)-(BDPP)(CI)Co[$\mu-[(\mathrm{S}, \mathrm{S})-(\mathrm{BDPP})]] \mathrm{Co(CI)(S,S)-(BDPP)]} \mathrm{(14)}$

In the glovebox, a $20-\mathrm{mL}$ scintillation vial was charged with a magnetic stir bar, anhydrous CoCl_{2} ($50 \mathrm{mg}, 0.38 \mathrm{mmol}, 1$ equiv) and dry freshly distilled THF (0.5 M). The resulting mixture was stirred until all the CoCl_{2} dissolved to afford a homogenous solution. In another vial, the ligand, (S, S)-BDPP ($263 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.55$ equiv.) was dissolved in dry distilled THF (0.5 M) and added slowly to a stirring solution of the CoCl_{2}. After the addition, the resultant blue mixture was stirred for 15 minutes followed by the addition of 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine ($174 \mathrm{mg}, 0.77 \mathrm{mmol}, 2$ equiv.). Upon which the color changed from blue to green. The resulting green solution stirred overnight. Stirring
was stopped, solvent was stripped, washed with hexanes ($1-2 \mathrm{~mL}$), and the solid dried under high vacuum $(\sim 0.1 \mathrm{~mm} \mathrm{Hg})$ for 2-3 h to afford desired crude complex ($244 \mathrm{mg}, 84 \%$ yield). The crude complex thus obtained was then dissolved in minimum amount of THF and filtered inside the glovebox. To the filtrate was then diffused hexanes (by slow evaporation of hexane into a THF solution placed in an atmosphere of hexane) to afford the green crystals ($160 \mathrm{mg}, 55 \%$ yield). The green crystal was then characterized by X-ray Crystallography. This crystal structure has been previously reported by our group. ${ }^{3}$ Solution state effective magnetic moment $\mu_{\text {eff }}$ (301 $\mathrm{K})=5.25 \mathrm{~B} . \mathrm{M}$.
${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 17.55\left(\Delta_{1 / 2}=62 \mathrm{~Hz}\right), 14.13\left(\Delta_{1 / 2}=84 \mathrm{~Hz}\right), 10.74\left(\Delta_{1 / 2}=6 \mathrm{~Hz}\right), 9.93$ $\left(\Delta_{1 / 2}=31 \mathrm{~Hz}\right), 7.82\left(\Delta_{1 / 2}=73 \mathrm{~Hz}\right), 7.76\left(\Delta_{1 / 2}=27 \mathrm{~Hz}\right), 7.47\left(\Delta_{1 / 2}=25 \mathrm{~Hz}\right), 7.39\left(\Delta_{1 / 2}=44 \mathrm{~Hz}\right)$, $6.72\left(\Delta_{1 / 2}=67 \mathrm{~Hz}\right), 6.40\left(\Delta_{1 / 2}=27 \mathrm{~Hz}\right), 6.21\left(\Delta_{1 / 2}=62 \mathrm{~Hz}\right), 3.57\left(\Delta_{1 / 2}=24 \mathrm{~Hz}\right), 3.42\left(\Delta_{1 / 2}=80\right.$ $\mathrm{Hz})$, $3.08\left(\Delta_{1 / 2}=53 \mathrm{~Hz}\right)$, $2.99\left(\Delta_{1 / 2}=36 \mathrm{~Hz}\right)$, $2.91\left(\Delta_{1 / 2}=13 \mathrm{~Hz}\right), 1.91\left(\Delta_{1 / 2}=24 \mathrm{~Hz}\right)$, $1.41\left(\Delta_{1 / 2}=\right.$ $25 \mathrm{~Hz}), 1.22\left(\Delta_{1 / 2}=78 \mathrm{~Hz}\right), 1.03\left(\Delta_{1 / 2}=76 \mathrm{~Hz}\right), 0.95\left(\Delta_{1 / 2}=40 \mathrm{~Hz}\right), 0.89\left(\Delta_{1 / 2}=51 \mathrm{~Hz}\right), 0.12\left(\Delta_{1 / 2}\right.$ $=51 \mathrm{~Hz}),-2.10\left(\Delta_{1 / 2}=4 \mathrm{~Hz}\right),-4.23\left(\Delta_{1 / 2}=6 \mathrm{~Hz}\right),-7.60\left(\Delta_{1 / 2}=4 \mathrm{~Hz}\right),-11.84\left(\Delta_{1 / 2}=4 \mathrm{~Hz}\right),-17.07$ $\left(\Delta_{1 / 2}=9 \mathrm{~Hz}\right),-17.29\left(\Delta_{1 / 2}=4 \mathrm{~Hz}\right)$.

Synthesis of $\left\{[(R, R) \text {-QuinoxP*]cobalt }(\mu-B r)\}_{2}(18)\right.$

In the glovebox, a 20 mL scintillation vial
 was charged with a magnetic stir bar, anhydrous CoBr_{2} ($50 \mathrm{mg}, 0.145 \mathrm{mmol}, 1$ equiv.) and dry freshly distilled THF (3 mL). The resulting mixture was stirred until all the CoBr_{2} dissolved to afford a homogenous solution. In another vial, the ligand, R-QuinoxP* ($50 \mathrm{mg}, 0.145 \mathrm{mmol}, 1.0$ equiv.) was dissolved in dry distilled THF (2 mL) and added slowly to a stirring solution of the CoBr_{2}.

After the addition, the resultant green mixture was stirred for 3 h followed by the addition of 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine ($33 \mathrm{mg}, 0.145 \mathrm{mmol}, 1$ equiv.). Upon which the color changed from green to deep green. The resulting green solution stirred overnight. Stirring was stopped and solvent was stripped and the solid dried under high vacuum ($\sim 0.1 \mathrm{~mm} \mathrm{Hg}$) for 2 to 3 h to afford desired crude complex (65 mg , crude yield 95%). The crude complex thus obtained was then dissolved in minimum amount of hexanes and filtered inside the glovebox. The filtrate was kept at $-25^{\circ} \mathrm{C}$ overnight to afford the green crystals ($55 \mathrm{mg}, 80 \%$ yield). The green crystal was then characterized by X-ray Crystallography (CCDC \# 1966498). Solution state effective magnetic moment $\mu_{\text {eff }}(301 \mathrm{~K})=4.70$ B.M.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 26.25\left(\Delta_{1 / 2}=73 \mathrm{~Hz}\right)$, $9.71\left(\Delta_{1 / 2}=13 \mathrm{~Hz}\right), 8.84\left(\Delta_{1 / 2}=11 \mathrm{~Hz}\right)$, 3.04 $\left(\Delta_{1 / 2}=67 \mathrm{~Hz}\right), 0.29\left(\Delta_{1 / 2}=3 \mathrm{~Hz}\right), 0.12\left(\Delta_{1 / 2}=33 \mathrm{~Hz}\right), 0.04\left(\Delta_{1 / 2}=4 \mathrm{~Hz}\right)$.

Synthesis of $\{[(\mathrm{S}, \mathrm{S})-\mathrm{Ph}-\mathrm{BPE}] \text { cobalt }(\mu-\mathrm{Br})\}_{2}(19)$

Method A, in situ generation of the precursor Co(II) complex: In the glovebox, a 20 mL
 scintillation vial was charged with a magnetic stir bar, anhydrous CoBr_{2} ($44 \mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.) and dry freshly distilled THF (2 mL). The resulting mixture was stirred until all the CoBr_{2} dissolved to afford a homogenous solution. In another vial, the ligand, $(S, S)-\mathrm{Ph}-\mathrm{BPE}(106 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.05$ equiv.) was dissolved in dry distilled THF (3 mL) and added slowly to a stirring solution of the CoBr_{2}. After the addition, the resultant purple mixture was stirred for 2 h followed by the addition of 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine ($45.3 \mathrm{mg}, 0.2 \mathrm{mmol}$, 1 equiv.). Upon which the color changed from purple to green. The resulting bluish green solution stirred overnight.

Stirring was stopped and solvent was stripped, washed with hexanes ($3-4 \mathrm{~mL}$), and the solid dried under high vacuum ($\sim 0.1 \mathrm{~mm} \mathrm{Hg}$) for 2 to 3 h to afford desired crude complex (132 mg , yield 94%). The crude complex thus obtained was then dissolved in minimum amount of THF and filtered inside the glovebox. To the filtrate was then diffused hexanes (by slow evaporation of hexane into a THF solution placed in an atmosphere of hexane) to afford the green crystals. The green crystal was then characterized by X-ray Crystallography (CCDC \# 1966499).

Method B, Use of isolated Co(II) precursor: In the glovebox, a 20 mL scintillation vial was charged with a magnetic stir bar, isolated (Ph-BPE) $\mathrm{CoBr}_{2}(15 \mathrm{mg}, 0.021 \mathrm{mmol}, 1$ equiv.) and dry freshly distilled THF (1 mL). To the resultant solution, 1,4-bis(trimethylsilyl)-1,4dihydropyrazine ($13 \mathrm{mg}, 0.058 \mathrm{mmol}$, 2 equiv.) was added, upon which the color changed from purple to green. The resulting bluish green solution stirred overnight. Stirring was stopped and solvent was stripped, washed with hexanes (1 mL), and the solid dried under high vacuum (~ 0.1 mm Hg) for 2 to 3 h to afford desired crude complex (crude yield 91%). The crude complex thus obtained was then dissolved in minimum amount of THF and filtered inside the glovebox. To the filtrate was then diffused hexanes (by slow evaporation of hexane into a THF solution placed in an atmosphere of hexane) to afford the green crystals ($7.9 \mathrm{mg}, 52 \%$ yield). Solution state effective magnetic moment $\mu_{\text {eff }}(301 \mathrm{~K})=3.85$ B.M.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 67.86\left(\Delta_{1 / 2}=33 \mathrm{~Hz}\right), 51.61\left(\Delta_{1 / 2}=6 \mathrm{~Hz}\right), 10.83\left(\Delta_{1 / 2}=107 \mathrm{~Hz}\right), 8.99$ $\left(\Delta_{1 / 2}=4 \mathrm{~Hz}\right), 7.35\left(\Delta_{1 / 2}=22 \mathrm{~Hz}\right), 7.25\left(\Delta_{1 / 2}=36 \mathrm{~Hz}\right), 7.10\left(\Delta_{1 / 2}=36 \mathrm{~Hz}\right), 7.00\left(\Delta_{1 / 2}=47 \mathrm{~Hz}\right)$, $6.91\left(\Delta_{1 / 2}=49 \mathrm{~Hz}\right), 4.71\left(\Delta_{1 / 2}=113 \mathrm{~Hz}\right), 4.45\left(\Delta_{1 / 2}=6 \mathrm{~Hz}\right), 3.67\left(\Delta_{1 / 2}=33 \mathrm{~Hz}\right), 3.57\left(\Delta_{1 / 2}=24 \mathrm{~Hz}\right)$, $3.33\left(\Delta_{1 / 2}=24 \mathrm{~Hz}\right), 3.32\left(\Delta_{1 / 2}=7 \mathrm{~Hz}\right), 3.23\left(\Delta_{1 / 2}=58 \mathrm{~Hz}\right), 3.00\left(\Delta_{1 / 2}=13 \mathrm{~Hz}\right), 2.99\left(\Delta_{1 / 2}=9 \mathrm{~Hz}\right)$, $2.98\left(\Delta_{1 / 2}=22 \mathrm{~Hz}\right), 2.69\left(\Delta_{1 / 2}=49 \mathrm{~Hz}\right), 2.10\left(\Delta_{1 / 2}=60 \mathrm{~Hz}\right), 1.90\left(\Delta_{1 / 2}=67 \mathrm{~Hz}\right), 1.76\left(\Delta_{1 / 2}=44 \mathrm{~Hz}\right)$, $1.66\left(\Delta_{1 / 2}=7 \mathrm{~Hz}\right), 1.65\left(\Delta_{1 / 2}=9 \mathrm{~Hz}\right), 1.64\left(\Delta_{1 / 2}=7 \mathrm{~Hz}\right), 1.54\left(\Delta_{1 / 2}=82 \mathrm{~Hz}\right), 1.42\left(\Delta_{1 / 2}=29 \mathrm{~Hz}\right)$, $1.26\left(\Delta_{1 / 2}=7 \mathrm{~Hz}\right)$.

