Heterobimetallic μ_2 -Halocarbyne complexes

Liam K. Burt, Rian D. Dewhurst, Anthony F. Hill, Richard Y. Kong, Emily E. Nahon, and Chee S. Onn

General

Experimental work was performed using standard Schlenk techniques using dried and pre-purified nitrogen or in an inert atmosphere glovebox charged with an argon atmosphere unless specified otherwise. Reactions employed dried and degassed solvents distilled over sodium and benzophenone (ethers, arenes and paraffins) or calcium hydride (CH₂Cl₂, MeCN). The compounds $[M(\equiv CCI)(CO)_2(Tp^*)]$ (M = Mo **1a**, W **1b**),¹ $[Pt(\eta^2-C_2H_4)(PPh_3)_2],^2$ $[Pt(nbe)_3],^3$ [AuCI-SMe₂]⁴ have been described previously. All other reagents were used as received from commercial suppliers.

NMR spectra were obtained on a Bruker Avance 400 (1H at 400.1 MHz, ¹³C{¹H} at 100.6 MHz, ³¹P{¹H} at 162.0 MHz, ¹⁹⁵Pt{¹H} at 85.7 MHz), a Bruker Avance 600 (¹H at 600.0 MHz, ¹³C{¹H} at 150.9 MHz) or a Bruker Avance 700 (¹H at 700.0 MHz, ¹³C{¹H} at 176.1 MHz, ³¹P{¹H} at 283.4 MHz) spectrometers at the temperatures indicated. Chemical shifts (δ) are reported in ppm with coupling constants given in Hz and are referenced to the solvent resonance or external references {85% H₃PO₄ in H₂O for ³¹P{¹H}, 1.2M Na₂PtCl₆ for ¹⁹⁵Pt{¹H}. The multiplicities of NMR resonances are denoted by the abbreviations s (singlet), d (doublet), t (triplet), m (multiplet), br (broad) and combinations thereof for more highly coupled systems. Where applicable, the stated multiplicity refers to that of the primary resonance exclusive of ¹⁸³W or ¹⁹⁵Pt satellites. In select cases, distinct peaks were observed in the ¹H and ¹³C{¹H} NMR spectra, but to the level of accuracy that is reportable (i.e., two decimal places for ¹H NMR, one decimal place for ¹³C{¹H} NMR) they are reported as having the same chemical shift.

The abbreviation 'pz' is used to refer to the pyrazolyl rings on the hydridotris(3,5-dimethylpyrazol-1-yl)borate (Tp*) ligand. Spectra provided generally correspond to samples obtained directly from chromatography and may contain residual solvent as recrystallised samples often display reduced solubility. The B*H* protons give rise to very broad signals around 4–5 ppm in the ¹H NMR spectra due to coupling to the quadrupolar boron nuclei. These are not listed in the experimental NMR data as their chemical shifts and associated integrals are not determined accurately. The BH unit, being remote from the metal centre of interest is not particularly responsive to variations and accordingly ¹¹B{¹H} NMR spectra were not recorded.

Infrared spectra were obtained using a Shimadzu FTIR-8400 spectrometer (liquid) or Perkin Elmer FTIR Spectrum Two (solid state ATR, diamond anvil). Signals are denoted according to their absorption strength such as very sharp (vs), strong (s), medium (m), weak (w) or broad (br). Elemental microanalytical data were provided by Macquarie University, Australia, with the caveat that

compounds containing B–N bonds are considered prone to incomplete oxidation in the combustion analysis (formation of refractory boron nitride materials). This may account for unsatisfactory data (%N) for **2a** and **3b**. Solvates evident from data were confirmed where possible by NMR spectroscopy. Highresolution electrospray ionisation mass spectrometry (ESI-MS) was performed by the ANU Research School of Chemistry mass spectrometry service with acetonitrile or dichloromethane as the matrix.

Crystallographic Details

Data for X-ray crystallography were collected with Agilent Technologies Xcalibur or Supernova/EosS2-CCD diffractometers using graphite monochromated Mo-K α radiation (λ = 0.71073 Å) or Cu-K α radiation (λ = 1.54184 Å) employing the CrysAlis PRO-CCD and -RED software,⁵ with Gaussian absorption corrections being applied. The structures were solved using intrinsic phasing and refined by full-matrix least-squares on F^2 in an anisotropic (for non-hydrogen atoms) approximation using the SHELXS or SHELXT and SHELXL programs,^{6,7} Implemented within the Olex2 suite of programs.⁸ Hydrogen atoms were located geometrically and refined using a riding model. Diagrams were produced using the CCDC visualisation program Mercury.^{9,10}