Synthesis of $\left\{\left[(R, R)-{ }^{-} \text {Pr-DuPhos }\right] \text { cobalt }(\mu-\mathrm{Cl})\right\}_{2}(20)^{4}$

In the glovebox, a 20 mL scintillation vial was
 charged with a magnetic stir bar, anhydrous CoCl_{2} ($75 \mathrm{mg}, 0.58 \mathrm{mmol}, 1$ equiv.) and dry freshly distilled THF (5 mL). The resulting mixture was stirred until all the CoCl_{2} dissolved to afford a homogenous solution. In another vial, the ligand, 'Pr-DuPhos ($250 \mathrm{mg}, 0.58 \mathrm{mmol}, 1.0$ equiv.) was dissolved in dry distilled THF (3 mL) and added slowly to a stirring solution of the CoCl_{2}. After the addition, the resultant green mixture was stirred for 2 h followed by the addition of 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine ($131 \mathrm{mg}, 0.58 \mathrm{mmol}, 1$ equiv.), upon which the color changed from green to brownish orange. The resulting brown orange solution stirred overnight. Stirring was stopped, solvent was stripped, and the solid dried under high vacuum ($\sim 0.1 \mathrm{~mm} \mathrm{Hg}$) for 2 to 3 h to afford desired crude complex ($280 \mathrm{mg}, 94 \%$ yield). The crude complex thus obtained was then dissolved in minimum amount of diethyl ether and filtered inside the glovebox. The filtrate was kept at $-25^{\circ} \mathrm{C}$ overnight to afford the brown crystals ($256 \mathrm{mg}, 86 \%$ yield). The brown crystal was then characterized by X-ray Crystallography. Solution state effective magnetic moment $\mu_{\text {eff }}(301 \mathrm{~K})=3.93$ B.M. This crystal structure has been reported in the literature by Chirik et al. ${ }^{4}$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 66.30\left(\Delta_{1 / 2}=38 \mathrm{~Hz}\right), 57.24\left(\Delta_{1 / 2}=51 \mathrm{~Hz}\right)$, $14.10\left(\Delta_{1 / 2}=18 \mathrm{~Hz}\right)$, $9.19\left(\Delta_{1 / 2}=24 \mathrm{~Hz}\right), 9.06\left(\Delta_{1 / 2}=9 \mathrm{~Hz}\right), 2.35\left(\Delta_{1 / 2}=31 \mathrm{~Hz}\right),, 1.02\left(\Delta_{1 / 2}=25 \mathrm{~Hz}\right), 0.90\left(\Delta_{1 / 2}=11 \mathrm{~Hz}\right)$, $0.73\left(\Delta_{1 / 2}=18 \mathrm{~Hz}\right), 0.72\left(\Delta_{1 / 2}=35 \mathrm{~Hz}\right), 0.59\left(\Delta_{1 / 2}=53 \mathrm{~Hz}\right),-1.04\left(\Delta_{1 / 2}=44 \mathrm{~Hz}\right),-1.53\left(\Delta_{1 / 2}=25\right.$ $\mathrm{Hz}),,-2.69\left(\Delta_{1 / 2}=45 \mathrm{~Hz}\right),-3.96\left(\Delta_{1 / 2}=45 \mathrm{~Hz}\right)$

NMR matches with the complex reported by Chirik et al. ${ }^{4}$

Synthesis of [bis(N-aryliminoethyl-kN,N')pyridine-kN]CoCI (22)

In the glovebox, a 20 mL scintillation vial was charged with
 a magnetic stir bar, isolated $\mathrm{Bis}($ imino $)$ pyridyl CoCl_{2} (150 $\mathrm{mg}, 0.24 \mathrm{mmol}, 1$ equiv.) and dry freshly distilled THF (3 mL). To the resultant yellow solution, 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine ($30 \mathrm{mg}, 0.132 \mathrm{mmol}$, 0.55 equiv) was added. Upon which the color changed from yellow to purple. The resulting purple solution stirred for 3 hr . Stirring was stopped and solvent was stripped, washed with hexanes ($1-2 \mathrm{~mL}$), and the solid dried under high vacuum ($\sim 0.1 \mathrm{~mm} \mathrm{Hg}$) for 2 to 3 h to afford desired crude complex ($133 \mathrm{mg}, 94 \%$ yield). The crude complex thus obtained was then dissolved in minimum amount of THF and filtered inside the glovebox. To the filtrate was then diffused hexanes (by slow evaporation of hexane into a THF solution placed in an atmosphere of hexane) and kept at $-25^{\circ} \mathrm{C}$ overnight to afford the purple crystals ($115 \mathrm{mg}, 81 \%$ yield). The purple crystal was then characterized by X-ray Crystallography (CCDC \# 1966500).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 9.56\left(\Delta_{1 / 2}=27 \mathrm{~Hz}\right), 8.49\left(\Delta_{1 / 2}=33 \mathrm{~Hz}\right), 8.43\left(\Delta_{1 / 2}=49 \mathrm{~Hz}\right)$, $7.44\left(\Delta_{1 / 2}=25 \mathrm{~Hz}\right), 7.30\left(\Delta_{1 / 2}=22 \mathrm{~Hz}\right), 7.15\left(\Delta_{1 / 2}=13 \mathrm{~Hz}\right), 6.93\left(\Delta_{1 / 2}=20 \mathrm{~Hz}\right), 3.56\left(\Delta_{1 / 2}=25 \mathrm{~Hz}\right)$, $3.35\left(\Delta_{1 / 2}=29 \mathrm{~Hz}\right), 2.91\left(\Delta_{1 / 2}=34 \mathrm{~Hz}\right), 2.27\left(\Delta_{1 / 2}=49 \mathrm{~Hz}\right), 1.41\left(\Delta_{1 / 2}=24 \mathrm{~Hz}\right), 1.19\left(\Delta_{1 / 2}=20 \mathrm{~Hz}\right)$, $1.08\left(\Delta_{1 / 2}=20 \mathrm{~Hz}\right), 0.88\left(\Delta_{1 / 2}=29 \mathrm{~Hz}\right), 0.84\left(\Delta_{1 / 2}=20 \mathrm{~Hz}\right), 0.07\left(\Delta_{1 / 2}=11 \mathrm{~Hz}\right),-1.18\left(\Delta_{1 / 2}=44\right.$ $\mathrm{Hz}),-8.93\left(\Delta_{1 / 2}=36 \mathrm{~Hz}\right),-17.83\left(\Delta_{1 / 2}=7 \mathrm{~Hz}\right),-18.37\left(\Delta_{1 / 2}=34 \mathrm{~Hz}\right)$.
${ }^{13}$ C NMR (150 MHz, CD $_{2} \mathrm{Cl}_{2}$): $\delta 167.86,152.56,150.63,140.82,126.39,125.82,123.32$, 115.69, 28.65, 23.54, 23.09, 21.36.

NMR matches with the complex reported by Gal et al. ${ }^{5}$

Attempts towards the synthesis of $\mathrm{Co}(0)$-Complexes

In the N_{2}-filled glovebox, a 20 mL scintillation vial was charged with a magnetic stir bar, isolated (R)-iPr-DuPhosCoBr 2 ($20 \mathrm{mg}, 0.031 \mathrm{mmol}, 1$ equiv.) and 1,4-bis(trimethylsilyl)-1,4dihydropyrazine, 11a ($36 \mathrm{mg}, 0.16 \mathrm{mmol}, 5$ equiv.) and dry freshly distilled THF (1 mL). Upon letting it stir for ca. $2 \mathrm{~min}, 1,5$-cyclooctadiene (COD) ($40 \mu \mathrm{~L}, 0.31 \mathrm{mmol}, 10$ equiv.) was added to the resulting solution via micro-syringe. The resulting brown solution stirred for 24 hr . Stirring was stopped, solvent was stripped, and the solid dried under high vacuum ($\sim 0.1 \mathrm{~mm} \mathrm{Hg}$) for 5 to 6 h to afford desired crude complex ($15 \mathrm{mg}, 86 \%$ yield). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ recorded for crude solid in $\mathrm{C}_{6} \mathrm{D}_{6}$ and it did not show any peaks corresponding to ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of previously reported $\left[(R)\right.$-iPr-DuPhosCo $\left.{ }^{(0)}(\mathrm{COD})\right]$ complex by Chirik et al. ${ }^{4}$ It showed the peaks analogues to $\left[(R)-\mathrm{iPr}-\mathrm{DuPhosCo}{ }^{(1)}(\mu \mathrm{Cl})\right]_{2}$ which suggests that there is only formation of $[(R)-\mathrm{iPr}-$ DuPhosCo $\left.{ }^{(1)}(\mathrm{Br})\right]_{2}$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 63.41\left(\Delta_{1 / 2}=107 \mathrm{~Hz}\right)$, $52.74\left(\Delta_{1 / 2}=164 \mathrm{~Hz}\right), 14.04\left(\Delta_{1 / 2}=27 \mathrm{~Hz}\right)$, $9.13\left(\Delta_{1 / 2}=7 \mathrm{~Hz}\right), 8.74\left(\Delta_{1 / 2}=27 \mathrm{~Hz}\right)$, $2.51\left(\Delta_{1 / 2}=38 \mathrm{~Hz}\right), 1.40\left(\Delta_{1 / 2}=23 \mathrm{~Hz}\right), 1.04\left(\Delta_{1 / 2}=11\right.$ $\mathrm{Hz}), 0.88\left(\Delta_{1 / 2}=0 \mathrm{~Hz}\right),-0.99\left(\Delta_{1 / 2}=61 \mathrm{~Hz}\right),-1.38\left(\Delta_{1 / 2}=38 \mathrm{~Hz}\right),-2.18\left(\Delta_{1 / 2}=65 \mathrm{~Hz}\right),-4.24\left(\Delta_{1 / 2}\right.$ $=137 \mathrm{~Hz}$).

Using THF/MeOH solvent:

20 mg

In the glovebox, a 20 mL scintillation vial was charged with a magnetic stir bar, isolated (R)-iPr-DuPhosCoBr ${ }_{2}(20 \mathrm{mg}, \quad 0.031 \mathrm{mmol}, 1$ equiv.) and 1,4-bis(trimethylsilyl)-1,4dihydropyrazine, 11a ($72 \mathrm{mg}, 0.31 \mathrm{mmol}, 10$ equiv.), dry freshly distilled THF (0.5 mL) and anhydrous $\mathrm{MeOH}(0.5 \mathrm{~mL}$). Upon letting it stir for ca. $2 \mathrm{~min}, 1,5$-cyclooctadiene ($40 \mu \mathrm{~L}, 0.31$ mmol, 10 equiv.) was added to the resulting solution via micro-syringe. The resulting brown solution stirred for 48 hr . Stirring was stopped, solvent was stripped, and the solid dried under high vacuum ($\sim 0.1 \mathrm{~mm} \mathrm{Hg}$) for 5 to 6 h to afford desired crude complex (32 mg). The crude solid remains insoluble in $\mathrm{C}_{6} \mathrm{D}_{6}$ as well as THF-D ${ }_{8} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ recorded for crude solid in $\mathrm{C}_{6} \mathrm{D}_{6}$ and THF-D ${ }_{8}$ only showed peak correspond to free ligand $\left[(R)\right.$-iPr-DuPhos]. ${ }^{31} \mathrm{P}$ also showed peak corresponding to free ligand.

Preparation of Cationic Cobalt(I) Complexes

$\left\{\left[(R, R) \text {-QuinoxP]cobalt }\left(\eta^{6}-\mathrm{C}_{6} \mathrm{D}_{6}\right)\right\}^{+}[B A R F]^{-}(23)\right.$

In N_{2}-filled glovebox, 20 mL scintillation vial was charged with a magnetic stir bar, $\{[(R, R)$ QuinoxP*]cobalt(μ-Br) $\}_{2} 18$ ($25 \mathrm{mg}, 0.026 \mathrm{mmol}, 1$ equiv.), NaBARF(49 mg, $0.055 \mathrm{mmol}, 2.1$ equiv.), and 2 mL of $\mathrm{C}_{6} \mathrm{D}_{6}$. The color changed from green to purple. The resulting purple solution was stirred for 3 h at room temperature inside the glovebox. Upon letting it sit for 5 minutes, $\mathrm{C}_{6} \mathrm{D}_{6}$ was decanted. The crude complex then washed with 3 mL of hexanes and residual solvents were stripped down to obtain purple solid 23 ($55 \mathrm{mg}, 78 \%$ yield). The saturated solution of 23 in $\mathrm{C}_{6} \mathrm{D}_{6}$ leads to solid purple crystal at room temperature which was then characterized by X-ray crystallography (CCDC \# 2016105).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 11.45(4 \mathrm{H}), 8.82(2 \mathrm{H}), 8.34(8 \mathrm{H}), 8.04(2 \mathrm{H}), 7.84(1 \mathrm{H}), 7.64(4 \mathrm{H})$, $7.58(1 \mathrm{H}), 7.29(1 \mathrm{H}), 7.03(1 \mathrm{H}), 6.41(1 \mathrm{H}), 5.63(1 \mathrm{H}), 5.51(3 \mathrm{H}), 3.57(2 \mathrm{H}), 3.46(1 \mathrm{H}), 3.27(2 \mathrm{H})$, $3.07(6 \mathrm{H}), 1.35(12 \mathrm{H}), 1.21(4 \mathrm{H}), 0.89(6 \mathrm{H}), 0.77(1 \mathrm{H}), 0.56(1 \mathrm{H}), 0.41(9 \mathrm{H}), 0.29(5 \mathrm{H}), 0.12(7 \mathrm{H})$, $0.03(7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 162.56\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{B}-\mathrm{C}}=49.6 \mathrm{~Hz}\right), 135.42,133.04,129.84$, 129.78, 126.14, 124.33, 118.08, 34.98, 26.94, 26.39, 25.64; ${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ 58.19; ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta-62.05$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 14.87$ (bs, 2H), $8.21(\mathrm{q}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{q}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.69 (bs, 8H), 7.54 (bs, 4H), 4.20-3.40 (m, 9H), 1.95 (virtual coupling, t, J = $5.1 \mathrm{~Hz}, 6 \mathrm{H}$), 1.00 (t, $J=7.4 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 162.12\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{B}-\mathrm{C}}=49.8 \mathrm{~Hz}\right.$), 155.28, 135.20, 133.26, $130.40,129.25,\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{C} . \mathrm{F}}=29.5 \mathrm{~Hz}\right), 124.99\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{C} . \mathrm{F}}=272.4 \mathrm{~Hz}\right), 117.87,37.55,27.89$, 27.24, 12.47; ${ }^{31} \mathrm{P}$ NMR (243 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): δ 58.24.

Synthesis, isolation, and spectral properties of $\left\{[(R, R)-\right.$-Pr-DuPhos $]$ cobalt- $\eta^{4}-(2,3-$ dimethylbutadiene)) $\}^{+}$[BARF] $]^{-}(25)$ has been recently reported by our group. ${ }^{6}$

UV-Vis Spectroscopy of the $\mathrm{Co}(\mathrm{II})$ and $\mathrm{Co}(\mathrm{I})$ complexes

A background of THF was taken. All the samples were made inside the N_{2}-filled glovebox with appropriate concentration in THF and transferred to modified cuvette that allowed the preservation of air sensitive materials. The cuvette was placed in the in-situ UV- VIS and a wavelength scan was performed from 1100 nm to 190 nm .

Figure S1. UV-Vis Spectra of 18, 19, and 20; Each of them showing two characteristic peaks in visible region (which are the characteristic for d^{8} system).

a)

b)

Figure S2. UV-Vis Spectra for relative rate of reduction; This study clearly shows that 11a is much better reductant as compared to Zn .

Figure S3. Sensitivity of the Co(I) complexes to oxidation. UV-Vis spectra of $\mathbf{2 2}$ while expose to air

Table S1. Effect of counter ion on the rate of heterodimerization: ZnBr 2 vs NaBArF

	$\begin{aligned} & 0 \text { min } \\ & (\% \text { conversion }) \end{aligned}$	$\begin{aligned} & 5 \mathrm{~min} \\ & (\% \text { conversion) } \end{aligned}$	$\begin{aligned} & 15 \mathrm{~min} \\ & (\% \text { conversion }) \end{aligned}$	$\begin{aligned} & 25 \mathrm{~min} \\ & (\% \text { conversion }) \end{aligned}$
$\begin{aligned} & \mathrm{ZnBr}_{2} \\ & \text { (average) } \end{aligned}$	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	5.3 ± 3.1
NaBArF (average)	0.0 ± 0.0	38.0 ± 7.3	70.0 ± 4.3	89.3 ± 3.3
ZnBr_{2} (trial 1)	0.0	0.0	0.0	1.0
ZnBr_{2} (trial 2)	0.0	0.0	0.0	7.0
ZnBr_{2} (trial 3)	0.0	0.0	0.0	8.0
NaBArF (trial 1)	0.0	48.0	68.0	90.0
NaBArF (trial 2)	0.0	31.0	66.0	85.0
NaBArF (trial 3)	0.0	35.0	76.0	93.0

Figure S4. Graph showing effect of counter ion on heterodimerization

General procedures for catalytic reactions

Procedure A1. Typical procedure for checking the viability of reducing agents via hydrovinylation of linear diene $\left[(E)\right.$-1,3-nonadiene]. ${ }^{7,8}$ (For Table 2 in the paper and Table S2)

In N_{2} filled glovebox, a $25-\mathrm{mL}$ Schenk flask was charged with a magnetic stir bar, [Co(dppp) Cl_{2}] ($5.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.05$ equiv.), reductant (X equiv., as mentioned the in table S1) and NaBARF ($18 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.1$ equiv.). The flask was capped with rubber septum and taken outside of the box. It was then connected to a Schlenk line with argon and subjected to vacuum then refill (3 cycles). Freshly distilled methylene chloride (0.2 M) was added via septum and the mixture stirred for 10 minutes. The flow control stopcock was closed, and an ethylene balloon inserted using a needle via the septum. A $50-\mathrm{mL}$ syringe was used to evacuate the flask $(3 \times 25 \mathrm{~mL})$ to remove residual argon. At the room temperature, (E)-1,3-nonadiene (25 $\mathrm{mg}, 0.2 \mathrm{mmol}, 1$ equiv.) was added neat via a microliter syringe. Progress of the reaction was monitored via GC-FID by taking an aliquot using a syringe and long needle, diluted with pentanes or hexanes and filtered through a shot pad of silica in a glass pipette. Upon completion of reaction, it was further concentrated on a rotary evaporator to afford crude product. The crude hydrovinylation product was subjected to column chromatography using pentane to obtain the product as a clear oil.

GC (methyl silicone, $80^{\circ} \mathrm{C}$, $3 \mathrm{~min}, 20^{\circ} \mathrm{C} / \mathrm{min} \rightarrow 250^{\circ} \mathrm{C}$): Rt major [4,1 -adduct, branch], 3.1 min (80\%); minor [1,4-adduct, linear], 3.8 min (20\%)

Table S2: Optimization of unconventional reducing agents via Co(I)-catalyzed hydrovinylation of diene ${ }^{\text {a }}$

Entry	Reductant (equiv)	Time (min)	Conversion (\%)	[4,1]:[1,4]
1	Zn (0.5)	30	100	$78: 22$
2	11a (0.05)	75	100	$79: 20$
3	11b (0.05)	45	100	$80: 20$
4	11c (0.5)	24×60	4	-
5	$\mathrm{Li}_{3} \mathrm{~N}(0.10)$	90	100	$80: 20$

${ }^{\text {a }}$ Procedure A1 was followed with some modification in reducing agent as mentioned.
${ }^{\mathrm{b}}$ Conversion is based on GC analysis.

Procedure A2. Typical procedure for using lithium nitride as a reductant for Co (II) in heterodimerization of 1,3-diene and methyl acrylate.

In the N_{2}-filled glovebox, an 8 -mL oven dried vial with a septum cap was charged with magnetic stir bar, isolated metal complex (0.05 equiv.), reducing agent ($0.10-0.25$ equiv.), activator ($0.10-0.30$ equiv.) and DCM (0.35 M). The vial was capped and while stirring the mixture, neat (E)-1,3-undecadiene (1.00 equiv.) followed by distilled methyl acrylate (1.10 equiv.) was added via micro-liter syringe. The resulting green solution was allowed to stir at room temperature and monitored via GC-FID by taking an aliquot with a glass pipette, removing from dry box atmosphere, adding 1:1 diethyl ether/hexanes, filtering through a short pad of silica in a glass pipette, and eluting with diethyl ether. Upon completion of the reaction, the mixture is diluted with 1:1 diethyl ether/hexane, filtered over a short pad of silica using a fritted glass funnel (I.D $=1$ inch, height of silica pad ~ 1.5 inch), and concentrated.

For Table S2, entry 2

In the N_{2}-filled glovebox, an 8 -mL oven dried vial with a septum cap was charged with magnetic stir bar, $\mathrm{dpppCoCl}_{2}$ (0.05 eq.), $\mathrm{Li}_{3} \mathrm{~N}$ ($1.14 \mathrm{mg}, 0.03 \mathrm{mmol}$), $\mathrm{InBr}_{3}(13 \mathrm{mg}, 0.03 \mathrm{mmol})$ DCM (0.94 mL), (E)-1,3-undecadiene ($50 \mathrm{mg}, 0.3 \mathrm{mmol}$), and distilled methyl acrylate (31 mg , $0.36 \mathrm{mmol})$. Upon completion of the reaction (2 h), the mixture is exposed to air and diluted with 1:1 diethyl ether/hexane, filtered over a short pad of silica using a fritted glass funnel, and concentrated to afford the title compound ($61 \mathrm{mg}, 79 \%$ yield) as a colorless oil.

Table S3: Optimization of reaction conditions for heterodimerization of diene and methyl acrylate: $\mathrm{Li}_{3} \mathrm{~N}$ as a reducing agent ${ }^{2}$

Entry	Catalyst	Reductant (0.10 equiv.)	Activator (0.10 equiv.)	Conv. ${ }^{\text {b }}$ (\%), time (h)	Isolated Yield (\%)
1	dpppCoBr ${ }_{2}$	$\mathrm{Li}_{3} \mathrm{~N}$ (0.25 eq.)	InBr_{3}	100, 7	65
2	dpppCoBr ${ }_{2}$	$\mathrm{Li}_{3} \mathrm{~N}$	InBr_{3}	100, 2	79
3	dpppCoBr 2	$\mathrm{Li}_{3} \mathrm{~N}$	NaBARF	100, 2	52
4	dpppCoBr ${ }_{2}$	$\mathrm{Li}_{3} \mathrm{~N}$ (0.25 eq.)	InCl_{3} (0.30 eq.)	100, 2	83
5	dpppCoCl ${ }_{2}$	$\mathrm{Li}_{3} \mathrm{~N}$	$\mathbf{I n B r}_{3}$	98, 0.25	91
6	dpppCoCl 2	$\mathrm{Li}_{3} \mathrm{~N}$	NaBARF	100, 24	70
$7^{\text {c }}$	dpppCoCl 2	$\mathrm{Li}_{3} \mathrm{~N}$	InCl_{3}	14, 12	-
$8^{\text {d }}$	(S,S)-BDPP) CoBr_{2}	$\mathrm{Li}_{3} \mathrm{~N}$	$\mathbf{I n B r} 3$	100, 3	84 (99\% ee)

${ }^{\text {a }}$ Procedure A2 followed with some modification in activators and reducing agent as mentioned. ${ }^{\mathrm{b}}$ Conversion is based on GC analysis. ${ }^{\mathrm{c}} 0.5 \mathrm{M}$ DCM is used. ${ }^{\mathrm{d}}(S, S)$ - $\mathrm{BDPPCoBr}_{2}$ was synthesized in-situ as mentioned in the procedure A3.