Computational Details

Computational studies were performed by using the *SPARTAN20*[®] suite of programs.¹¹ Geometry optimisation (gas phase) for diatomics and metal complexes was performed at the DFT level of theory using the exchange functionals ω B97X-D of Head-Gordon.^{12,13} The Los Alamos effective core potential type basis set (LANL2D ζ) of Hay and Wadt ¹⁴⁻¹⁶ was used for I, Mo and W while Pople 6-31G* basis sets¹⁷ were used for all other atoms. For the free ligands CX⁺/CO/CN⁻, geometries were optimised using the ω BP97X-V/6-31G* functional. Frequency calculations were performed for all compounds to confirm that each optimized structure was a local minimum and also to identify vibrational modes of interest. Cartesian atomic coordinates are provided below.

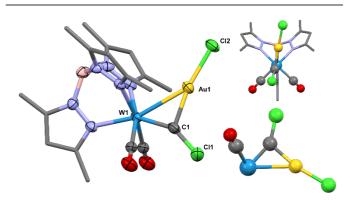
Synthetic Procedures and Crystallographic Data

Crystallisation of [Mo(CBr)(CO)₂(Tp*)] (1b). Crystals suitable for X-ray diffraction studies were grown from liquid-liquid diffusion of petroleum ether 40–60 into an acetone solution of **1c** and vapour diffusion of hexane into a CHCl₃ solution of **1c** at 5 °C. *Crystal data for* C₁₈H₂₂BBrMoN₆O₂, M_w = 541.07 gmol⁻¹, orthorhombic, *Pnma* (No. 62), *a* = 20.4940(4) Å, *b* = 13.7716(3) Å, *c* = 7.9961(1) Å, *V* = 2256.78(7) Å³, *Z* = 4, *D*_{calc} = 1.591 Mgm⁻³, μ (Mo K α) = 2.38 mm⁻¹, T = 150.0(1) K, clear light orange block, 0.38 × 0.35 × 0.16 mm, 2684 independent measured reflections (2 θ_{max} = 55.0°), *R*₁ = 0.056, *wR*₂ = 0.143 for 2020 reflections [*I* >2 $\sigma(I)$] and 174 parameters with 14 restraints. CDCC 2173049. A hexane hemisolvate was also prepared by the vapour diffusion of *n*-hexane into a CHCl₃ solution of **1c**. *Crystal data for* $C_{18}H_{22}BBrMoN_6O_2 \cdot 0.5(C_6H_{14})$ $M_w = 584.16$ gmol⁻¹, orthorhombic, *Fdd2* (No. 43), a = 38.1509(8) Å, b = 33.3659(8)

Å, c = 7.9763(1) Å, V = 10153.3(3) Å³, Z = 16, $D_{calc} = 1.529$ Mgm-³, μ (Cu K α) = 6.30 mm⁻¹, T = 150.0(1) K, clear light yellow plate, 0.45 × 0.10 × 0.05 mm, 4659 independent measured reflections ($2\theta_{max} = 146.2^{\circ}$), $R_1 = 0.045$, $wR_2 = 0.111$ for 4561 reflections [$I > 2\sigma(I)$] and 308 parameters with 49 restraints. CDCC 2173045.

Crystallisation of [W(CBr)(CO)₂(Tp*)] (1d). Crystals suitable for X-ray diffraction studies were grown from the vapour diffusion of *n*-hexane into a CHCl₃ solution of the title compound at ambient temperature over a week. *Crystal data for* C₁₈H₂₂BBrN₆O₂W, *Mw* = 628.98 gmol⁻¹, orthorhombic, *Pnma* (No. 62), *a* = 20.2626(3) Å, *b* = 13.7288(3) Å, *c* = 7.9566(2) Å, *V* = 2213.38(8) Å³, *Z* = 4, *D_{calc}* = 1.888 Mgm⁻³, μ (Cu K α) = 12.00 mm⁻¹, *T* = 150.0(1) K, clear light yellow plate, 0.18 × 0.12 × 0.06 mm, 2185 independent measured reflections (2 θ_{max} = 140.2°), *R*₁ = 0.057, *wR*₂ = 0.128 for 2051 reflections [*I* >2 σ (*I*)] and 165 parameters with 9 restraints. CDCC 2173044.