Procedure A3. Typical procedure for in situ generation of metal complex for heterodimerization. (Table S3, Entry 8)

In N_{2}-filled glovebox, an 8 mL oven dried vial equipped with a septum cap was charged with a magnetic stir bar, (S, S)-BDPP (0.05 eq.), CoBr_{2} (0.05 eq.) and DCM (0.35 M) and
allowed to stir for 15 min . Reducing agent (0.10 eq.) was then added and the solution was allowed to stir for another 15 minutes. $\operatorname{lnBr}_{3}(0.10$ eq.), $1,3-(E)$-undecadiene ($50 \mathrm{mg}, 0.3 \mathrm{mmol}$, 1.00 eq.), and distilled methyl acrylate ($31 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.10$ eq.) were then added via microliter syringe. The mixture was stirred at room temperature and monitored by taking an aliquot using a glass pipette, diluting with mixture of diethyl ether/hexane (1:1) and filtered through a short pad of silica in a glass pipette eluting with diethyl ether and analyzed via GC. Upon completion of the reaction $(0.25 \mathrm{~h})$, the mixture is exposed to air and diluted with $1: 1$ diethyl ether/hexane, filtered over a short pad of silica using a fritted glass funnel (I.D = 1 inch, height of silica pad ~ 1.5 inch), and concentrated to afford the title compound as a colorless oil.

The product derived from in-situ generated catalyst [(S,S)-BDPP/ $\mathrm{CoBr}_{2} / \mathrm{Li}_{3} \mathrm{~N} / \mathrm{lnBr}_{3}$] showed 99\% ee. (See attached CSP-GC chromatogram below)

Procedure A4. Typical procedure for heterodimerization of linear diene with methyl acrylate. (For Table 3, entry 3 in paper).

In N_{2} filled glovebox, an 8-mL vial equipped with a septum screw cap was charged with a magnetic stir bar, (QuinoxP*) CoBr_{2} ($5 \mathrm{~mol} \%$), Zn ($100 \mathrm{~mol} \%$) , NaBARF ($10 \mathrm{~mol} \%$) and DCM $(0.8 \mathrm{~mL})$. The vial was capped and while stirring the mixture, $(E)-1,3$-nonadiene ($25 \mathrm{mg}, 0.2$ mmol, 1 equiv.) was added neat using microliter syringe via the septum, followed by methyl
acrylate ($19 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.1$ equiv.). The mixture was stirred at rt and monitored by taking an aliquot using a glass pipette, diluting with a mixture of n-pentane/Et $\mathrm{t}_{2} \mathrm{O}$ (1:1) and filtered through a pad of silica in a glass pipette eluting with diethyl ether and analyzed via GC-FID. Upon completion of the reaction, the vial was taken out of the box and the reaction mixture worked-up and crude product was isolated via column chromatography.

For Table 3, entry 4 in paper, Procedure C1 followed with some modification in reductant;
11a (5 mol\%) was used instead of Zn ($100 \mathrm{~mol} \%$).

B1. Typical procedure for hydrovinylation of linear diene using isolated $\mathrm{Co}(\mathrm{I})$ complex

 12. ${ }^{7,8}$Hydrovinylation of 1,3-diene

Figure S4: Hydrovinylation of linear diene using isolated Co(I) complex 12

In N_{2} filled glovebox, a $25-\mathrm{mL}$ Schlenk flask was charged with a magnetic stir bar, $\left.\left[\mathrm{Co}_{2} \text { (dppp) }\right)_{3} \mathrm{Cl}_{2}\right]$ (12) ($0.004 \mathrm{mmol}, 0.02$ equiv.), and NaBARF ($0.008 \mathrm{mmol}, 0.04$ equiv.). The flask was capped with rubber septum and taken outside of the box. It was then connected to a Schlenk line with argon and subjected to vacuum then refill (3 cycles). Freshly distilled methylene chloride (DCM) (0.25 M) was added via septum and the mixture stirred for a few minutes. The flow control stopcock was closed, and an ethylene balloon inserted using a
needle via the septum. A $50-\mathrm{mL}$ syringe was used to evacuate the flask ($3 \times 25 \mathrm{~mL}$) to remove residual argon. At the room temperature, (E)-1,3-nonadiene ($25 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added neat via a microliter syringe. Progress of the reaction was monitored via GC-FID by taking an aliquot using a syringe and long needle, diluted with pentanes or hexanes, and filtered through a shot pad of silica in a glass pipette. Upon completion of reaction, it was further concentrated on a rotary evaporator to afford crude product. The crude hydrovinylation product was subjected to column chromatography using pentane to obtain the product as a clear oil.

GC (methyl silicone, $80^{\circ} \mathrm{C}, 3 \mathrm{~min}, 20^{\circ} \mathrm{C} / \mathrm{min} \rightarrow 250^{\circ} \mathrm{C}$): Rt major [4,1-adduct/branch], 3.1 min (80\%); minor [1,4-adduct, linear], 3.8 min (20%)

For entry 1 , i.e., in situ generation of the $\mathrm{Co}(\mathrm{I})$ complex, $\left[\mathrm{Co}_{2}(\mathrm{dppp})_{3} \mathrm{Cl}_{2}\right]$ (12) was replaced by $\mathrm{Co}(\mathrm{dppp}) \mathrm{Cl}_{2}$ ($0.01 \mathrm{mmol}, 0.05$ equiv.), Zn ($0.2 \mathrm{mmol}, 1$ equiv.).

Procedure B2. Use of isolated Co(I) complex (18) for heterodimerization of linear diene with methyl acrylate. (For Table 3, entry 2 in paper)

In N_{2} filled glovebox, an 8-mL vial equipped with a septum screw cap was charged with a magnetic stir bar, Isolated $\{[(R, R)-\text { QuinoxP* }] \text { cobalt }(\mu-\mathrm{Br})\}_{2}(18)(3.8 \mathrm{mg}, 0.02$ equiv.) , NaBARF (0.05 equiv., 8.9 mg) and $\mathrm{DCM}(0.8 \mathrm{~mL})$. The vial was capped and while stirring the mixture, ($($) -1, 3-nonadiene ($25 \mathrm{mg}, 0.2 \mathrm{mmol}$, 1 equiv.) was added neat using microliter syringe via the septum, followed by methyl acrylate ($19 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.1$ equiv.). The mixture was stirred at rt and monitored by taking an aliquot using a glass pipette, diluting with a mixture of n pentane/Et t_{2} (1:1) and filtered through a pad of silica in a glass pipette eluting with diethyl ether and analyzed via GC-FID. Upon completion of the reaction, the vial was taken out of the box and the reaction mixture worked-up and crude product was isolated via column chromatography.

Procedure B3. Use of isolated $\left\{[(R, R)-Q u i n o x P] C o(I)\left(\eta^{6}-C_{6} D_{6}\right)\right\}+[B A R F]-(23)$ for heterodimerization of linear diene with methyl acrylate. (For Table 3, entry 1 in paper)

In N_{2} filled glovebox, an 8-mL vial equipped with a septum screw cap was charged with a magnetic stir bar, Isolated $\left\{\left[(R, R) \text {-QuinoxP*]cobalt }\left(\eta^{6}-\mathrm{C}_{6} \mathrm{D}_{6}\right)\right\}^{+}[\text {BARF }]^{-}\right.$(23) (0.01 equiv.,) and DCM (0.8 mL). The vial was capped and while stirring the mixture, (E)-1,3-nonadiene (25 mg , 0.2 mmol, 1 equiv.) was added neat using microliter syringe via the septum, followed by methyl acrylate ($19 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.1$ equiv.). The mixture was stirred at rt and monitored by taking an aliquot using a glass pipette, diluting with a mixture of n-pentane $/ E \mathrm{t}_{2} \mathrm{O}(1: 1)$ and filtered through a pad of silica in a glass pipette eluting with diethyl ether and analyzed via GC-FID. Upon completion of the reaction, the vial was taken out of the box and the reaction mixture worked-up and crude product was isolated via column chromatography.

NMR data of compound 25 matched with the previously reported compound. ${ }^{8}$
GC (methyl silicone, $80^{\circ} \mathrm{C}, 3 \mathrm{~min}, 20^{\circ} \mathrm{C} / \mathrm{min} \rightarrow 250^{\circ} \mathrm{C}$): Rt major [4,1-adduct/branch], 7.24 min (>95\%)

CSP-GC (cyclosil B, $125^{\circ} \mathrm{C}, 60 \mathrm{~min}, 5^{\circ} \mathrm{C} \rightarrow 175{ }^{\circ} \mathrm{C}$): Rt from dpppCoBr $2 / \mathrm{Zn} / \mathrm{NaBARF} ;[1,4-$ adduct] $28.8 \mathrm{~min}(49.7 \%)$, $29.8 \mathrm{~min}(50.3 \%)$.

The product derived from (QuinoxP*) $\mathrm{CoBr}_{2} / \mathrm{Zn} / \mathrm{NaBARF} ; 28.8$ min (96.8\%), 29.8 min (3.2\%); 93\%ee.

The product derived from (QuinoxP*) $\mathrm{CoBr}_{2} / \mathbf{1 1 a} / \mathrm{NaBARF} ; 28.7 \mathrm{~min}(96.6 \%)$, $29.7 \mathrm{~min}(3.4 \%)$;

93\% ee.

The product derived from Isolated $\left\{[(R, R) \text {-QuinoxP*]cobalt }(\mu-\mathrm{Br})\}_{2}(18) / \mathrm{NaBARF} ; 28.7 \mathrm{~min}\right.$ (96.2\%), 29.7 min (3.8\%); 92\% ee.

The product derived from Isolated $\left\{\left[(R, R) \text {-QuinoxP*]cobalt(} \eta^{6}-\mathrm{C}_{6} \mathrm{D}_{6}\right)\right\}^{+}[\mathrm{BARF}]^{-}(\mathbf{2 3})$ in DCM; $28.7 \min (97 \%), 29.7 \min (3 \%) ; 94 \%$ ee.

The product derived from Isolated $\left\{\left[(R, R) \text {-QuinoxP*]cobalt(} \eta^{6}-\mathrm{C}_{6} \mathrm{D}_{6}\right)\right\}^{+}[\mathrm{BARF}]^{-}$(23) in Benzene- D_{6}; 28.7 min (98\%), 29.7 min (2\%); 96\% ee.

Procedure C. Use of isolated $\left\{\left[(R, R)\right.\right.$-iPr-DuPhos]Co(I)- η^{4}-(2,3-dimethylbutadiene))\}+ [BARF]- (25) for hydroacylation of isoprene/2-siloxy 1,3-diene (for Table 4, entry 1).

In N_{2} filled glovebox, an 8-mL vial equipped with a septum screw cap was charged with a magnetic stir bar, Isolated $\left\{[(R, R))^{-}\right.$Pr-DuPhos]cobalt- η^{4}-(2,3-dimethylbutadiene) $\left.)\right\}^{+}[B A R F]^{-}$ (30) (0.01 equiv.) and diethyl diethyl ether (0.8 mL). The vial was capped and while stirring the mixture, Benzaldehyde ($0.2 \mathrm{mmol}, 1.0$ equiv.) was added neat using microliter syringe via the septum, followed by isoprene ($0.6 \mathrm{mmol}, 3$ equiv.). The mixture was stirred at rt and monitored by taking an aliquot using a glass pipette, diluting with diethyl ether, and filtering through a pad of silica in a glass pipette eluting with diethyl ether. The mixture was analyzed via GC-FID. Upon completion of the reaction the vial was taken out of the box, exposed to air, and quenched with diethyl ether (5 mL) and the resulting mixture was filtered over a short pad of silica (using a fritted glass funnel, I.D $=1$ inch, height of silica pad $\sim 1.5 \mathrm{inch}$) eluting diethyl ether. It was further concentrated on a rotary evaporator to afford crude product. The crude hydroacylation product was subjected to column chromatography using 5% ethyl acetate-hexanes to obtain the desired products as a clear oil. NMR and CSP-GC data matched with previously reported compounds by our group. ${ }^{6}$

Table S4. Activator-free, single-component (entries 1 and 5) and in situ generated [Co'] ${ }^{+}$-catalysts for hydroacylation of isoprene and 2-trimethylsilyloxy-1,3-butadiene ${ }^{\text {a }}$

27 1,2-adduct
28 1,4-adduct

26a $R=M e \quad$ isoprene
26b R = OTMS. 2-trimethylsilyloxy-1,3-butadiene
a R = Me
b $\mathrm{R}=\mathrm{OTMS}$

no.	Col-source (equiv.)	reductant (equiv.)	activator (equiv.)	$1,2: 1,4$ adduct	time (h)	Conversion, $(\% \mathrm{ee})^{\mathrm{c}}$
			(isoprene)			

1. $\{[(R, R)-i-\mathrm{Pr}$-DUPHOS $]$
Co'[2,3-DMBD]\} ${ }^{+}$
0
60:40 40
$60(96, R)$
[BARF] ${ }^{-}(25,0.01)$
2. $\{[(R, R)-i-\mathrm{Pr}$-DUPHOS]
$\left.\mathrm{Co}^{\prime} \mathrm{Cl}\right\}_{2}(20,0.025)$
0 NaBARF
\{[(R,R)-i-Pr-DUPHOS]
$\left.\mathrm{Co}^{\prime} \mathrm{Cl}\right\}_{2}(20,0.025)$
3.

[(R,R)-i-Pr-DUPHOS] Co" ${ }^{\prime \prime} \mathrm{Br}_{2}$ (0.05)

Zn (0.5)
NaBARF
(0.075)

Zn (0.5)
0
N/A
24
0 (N/A)
5. [(R,R)-i-Pr-DUPHOS] Co" Br_{2} (0.05)

(2-trimethylsilyloxy-1,3-butadiene)

\{[(R,R)-i-Pr-DUPHOS]						
$6^{\text {b }}$	$\begin{gathered} \left.\mathrm{Co}^{\prime}[2,3-\mathrm{DMBD}]\right\}^{+} \\ \text {[BARF] }^{-}(25,0.05) \end{gathered}$	0	0	35:65	30	$90(98, R)$
7.	$\begin{gathered} {[(R, R)-i-\mathrm{Pr} \text {-DUPHOS] }} \\ \mathrm{Co}^{11} \mathrm{Br}_{2} 20(0.05) \end{gathered}$	Zn (0.5)	$\begin{gathered} \text { NaBARF } \\ (0.075) \end{gathered}$	35:65	30	$87(98, R)$
8.	$\begin{gathered} {[(R, R)-i-\mathrm{Pr}-\mathrm{DUPHOS}]} \\ \mathrm{Col}^{\prime \prime} \mathrm{Br}_{2} 20(0.05) \end{gathered}$	Zn (0.5)	0	N/A	30	0 (N/A)

${ }^{\text {a }}$ Single-component catalyst (shaded entries). DMBD: 2,3-dimethyl-1,3-butadiene ${ }^{\mathrm{b}}$ Conversion is based on the consumption of benzaldehyde. ${ }^{\mathrm{c}}$ Regioselectivities and enantioselectivities were determined by GC and CSP-GC respectively.

Procedure D1. Use of isolated \{[(R,R)-iPr-DuPhos]Co(I)- η^{4}-(2,3-dimethylbutadiene))\}+ [BARF]- (25) for hydroboration of 2,3-dimethylbuta-1,3-diene (for Table 5, entry 1 in the paper).

In N_{2} filled glovebox, an 8-mL vial equipped with a septum screw cap was charged with a magnetic stir bar, Isolated $\left\{[(R, R))^{-}\right.$Pr-DuPhos]cobalt- η^{4}-(2,3-dimethylbutadiene) $\left.)\right\}^{+}[B A R F]^{-}$ (25) (0.02 equiv.) and DCM (0.8 mL). The vial was capped and while stirring the mixture, HBPin ($0.22 \mathrm{mmol}, 1.05$ equiv.) was added neat using microliter syringe via the septum, followed by 2,3-dimethylbuta-1,3-diene (0.2 mmol, 1 equiv.). The mixture was stirred at rt and monitored by taking an aliquot using a glass pipette, diluting with diethyl ether, and filtering through a pad of silica in a glass pipette eluting with diethyl ether. The mixture was analyzed via GC-FID. Upon completion of the reaction the vial was taken out of the box, exposed to air and quenched with diethyl ether (5 mL) and the resulting mixture was filtered over a short pad of silica (using a fritted glass funnel, I.D $=1$ inch, height of silica pad ~ 1.5 inch) eluting diethyl ether. It was further concentrated on a rotary evaporator to afford crude product. The crude hydroboration product was subjected to column chromatography using 5\% diethyl ether-pentane to obtain the hydroboration products as a clear oil.

Procedure D2. Use of in-situ generated $\mathrm{Co}(\mathrm{I})$ complex for hydroboration of 2,3-dimethylbuta-1,3-diene (for Table 5, entry 2 in the paper)

In N_{2} filled glovebox, an 8-mL vial equipped with a septum screw cap was charged with a magnetic stir bar, [(R,R)-iPr-DuPhosCoBr2] (0.05 equiv.), Zn (0.5 equiv.), and NaBARF (0.1 equiv.) and DCM (0.8 mL). The vial was capped and while stirring the mixture, HBPin (0.22 mmol, 1.05 equiv.) was added neat using microliter syringe via the septum, followed by 2,3 -dimethylbuta-1,3-diene ($0.2 \mathrm{mmol}, 1$ equiv.). The mixture was stirred at rt and monitored by taking an aliquot using a glass pipette, diluting with diethyl ether, and filtering through a pad of
silica in a glass pipette eluting with diethyl ether. The mixture was analyzed via GC-FID. Upon completion of the reaction the vial was taken out of the box, exposed to air and quenched with diethyl ether (5 mL) and the resulting mixture was filtered over a short pad of silica (using a fritted glass funnel, I.D $=1$ inch, height of silica pad ~ 1.5 inch) eluting diethyl ether. It was further concentrated on a rotary evaporator to afford crude product. The crude hydroboration product was subjected to column chromatography using 5\% diethyl ether-pentane to obtain the hydroboration product as a clear oil.

GC (methyl silicone, $50^{\circ} \mathrm{C}$, $5 \mathrm{~min}, 20^{\circ} \mathrm{C} / \mathrm{min} \rightarrow 250{ }^{\circ} \mathrm{C}$): Rt from dppp, major [1,2-adduct 29], $8.9 \mathrm{~min}(66 \%)$; minor [1,4-adduct 30], $9.1 \mathrm{~min}(34 \%)$; from $\left\{\left[(R, R)\right.\right.$ - Pr -DuPhos]cobalt- $\eta^{4}-(2,3-$ dimethylbutadiene) $)\}^{+}$[BARF] ${ }^{-}$(25); major [1,2-adduct 29], 8.9 min (53\%); [1,4-adduct 30], 9.1 min (33\%); [Vinyl boronate 31], 9.2 min (14\%).

NMR of 29-31 matched with the previously reported data by our group. ${ }^{3}$
${ }^{1}$ H NMR (600 MHz , C6D6) $\delta 4.9$ (m, 1H), 4.75 (pent, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.68-2.61$ (m, 1H), 1.70 $(\mathrm{s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 12 \mathrm{H}), 1.03-1.02(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, C6D6) $\delta 152.16,108.40,82.81,37.43,25.02,24.94,22.28,20.04$. Expected 9 C ; observed 8 C (missing C-B).

CSP-GC (cyclosil B, $90^{\circ} \mathrm{C}$, $60 \mathrm{~min}, 5^{\circ} \mathrm{C} \rightarrow 175{ }^{\circ} \mathrm{C}$): Rt from dppp; [1,2-adduct] 24.0 min (49.7\%), 24.4 min (50.3\%).

Using catalyst $\left\{\left[(R, R) \text {-'Pr-DuPhos]cobalt- } \eta^{4}-(2,3 \text {-dimethylbutadiene) })\right\}^{+}[B A R F]^{-}(\mathbf{2 5})\right)$: major [1,2 -adduct] $24.0 \mathrm{~min}(10.7 \%), 24.4 \mathrm{~min}$ (89.3\%); 79\% ee

Using catalyst [(R,R)-'Pr-DuPhosCoBr 2] (0.05 equiv.), Zn (0.5 equiv.), and NaBARF (0.1 equiv.): major [1,2 -adduct] $24.1 \min (14.7 \%), 24.4 \min (85.3 \%) ; 70 \%$ ee

HRMS (ESI-MS): m/z $233.1697([\mathrm{M}+\mathrm{Na}+])$; exact mass calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{BO}_{2} \mathrm{Na}+\right.$] 233.1686.

Table S5: Catalytic activity of single-component catalyst $\left\{\left[(R, R)-{ }^{-} \operatorname{Pr}\right.\right.$-DuPhos]cobalt- η^{4} -(2,3-dimethylbutadiene)) $\}^{+}$[BARF] ${ }^{-}(25)$ in an asymmetric hydroboration reaction ${ }^{\text {a }}$

a. See procedure D1-D2 for experimental details. Conversion and relative ratios of 29, 30 and $\mathbf{3 1}$ determined by GC. b. Single-component catalyst.

References

1. Smith, C. R., Zhang, A., Mans, D. J. and RajanBabu, T. V. (R)-3-Methyl-3-Phenyl-1-Pentene Via Catalytic Asymmetric Hydrovinylation. Org. Synth. 2008, 85, 248-266.
2. Sulzbach, R. A., Iqbal, A. F. M., 1,4-Bis(trimethylsilyl)-1,4-dihydropyrazine by Reductive Silylation of Pyrazine. Angew. Chem. Int. Ed. Engl. 1971, 10, 127.
3. Duvvuri, K.; Dewese, K. R.; Parsutkar, M. M.; Jing, S. M.; Mehta, M. M.; Gallucci, J. C.; RajanBabu, T. V. Cationic Co(I)-Intermediates for Hydrofunctionalization Reactions: Regio- and Enantioselective Cobalt-Catalyzed 1,2-Hydroboration of 1,3-Dienes. J. Am. Chem. Soc. 2019, 141, 7365-7375.
4. Friedfeld, M. R.; Zhong, H.; Ruck, R. T.; Shevlin, M.; Chirik, P. J. Cobalt-catalyzed asymmetric hydrogenation of enamides enabled by single-electron reduction. Science 2018, 360, 888-893.
5. Kooistra, T. M.; Knijnenburg, Q.; Smits, J. M. M.; Horton, A. D.; Budzelaar, P. H. M.; Gal, A. W. Olefin polymerization with $\{$ bis(imino) pyridyl $\}\left(\mathrm{CoCl}_{2}\right)-\mathrm{Cl}$: Generation of the active species involves Co(I). Angew. Chem. Int. Ed. 2001, 40, 4719-4722.
6. Parsutkar, M. M.; RajanBabu, T. V. α - and β-Functionalized Ketones from 1,3-Dienes and Aldehydes: Control of Regio- and Enantioselectivity in Hydroacylation of 1,3-Dienes. J. Am. Chem. Soc. 2021, 143, 12825-12835.
7. Timsina, Y. N.; Sharma, R. K.; RajanBabu, T. V. Cobalt-catalysed asymmetric hydrovinylation of 1,3dienes, Chem. Sci. 2015, 6, 3994.
8. Jing, S. M.; Balasanthiran, V.; Pagar, V.; Gallucci, J. C.; RajanBabu, T. V. Catalytic Enantioselective Hetero-dimerization of Acrylates and 1,3-Dienes. J. Am. Chem. Soc. 2017, 139, 18034-18043.

X-Ray Crystallographic Analysis of $[(\mathrm{dppp})(\mathrm{Cl}) \mathrm{Co}[\mu-(\mathrm{dppp})] \mathrm{Co}(\mathrm{Cl})(\mathrm{dppp})](\mathbf{1 2)}$

Table S6. Crystallographic details for RajanBabu 2160 (12)

Formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.057^{\circ}$
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

C81 H78 Cl2 Co2 P6
1426.01

210(2) K
$0.71073 \AA$
Triclinic
P-1
$\mathrm{a}=21.4598(9) \AA \quad \alpha=66.4390(10)^{\circ}$
$b=21.5413(9) \AA \quad \beta=66.4010(10)^{\circ}$
$\mathrm{c}=23.7245(10) \AA \quad \gamma=71.7220(10)^{\circ}$
9056.8(7) \AA^{3}

4
$1.046 \mathrm{Mg} / \mathrm{m}^{3}$
$0.566 \mathrm{~mm}^{-1}$
2968
$0.04 \times 0.15 \times 0.35 \mathrm{~mm}^{3}$
2.755 to 25.057°
$-25<=\mathrm{h}<=25,-25<=\mathrm{k}<=25,-28<=1<=28$
242477
$32006[R($ int $)=0.0625]$
99.7 \%

Full-matrix least-squares on F^{2}
32006 / 0 / 1640
1.025
$\mathrm{R} 1=0.0422, \mathrm{wR} 2=0.1056$
$R 1=0.0644, w R 2=0.1171$
0.343 and -0.523 e/ \AA^{3}

X-Ray Crystallographic Analysis of $[(\mathrm{dppe})(\mathrm{Cl}) \mathrm{Co}[\mu-(\mathrm{dppe})] \mathrm{Co}(\mathrm{Cl})(\mathrm{dppe})](13)$

Experimental Summary for 13

The single crystal X-ray diffraction studies were carried out on a Nonius Kappa diffractometer equipped with a Bruker APEX-II CCD and $\operatorname{Mo~} K_{\alpha}$ radiation $(\lambda=0.71073 \AA$). A $0.113 \times 0.089 \times 0.074$ mm piece of a green block was mounted on a MiTeGen Micromount with CHRISTO-LUBE MCG 1024 oil. Data were collected in a nitrogen gas stream at $100(2) \mathrm{K}$ using ϕ and ω scans. Crystal-to-detector distance was 40 mm and exposure time was 60 seconds per frame using a scan width of 1.0°. Data collection was 100% complete to 25.00° in θ. A total of 56953 reflections were collected covering the indices, $-17<=\mathrm{h}<=17,-15<=\mathrm{k}<=15,-23<=1<=23.6870$ reflections were found to be symmetry independent, with a $\mathrm{R}_{\text {int }}$ of 0.0910 . Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The space group was found to be $P 2_{1} / \mathrm{c}$. The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model consistent with the proposed structure.

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014. Crystallographic data are summarized in Table S7.

Report date	2019-08-08
Identification code	MP-05-076
Empirical formula	C86 H88 C12 Co2 O2 P6
Molecular formula	C78 H72 Cl2 Co2 P6, 2(C4 H8 O)
Formula weight	1528.14
Temperature	100 K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P 1 21/c 1
Unit cell dimensions	$a=14.7933(14) \AA$ A $\quad \alpha=90^{\circ}$.
	$b=13.2529(11) \AA \quad \beta=102.074(3)^{\circ}$.
Volume	3751.5(6) \AA^{3}
Z	2
Density (calculated)	$1.353 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.690 \mathrm{~mm}^{-1}$
F(000)	1596
Crystal size	$0.113 \times 0.089 \times 0.074 \mathrm{~mm}^{3}$
Crystal color, habit	Green Block
Theta range for data collection	1.408 to 25.374°.
Index ranges	$-17<=\mathrm{h}<=17,-15<=\mathrm{k}<=15,-23<=1<=23$
Reflections collected	56953
Independent reflections	$6870[\mathrm{R}(\mathrm{int})=0.0910, \mathrm{R}($ sigma $)=0.0726]$
Completeness to theta $=25.000^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.2590 and 0.2226
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6870 / 54 / 449
Goodness-of-fit on F^{2}	1.023
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0509, \mathrm{wR} 2=0.1155$
R indices (all data)	$\mathrm{R} 1=0.0974, \mathrm{wR} 2=0.1334$
Extinction coefficient	n / a
Largest diff. peak and hole	0.542 and -0.528 e..$^{-3}$

X-Ray Crystallographic Analysis of $\{[(\mathrm{R}, \mathrm{R})-\mathrm{QuinoxP}] \operatorname{cobalt}(\mathrm{I})(\mu-\mathrm{Br})\} 2$ (18)

Experimental Summary for 18

The single crystal X-ray diffraction studies were carried out on a Nonius Kappa diffractometer equipped with a Bruker APEX-II CCD and Mo K_{α} radiation ($\lambda=0.71073 \AA$). A $0.273 \times 0.254 \times 0.216$ mm piece of a green block was mounted on a MiTeGen Micromount with CHRISTO-LUBE MCG 1024 oil. Data were collected in a nitrogen gas stream at $100(2) \mathrm{K}$ using ϕ and ω scans. Crystal-to-detector distance was 80 mm and exposure time was 10 seconds per frame using a scan width of 0.75°. Data collection was 100% complete to 25.00° in θ. A total of 126335 reflections were collected covering the indices, $-11<=\mathrm{h}<=11, \quad-11<=\mathrm{k}<=11, \quad-53<=1<=58 . \quad 4353$ reflections were found to be symmetry independent, with a $\mathrm{R}_{\text {int }}$ of 0.0507 . Indexing and unit cell refinement indicated a primitive, tetragonal lattice. The space group was found to be $P 4_{1} 2_{1} 2$. The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model consistent with the proposed structure.

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014. The absolute stereochemistry of the molecule was established by anomalous dispersion using the Parson's method with a Flack parameter of 0.009(2). Crystallographic data are summarized in Table S8.

Table S8. Crystal data and structure refinement for RBabu_MP-05-065 (18).

Report date	2019-08-13
Identification code	MP-05-065
Empirical formula	C36 H56 Br2 Co2 N4 P4
Molecular formula	C36 H56 Br2 Co2 N4 P4
Formula weight	946.40
Temperature	100 K
Wavelength	0.71073 A
Crystal system	Tetragonal
Space group	P412, 2
Unit cell dimensions	$\mathrm{a}=9.5542(2) \AA \AA^{\circ} \quad \alpha=90^{\circ}$.
	$\mathrm{b}=9.5542(2) \AA \AA^{\circ} \quad \beta=90^{\circ}$.
Volume	4226.5(2) \AA^{3}
Z	4
Density (calculated)	$1.487 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.857 \mathrm{~mm}^{-1}$
F(000)	1936
Crystal size	$0.273 \times 0.254 \times 0.216 \mathrm{~mm}^{3}$
Crystal color, habit	Green Block
Theta range for data collection	1.759 to 26.470°.
Index ranges	$-11<=\mathrm{h}<=11,-11<=\mathrm{k}<=11,-53<=1<=58$
Reflections collected	126335
Independent reflections	$4353[\mathrm{R}(\mathrm{int})=0.0507, \mathrm{R}($ sigma $)=0.0213]$
Completeness to theta $=25.000^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.2602 and 0.2138
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4353 / 0 / 226
Goodness-of-fit on F^{2}	1.073
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0236, \mathrm{wR} 2=0.0557$
R indices (all data)	$\mathrm{R} 1=0.0267, \mathrm{wR} 2=0.0563$
Absolute structure parameter	0.009(2)
Extinction coefficient	n/a
Largest diff. peak and hole	0.467 and -0.199 e..$^{-3}$

X-Ray Crystallographic Analysis of $\{[(\mathrm{S}, \mathrm{S})-\mathrm{Ph}-\mathrm{BPE}] \operatorname{cobalt}(\mathrm{I})(\mu-\mathrm{Br})\} 2$ (19)

Experimental Summary for 19

The single crystal X-ray diffraction studies were carried out on a Nonius Kappa diffractometer equipped with a Bruker APEX-II CCD and $\operatorname{Mo} K_{\alpha}$ radiation $(\lambda=0.71073 \AA$). A $0.157 \times 0.146 \times 0.092$ mm piece of a dark green block was mounted on a MiTeGen Micromount with CHRISTO-LUBE MCG 1024 oil. Data were collected in a nitrogen gas stream at $100(2) \mathrm{K}$ using ϕ and ϖ scans. Crystal-todetector distance was 80 mm and exposure time was 30 seconds per frame using a scan width of 0.75°. Data collection was 99.8% complete to 23.291° in $\theta, 0.90 \AA$. A total of 319126 reflections were collected covering the indices, $-16<=\mathrm{h}<=22,-23<=\mathrm{k}<=23,-58<=1<=58 . \quad 17222$ reflections were found to be symmetry independent, with a $\mathrm{R}_{\text {int }}$ of 0.1535 . Indexing and unit cell refinement indicated a primitive, tetragonal lattice. The space group was found to be $P 4_{3} 2_{1}$ 2. The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model consistent with the proposed structure.

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014. The absolute stereochemistry of the molecule was established by anomalous dispersion using the Parson's method with a Flack parameter of 0.006(5). Crystallographic data are summarized in Table S9.

Table S9. Crystal data and structure refinement for RBabu_MP-05-066 (19).

Report date	2019-08-16
Identification code	MP-05-066
Empirical formula	C68 H72 Br2 Co2 P4
Molecular formula	C68 H72 Br2 Co2 P4
Formula weight	1290.81
Temperature	100.0 K
Wavelength	0.71073 A
Crystal system	Tetragonal
Space group	P432, 2
Unit cell dimensions	$a=21.2718(9) \AA$ ¢ $\quad \alpha=90^{\circ}$.
	$\mathrm{b}=21.2718(9) \AA \AA^{\circ} \quad \beta=90^{\circ}$.
Volume	23925(2) \AA^{3}
Z	16
Density (calculated)	$1.433 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$2.039 \mathrm{~mm}^{-1}$
F(000)	10624
Crystal size	$0.157 \times 0.146 \times 0.092 \mathrm{~mm}^{3}$
Crystal color, habit	Dark Green Block
Theta range for data collection	1.032 to 23.291°.
Index ranges	$-16<=\mathrm{h}<=22,-23<=\mathrm{k}<=23,-58<=1<=58$
Reflections collected	319126
Independent reflections	$17222[\mathrm{R}(\mathrm{int})=0.1535, \mathrm{R}($ sigma $)=0.0650]$
Completeness to theta $=23.291^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.0243 and 0.0078
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	17222 / 0 / 1369
Goodness-of-fit on F^{2}	1.078
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0693, \mathrm{wR} 2=0.1500$
R indices (all data)	$\mathrm{R} 1=0.0982, \mathrm{wR} 2=0.1638$
Absolute structure parameter	0.006(5)
Extinction coefficient	n / a
Largest diff. peak and hole	1.797 and -0.525 e. \AA^{-3}

X-Ray Crystallographic Analysis of
[bis(N-aryliminoethyl-kN,N’)pyridine$\mathrm{N}] \mathrm{CoCl}(22)$

Experimental Summary for 22

The single crystal X-ray diffraction studies were carried out on a Nonius Kappa diffractometer equipped with a Bruker APEX-II CCD and Mo K_{α} radiation $(\lambda=0.71073 \AA$). A $0.286 \times 0.274 \times 0.209$ mm piece of a purple block was mounted on a MiTeGen Micromount with CHRISTO-LUBE MCG 1024 oil. Data were collected in a nitrogen gas stream at $100(2) \mathrm{K}$ using ϕ and ϖ scans. Crystal-to-detector distance was 40 mm and exposure time was 5 seconds per frame using a scan width of 0.75°. Data collection was 100% complete to 25.00° in θ. A total of 21780 reflections were collected covering the indices, $-10<=\mathrm{h}<=10, \quad-28<=\mathrm{k}<=28, \quad-11<=1<=19$. 6221 reflections were found to be symmetry independent, with a $\mathrm{R}_{\text {int }}$ of 0.0475 . Indexing and unit cell refinement indicated a primitive, monoclinic lattice. The space group was found to be $P 2_{1} / \mathrm{n}$. The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model consistent with the proposed structure.

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014. Crystallographic data are summarized in Table S10.

Table S10. Crystal data and structure refinement for RBabu_MP-05-075.

Report date	2019-08-16
Identification code	MP-05-075
Empirical formula	C33 H43 Cl Co N3
Molecular formula	C33 H43 Cl Co N3
Formula weight	576.08
Temperature	100 K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P $121 / \mathrm{n} 1$
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=8.7386(6) \AA & \alpha=90^{\circ} . \\ \mathrm{b}=22.8891(16) \AA & \beta=101.295(2)^{\circ} . \\ \mathrm{c}=15.5231(11) \AA & \gamma=90^{\circ} . \end{array}$
Volume	3044.8(4) \AA^{3}
Z	4
Density (calculated)	$1.257 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.677 \mathrm{~mm}^{-1}$
F(000)	1224
Crystal size	$0.286 \times 0.274 \times 0.209 \mathrm{~mm}^{3}$
Crystal color, habit	Purple Block
Theta range for data collection	1.607 to 26.396°.
Index ranges	$-10<=\mathrm{h}<=10,-28<=\mathrm{k}<=28,-11<=1<=19$
Reflections collected	21780
Independent reflections	$6221[\mathrm{R}(\mathrm{int})=0.0475, \mathrm{R}($ sigma $)=0.0655]$
Completeness to theta $=25.242^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.2602 and 0.2116
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	6221 / 0 / 353
Goodness-of-fit on F^{2}	1.028
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0432, \mathrm{wR} 2=0.1027$
R indices (all data)	$\mathrm{R} 1=0.0683, \mathrm{wR} 2=0.1108$
Extinction coefficient	n/a
Largest diff. peak and hole	0.938 and -0.298 e. \AA^{-3}

X-Ray Crystallographic Analysis of \{[(R,R)-QuinoxP]cobalt(I)(eta-6 -C6D6)\} $+[\mathrm{BArF}]^{-}$(23)

Experimental Summary for 23

The single crystal X-ray diffraction studies were carried out on a Bruker Kappa Photon II CPAD diffractometer equipped with Mo K_{α} radiation $(\lambda=0.71073 \AA)$. A $0.315 \times 0.228 \times 0.154 \mathrm{~mm}$ piece of a purple block was mounted on a MiTeGen Micromount with Paratone 24EX oil. Data were collected in a nitrogen gas stream at $100(2) \mathrm{K}$ using ϕ and ϖ scans. Crystal-to-detector distance was 60 mm and exposure time was 10 seconds per frame using a scan width of 1.0°. Data collection was 99.8% complete to 25.00° in θ. A total of 124192 reflections were collected covering the indices, $-17<=\mathrm{h}<=17$, $-18<=\mathrm{k}<=18,-21<=1<=21.23621$ reflections were found to be symmetry independent, with a $\mathrm{R}_{\mathrm{int}}$ of 0.0381. Indexing and unit cell refinement indicated a primitive, triclinic lattice. The space group was found to be $P 1$. The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model for refinement.

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014. The absolute stereochemistry of the molecule was established by anomalous dispersion using the Parson's method with a Flack parameter of 0.005(3). Crystallographic data are summarized in Table S11.

[ipr-duphosCoCl]2-1H-PARA

ค	6
\bigcirc	m
m	N
6	\bigcirc
6	\bullet

296
$L 89$
$9 \varepsilon 9$
$6 \varepsilon 0$
I6
LZ
2ε
00
92
29
89
79
98
$L 60$

$$
\begin{gathered}
\text { isition Paramet } \\
20191121
\end{gathered}
$$

$$
\begin{aligned}
& \text { Pate_- } \\
& \text { Time }
\end{aligned}
$$

$$
\begin{array}{r}
20191121 \\
18.33 \mathrm{~h}
\end{array}
$$

MP-05-156-QUINOXPCo(C6D6)BARF; 1H NMR in C6D6

23

${ }^{1} \mathrm{H}$ NMR in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(600 \mathrm{MHz})$

23

23

Current Data Parameters $\begin{array}{lr}\text { NAME } & \text { MP-05-156-QUINO } \\ \text { EXPNO } & 5 \\ \text { PROCNO } & 1\end{array}$

F2 - Acquisition Parameters
Date_ 20200713
Time 16.54
$\begin{array}{ll}\text { Time } & 16.54 \\ \text { INSTRUM } & \text { spect }\end{array}$
$\begin{array}{ll}\text { INSTRUM } & \text { spect } \\ \text { PROBHD } & \text { Z114607_0174 }\end{array}$
PROBHD
PULPROG \quad Z114607_0174 (
$\begin{array}{ll}\text { TD } & \text { zgI1qn } \\ \text { TDIOR }\end{array}$

NS
DS
DS
SWH $\begin{array}{lr}\text { SWH } & 133928.578 \mathrm{~Hz} \\ \text { FIDRES } & 2.043588 \mathrm{~Hz}\end{array}$ $\begin{array}{ll}\text { AQ } & 0.4893355 \mathrm{sec}\end{array}$.4893355 se
189.17
189.17
3.733 usec
3.733 usec
6.50 usec 1.00000000 se

$$
564.6769619 \mathrm{MHz}
$$

$$
\begin{array}{r}
564.6769619 \\
19 \mathrm{~F}
\end{array}
$$

$$
\begin{aligned}
& 19 \mathrm{~F} \\
& 12.00 \text { us }
\end{aligned}
$$

$$
\begin{array}{r}
12.00 \mathrm{us} \\
48.93199921 \mathrm{~W}
\end{array}
$$

F2 - Processing parameters

SI	65536
SF	564.7334352 MHz

$$
\begin{array}{lr}
\text { SF } & 564.7334352 \\
\text { WDW } & \text { EM }
\end{array}
$$

$$
\begin{array}{lll}
\begin{array}{l}
\text { SSB } \\
\text { LB } \\
G B
\end{array} & 0 & 0.30 \mathrm{~Hz}
\end{array}
$$

$$
\begin{array}{ll}
\text { GB } & 1.00
\end{array}
$$

${ }^{19} \mathrm{~F} \mathrm{nmr}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

23

Sample Name: MP-06-049-NONADIENE.D

Data File C:\CHEM32\1\DATA\MAHESH\MP-05-082-QUINOXPCOBR2-ZN-3H.D
Sample Name: MP-05-082-QUINOXPCoBr2-Zn-3H.D

Additional Info : Peak(s) manually integrated
FID1 A, (MAHESHMMP-05-082-QUINOXPCOBR2-ZN-3H.D)

Area Percent Report

Sorted By	:	Signal		
Multiplier:	$:$	1.0000		
Dilution:	$:$	1.0000		
Sample Amount:	:	$1.00000 \quad$ [ng/ul]	(not used in calc.)	
Use Multiplier \& Dilution Factor with ISTDs				

Data File C:\CHEM32\1\DATA\MAHESH\MP-05-082-QUINOXPCOBR2-ZN-3H.D
Sample Name: MP-05-082-QUINOXPCoBr2-Zn-3H.D

Signal 1: FID1 A,

Peak \#	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	Area \%
1	5.149		0.0153	224.15259	226.86758	16.62074
2	7.240		0.0142	1124.47925	1227.58936	83.37926
Totals	s :			1348.63184	1454.45694	

Data File C:\CHEM32.NEW\1\DATA\MAHESH \MAHESH_CHIRAL_GC 2019-07-31 11-47-17\MP-05-082-ZN.D
Sample Name: MP-05-082-Zn

Acq. Operator : mp
Seq. Line : 2
Acq. Instrument : Instrument 1
Location : Vial 202
Injection Date : 7/31/2019 1:11:23 PM
Inj : 1
Inj Volume : 1 $\mu \mathrm{l}$
Acq. Method : C:\CHEM32.NEW\1\DATA\MAHESH \MAHESH_CHIRAL_GC 2019-07-31 11-47-17\MP-125-ISO-CHIRAL-CYCLOSIL.M
Last changed : 7/31/2019 12:41:21 PM by mp (modified after loading)
Analysis Method : C:\CHEM32.NEW 1 \METHODS \backslash LI-90-ISO300-RAMP5-CYCLOSIL.M
Last changed : 7/18/2020 2:10:01 PM by MP (modified after loading)
Additional Info : Peak(s) manually integrated

Area Percent Report

| Sorted By | : | Signal |
| :--- | :---: | :---: | :---: |
| Multiplier: | $:$ | 1.0000 |
| Dilution: | $:$ | 1.0000 |
| Use Multiplier \& Dilution Factor with | ISTDs | |

Signal 1: FID1 B, FID1B, Back Signal

Peak \#	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	Area \%
1	28.729	BB	0.1487	657.81714	53.63758	96.83241
2	29.768	MM	0.2003	21.51856	1.79078	3.16759

Data File C:\CHEM32\1\DATA\MAHESH\MP-05-082-QUINOXPCOBR2-BTDHPY-3H.D
Sample Name: MP-05-082-QUINOXPCOBR2-BTDHPY-3H.D

Additional Info : Peak(s) manually integrated
FID1 A, (MAHESHMMP-05-082-QUINOXPCOBR2-BTDHPY-3H.D)

Area Percent Report

Sorted By	:	Signal		
Multiplier:	$:$	1.0000		
Dilution:	$:$	1.0000		
Sample Amount:	:	$1.00000 \quad$ [ng/ul] (not used in calc.)		
Use Multiplier \& Dilution Factor with ISTDs				

```
Signal 1: FID1 A,
```

Peak \#	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	1.855	BB	0.0152	123.01768	125.06725	9.34019
2	5.146	MM	0.0163	219.06192	224.35565	16.63241
3	7.237	BB	0.0139	974.99933	1066.07556	74.02740

Totals : 1317.078931415 .49846

Data File C:\CHEM32....DATA\MAHESH \MAHESH_CHIRAL_GC 2019-07-31 11-47-17\MP-05-082-BTDHPY.D
Sample Name: MP-05-082-btdhpy

Acq. Operator : mp
Seq. Line : 3
Acq. Instrument : Instrument 1
Location : Vial 203
Injection Date : 7/31/2019 2:33:49 PM
Inj : 1
Inj Volume : 1 $\mu \mathrm{l}$
Acq. Method : C: \CHEM32.NEW\1\DATA\MAHESH \MAHESH_CHIRAL_GC 2019-07-31 11-47-17\MP-125-ISO-CHIRAL-CYCLOSIL.M
Last changed : 7/31/2019 12:41:21 PM by mp (modified after loading)
Analysis Method : C:\CHEM32.NEW 1 \METHODS \backslash LI-90-ISO300-RAMP5-CYCLOSIL.M
Last changed : 7/18/2020 2:11:04 PM by MP (modified after loading)
Additional Info : Peak(s) manually integrated
FID1 B, FID1B, Back Signal (MAHESHMMAHESH_CHIRAL_GC 2019-07-31 11-47-171MP-05-082-BTDHPY.D)

Area Percent Report

| Sorted By | : | Signal |
| :--- | :---: | :---: | :---: |
| Multiplier: | $:$ | 1.0000 |
| Dilution: | : | 1.0000 |
| Use Multiplier \& Dilution Factor with | ISTDs | |

Signal 1: FID1 B, FID1B, Back Signal

Peak \#	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	Area \%
1	28.727	BB	0.1497	650.14160	52.92645	96.56620
2	29.770	MM	0.2171	23.11838	1.77452	3.43380

Additional Info : Peak(s) manually integrated
FID1 A, (MAHESHMMP-05-082-QUINOXPCOBR-DIMER-3H.D)

Area Percent Report

Sorted By	:	Signal		
Multiplier:	$:$	1.0000		
Dilution:	$:$	1.0000		
Sample Amount:	:	$1.00000 \quad$ [ng/ul] (not used in calc.)		
Use Multiplier \& Dilution Factor with ISTDs				

```
Signal 1: FID1 A,
```

Peak \#	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	Area \%
1	1.873	BB	0.0161	308.49216	304.28009	23.78464
2	5.166	MM	0.0167	237.52470	237.38588	18.31308
3	7.244	BB	0.0139	751.00549	839.08966	57.90228
Totals				1297.02235	1380.75563	

Data File C:\CHEM32....HESH \MAHESH_CHIRAL_GC 2019-07-31 11-47-17\MP-05-082-QUINOXP-DIMER.D
Sample Name: MP-05-082-QUINOXP-DIMER

Acq. Operator : mp
Seq. Line : 1
Acq. Instrument : Instrument 1
Location : Vial 201
Injection Date : 7/31/2019 11:48:56 AM
Inj : 1
Inj Volume : 1 $\mu \mathrm{l}$
Acq. Method : C:\CHEM32.NEW\1\DATA \MAHESH \MAHESH_CHIRAL_GC 2019-07-31 11-47-17\MP-125-ISO-CHIRAL-CYCLOSIL.M
Last changed : 7/31/2019 12:41:21 PM by mp (modified after loading)
Analysis Method : C:\CHEM32.NEW 1 \METHODS \backslash LI-90-ISO300-RAMP5-CYCLOSIL.M
Last changed : 7/18/2020 2:07:49 PM by MP (modified after loading)
Additional Info : Peak(s) manually integrated
FID1 B, FID1B, Back Signal (MAHESHMMAHESH_CHIRAL_GC 2019-07-31 11-47-17MMP-05-082-QUINOXP-DIMER.D)

Area Percent Report

| Sorted By | : | Signal |
| :--- | :---: | :---: | :---: |
| Multiplier: | $:$ | 1.0000 |
| Dilution: | : | 1.0000 |
| Use Multiplier \& Dilution Factor with | ISTDs | |

Signal 1: FID1 B, FID1B, Back Signal

$\begin{gathered} \text { Peak } \\ \quad \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[p A * s]} \end{gathered}$	Height [pA]	Area \%
1	28.719	MM	0.2052	391.58096	31.80393	96.24855
2	29.753	MM	0.2061	15.26251	1.23429	3.75145

FID1 B, FID1B, Back Signal (MAHESH\MAHESH_CHIRAL_GC 2020-07-18 12-31-03\MP-06-043-BENZENE.D)

Area Percent Report				
Sorted By	:	Signa		
Multiplier:			1.0000	
Dilution:		:	1.0000	
Use Multiplier \&	lution	ctor	ISTDs	
Signal 1: FID1 B, FID1B, Back Signal				
Peak RetTime Type \# [min]	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{pA} * \mathrm{~s}]} \end{gathered}$	Height $\text { [} \mathrm{pA} \text {] }$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
128.799 MM	0.2078	56.416	4.52521	7.289
2 29.804 MM	0.1873	$1.571731 .39847 \mathrm{e}-1$		2.710

Area Percent Report				
Sorted By	:	Signal		
Multiplier:		:	. 0000	
Dilution:		:	. 0000	
Use Multiplier \& Dilution Factor with ISTDs				
Signal 1: FID1 B, FID1B, Back Signal				
$\begin{gathered} \text { Peak RetTime Type } \\ \# \quad[m i n] \end{gathered}$	Width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	Area
128.799 MM	0.2078	56.416	4.525	97.701
2 29.824 MM	0.1712	1.327	. 29218 e	2.298

Table S2, Entry 2
GC Conditions: HP-5MS, $100^{\circ} \mathrm{C}, 5 \mathrm{~min}, 20^{\circ} \mathrm{C} / \mathrm{min}$ to $250^{\circ} \mathrm{C}$

Signal 1: FID1 A,

$\begin{gathered} \text { Peak } \\ \ddagger \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {\left[p A^{*} s\right]} \end{array}$	Height $[\mathrm{pA}]$	Area f
1	8.522	VV	0.0157	22.69189	22.68320	4.16608
2	9.291		0.0148	446.72842	459.56573	82.01640
3	9.679	BV	0.0160	75.26148	72.93928	13.81751

Table S2, Entry 5
GC Conditions: HP-5MS, $100^{\circ} \mathrm{C}, 5 \mathrm{~min}, 20^{\circ} \mathrm{C} / \mathrm{min}$ to $250^{\circ} \mathrm{C}$

Signal 1: FID1 A,

Data File C:\CHEM32\1\DATA\MAHESH\MP-06-128-CAT-CO-40H.D
Sample Name: MP-06-128-CAT-CO-40H

Peak \#	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
3	6.635		0.0209	10.34493	7.13682	0.95318
4	6.728		0.0143	236.88599	249.32899	21.82653
Totals				1085.31231	1049.57961	

*** End of Report ***

Data File C:\CHEM32\1\DATA\MAHESH\MP-07-016-INSITU-IPRDUPHOSCO-PHCHO-ISOPR.D
Sample Name: MP-07-016-INSITU-IPRDUPHOSCO-PHCHO-ISOPR

Acq. Operator	MP	
Acq. Instrument	: Instrument 1	Location : Vial 15
Injection Date	: 3/30/2021 5:49:40 PM	
Inj Volume : $1 \mu \mathrm{l}$		
Acq. Method	C: \CHEM32 1 \METHODS \backslash MP - 80-RAMP.M	
Last changed	: 3/30/2021 5:46:01 PM by MP	
Analysis Method	: C: \CHEM32 \1 \METHODS \backslash MP-80-RAMP .M	
Last changed	3/30/2021 4:15:28 PM by MP	
Method Info	: General Higher BP that correlates	es to Stambuli Group

Acq. Operator : MP
Acq. Instrument : Instrument $1 \quad$ Location : Vial 15
Injection Date : 3/30/2021 5:49:40 PM
Inj Volume : $1 \mu \mathrm{l}$
Acq. Method : C:\CHEM32\1\METHODS $\backslash M P-80-R A M P . M$
Last changed : 3/30/2021 5:46:01 PM by MP
Analysis Method : C: \CHEM32 \1 \METHODS \backslash MP-80-RAMP.M
Last changed : 3/30/2021 4:15:28 PM by MP
(modified after loading)
Method Info : General Higher BP that correlates to Stambuli Group's GCMS - 30 min

Area Percent Report

Sorted By	:	Signal	
Multiplier:	$:$	1.0000	
Dilution:	$:$	1.0000	
Use Multiplier \& Dilution Factor	with	ISTDs	

Signal 1: FID1 A,

Data File C:\CHEM32\1\DATA\MAHESH \MP-07-016-IPR-DUPHOS-COBR2-ZN-24H.D
Sample Name: MP-07-016-IPR-DUPHOS-COBR2-ZN-24H

Unreacted Benzaldehyde

Data File C:\CHEM32\1\DATA\MAHESH\MP-07-016-ISOLATED-IPR-DUPHOSCOCL-CRYSTA.D
Sample Name: MP-07-016-ISOLATED-IPR-DUPHOSCOCL-CRYSTA

Acq. Operator : MP
Acq. Instrument : Instrument $1 \quad$ Location : Vial 16
Injection Date : 3/30/2021 5:29:31 PM
Inj Volume : $1 \mu \mathrm{l}$
Acq. Method : C: \CHEM32 \1 \METHODS $\backslash M P-80-R A M P . M$
Last changed : 3/30/2021 4:51:34 PM by DS
Analysis Method : C: \CHEM32 \1 \METHODS $\backslash M P-80-R A M P . M$
Last changed : 3/30/2021 4:15:28 PM by MP (modified after loading)
Method Info : General Higher BP that correlates to Stambuli Group's GCMS - 30 min

Area Percent Report

Sorted By	:	Signal	
Multiplier:	$:$	1.0000	
Dilution:	$:$	1.0000	
Use Multiplier \& Dilution Factor	with	ISTDs	

Signal 1: FID1 A,

Peak R \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {[p A * s]} \end{gathered}$	Height [pA]	Area \%
1	1.996 BB	0.0183	610.35071	508.30597	1.000 e 2
Totals	s :		610.35071	508.30597	
				S98	

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By
: Signal
Multiplier:
Dilution:
: 1.0000

Use Multiplier \& Dilution Factor with ISTDs

Sample Name: MP-05-163-IPR-DUPHOS-PHCHO-OTMS-DIENE.D

Additional Info : Peak(s) manually integrated
FID1 B, FID1B, Back Signal (MAHESHIMP-05-163-IPR-DUPHOS-PHCHO-OTMS-DIENE.D)

Area Percent Report

Sorted By
Multiplier: : 1.0000
Dilution: : 1.0000
Use Multiplier \& Dilution Factor with ISTDs

Data File C:\CHEM32....DIPSHI \MAHESH_CHIRAL_GC 2021-03-29 21-29-33\MP-06-128-CAT-CO-DMBD.D
Sample Name: MP-06-128-CAT-CO-DMBD

Acq. Operator : MP
Seq. Line : 2
Acq. Instrument : Instrument 1
Location : Vial 202
Injection Date : 3/30/2021 5:13:28 AM
Inj : 1
Inj Volume : 1 $\mu \mathrm{l}$
Acq. Method : C:\CHEM32.NEW\1\DATA\DIPSHI \MAHESH_CHIRAL_GC 2021-03-29 21-29-33\MP-100-ISO300-CHIRAL.M
Last changed : 7/28/2020 9:06:06 PM by MP
Analysis Method : C: \CHEM32.NEW\1\METHODS $\backslash \mathrm{LI}-90-I S O 300-R A M P 5-C Y C L O S I L . M ~$
Last changed : 3/30/2021 6:38:48 PM by Jon
(modified after loading)
Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By	:	Signal	
Multiplier:	$:$	1.0000	
Dilution:	$:$	1.0000	
Use Multiplier \& Dilution Factor	with	ISTDs	

Signal 1: FID1 B, FID1B, Back Signal

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[p A * s]} \end{gathered}$	Height [pA]	Area \%
1	181.048	MM	1.2931	484.09302	6.23937	99.08995
2	184.090	FM	0.8991	4.44594	8.24168e-2	0.91005

Data File C:\CHEM32....DIPSHI \MAHESH_CHIRAL_GC 2021-03-29 21-29-33\MP-06-128-CAT-CO-DMBD.I
Sample Name: MP-06-128-CAT-CO-DMBD
Totals : $488.53896 \quad 6.32178$

*** End of Report ***

Data File C:\CHEM32\1\DATA\MAHESH\MP-06-030-CAT-CO-2H.D
Sample Name: MP-06-030-CAT-CO-2H.D

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By	:	Signal	
Multiplier:	:	1.0000	
Dilution:	:	1.0000	
Use Multiplier \& Dilution Factor with	ISTDs		

```
Signal 1: FID1 A,
```

Peak \#	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[\mathrm{pA} * \mathrm{~s}]} \end{array}$	Height [pA]	Area \%
1	8.877	FM	0.0157	431.21741	457.18283	52.94511
2	9.072	BB	0.0133	270.53165	313.40701	33.21602
3	9.243	BB	0.0132	112.71218	132.18829	13.83886
Totals	s :			814.46124	902.77814	

Sample Name: MP-06-028-CAT-CO-IPRDUPHOS-HB

Acq. Operator	MP
Acq. Instrument	Instrument 1 Location : Vial 201
Injection Date	: 6/23/2020 8:01:07 PM
	Inj Volume : 1 ¢l
Acq. Method	: C: \CHEM32.NEW S $^{\text {\METHODS } \backslash \text { MP -90-30MIN-RAMP-CYCLOSIL.M }}$
Last changed	(6/19/2019 11:50:20 AM by MP
Analysis Method	: C \} \backslash CHEM32.NEW \backslash 1 \backslash \mathrm { METHODS } \MP-100-ISO300-CHIRAL.M
Last changed	7/7/2020 4:22:32 PM by MP (modified after loading)
Sample Info	: 2.5 HR

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By	$:$	Signal	
Multiplier:	$:$	1.0000	
Dilution:	$:$	1.0000	
Sample Amount:	$:$	$1.00000 \quad$ [ng/ul] (not used in calc.)	

Use Multiplier \& Dilution Factor with ISTDs

Data File C:\CHEM32.NEW\1\DATA \MAHESH
Sample Name: MP-06-028-CAT-CO-IPRDUPHOS-HB

```
Signal 1: FID1 B, FID1B, Back Signal
```

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[\mathrm{pA} * \mathrm{~s}]} \end{array}$	Height [pA]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	24.054	MM	0.1600	46.23942	4.81647	10.74587
2	24.397	MM	0.1847	384.05994	34.65346	89.25413

Totals : 430.2993639 .46993

[^0]Data File C:\CHEM32\1\DATA\MAHESH\MP-06-028-COL-1EQ.D
Sample Name: MP-06-028-COL-1EQ.D

Additional Info : Peak(s) manually integrated
(MD1 A, (MAHESHMMP-06-028-COL-1EQ.D)

Area Percent Report

Sorted By	$:$	Signal	
Multiplier:	$:$	1.0000	
Dilution:	$:$	1.0000	

Use Multiplier \& Dilution Factor with ISTDs

Peak \#	RetTime [min]	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	Area \%
1	8.876		0.0151	261.94107	263.63089	42.54850
2	9.072		0.0137	177.83084	203.36923	28.88602
					S109	

Data File C:\CHEM32\1\DATA\MAHESH\MP-06-028-COL-1EQ.D
Sample Name: MP-06-028-COL-1EQ.D

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\text { min] }} \end{gathered}$	Type	Width [min]	$\begin{array}{r} \text { Area } \\ {[p A * s]} \end{array}$	Height [pA]	Area \%
3	9.243	BB	0.0136	175.85	204.123	. 565

Totals :
615.62938671 .12404

*** End of Report ***

[^0]: *** End of Report ***