Synthesis of [MoAu(µ-CCI)CI(CO)2(Tp*)] (2a). The halocarbyne $[Mo(=CCI)(CO)_2(Tp^*)]$ (1a: 200 mg, 0.403 mmol) and $[AuCl(SMe_2)]$ (0.120 g, 0.407 mmol) were dissolved is CH_2Cl_2 (10 mL) to initially provide a yellow solution that changed to orange within one minute. The subsequent reaction was monitored by infra-red spectroscopy, which indicated reaction completion after 90 minutes. During the reaction the flask was covered with aluminium foil to largely exclude light, thereby minimising formation of colloidal gold. Upon completion, the solution was eluted through diatomaceous earth which was further washed with CH₂Cl₂ prior to dilution with *n*-hexane and concentration under reduced pressure to provide a bright orange powder which was isolated via vacuum filtration. The product was washed with *n*-hexane (2 x 10 mL) and *n*-pentane (1 x 10 mL) and dried in vacuo to provide 2a as a fine orange powder (0.220 g, 0.302 mmol, 75% isolated yield). Crystals suitable for X-ray diffraction studies were grown by vapour diffusion of cyclohexane into a CHCl₃ solution of the title compound at 5 °C.


IR (CH₂Cl₂, cm⁻¹): 2031 vs v_{C0}, 1957 vs v_{C0}. IR (ATR, cm⁻¹): 2556 w v_{BH}, 2020 vs v_{C0}, 1962 vs v_{C0}. ¹H NMR (700 MHz, CDCl₃, 25°C) $\delta_{\rm H}$ 5.90 (s, 3 H, pzCH), 2.44 (s, 6 H, pzCH₃), 2.24 (s, 3 H, pzCH₃), 2.38 (s, 6 H, pzCH₃), 2.35 (s, 3 H, pzCH₃). ¹³C{¹H} NMR (176 MHz, CDCl₃, 25 °C): $\delta_{\rm C}$ 230.4 (µ-CCl), 218.1 (CO), 152.5, 151.9 [C⁵(pz)], 146.3, 145.9 [C³(pz)], 108.1 107.7 [C⁴(pz)], 16.9, 15.4, 13.2, 12.9 (pzCH₃). MS (ESI, +ve ion, *m/z*): Found: 731.0084. Calcd for C₁₈H₂₃¹¹BN₆O₂³⁵Cl₂⁹⁸Mo¹⁹⁷Au [M+H]⁺: 731.0072. Anal. Found: C, 29.68; H, 3.17; N, 10.92%. Calcd for C₁₈H₂₂AuBCl₂MoN₆O₂: C, 29.66; H, 3.04; N, 11.53%.

Crystal data for 2(C₁₈H₂₂AuBCl₂MoN₆O₂), M_w = 1458.06 gmol⁻¹, monoclinic, $P2_1/c$ (No. 13), a = 25.4253(3) Å, b = 10.9689(1) Å, c = 19.7589 (2) Å, β = 108.022 (1)°, V = 5240.15 (10) Å³, Z = 4, D_{calc} = 1.848 Mgm⁻³, μ (Cu K α) = 16.38 mm⁻¹, T =

150.0(1) K, clear light orange plate, 0.16 × 0.12 × 0.05 mm, 10256 independent measured reflections ($2\theta_{max} = 147.8^{\circ}$), $R_1 = 0.042$, $wR_2 = 0.102$ for 9646 reflections [$I > 2\sigma(I)$] and 565 parameters without restraints. CDCC 2173041.

Synthesis of [WAu(μ -CCI)Cl(CO)₂(Tp*)] (2b) A mixture of [W(=CCI)(CO)₂(Tp*)] (1b: 200 mg, 0.342 mmol) and [AuCl(SMe₂)] (0.100 g, 0.340 mmol) was dissolved in CH₂Cl₂ (10 mL) and stirred for 90 minutes by which time the reaction was deemed to be complete (IR). During the reaction the flask was covered with aluminium foil. The solution was eluted through diatomaceous earth which was washed with further CH₂Cl₂ prior to dilution with n-hexane and concentrating under reduced pressure. This provided a bright orange powder which was collected *via* vacuum filtration and washed with n-hexane (2 x 10 mL) and n-pentane (1 x 10 mL) before drying in vacuo. This afforded **2b** as a fine orange powder (0.184 g, 0.225 mmol, 66% isolated yield). Crystals suitable for X-ray diffraction studies were grown by vapour diffusion of cyclohexane into a CHCl₃ solution of the title compound at 5 °C.

IR (CH₂Cl₂, cm⁻¹): 2018 vs v_{c0}, 1934 vs v_{c0}. IR (ATR, cm⁻¹): 2559 w v_{BH}, 2008 vs v_{c0}, 1943 s v_{c0}, 1933 vs v_{c0}. ¹H NMR (700 MHz, CDCl₃, 25 °C): δ_c 5.95 (s, 2 H, pzCH), 5.93 (s, 1 H, pzCH), 2.48 (s, 9 H, pzCH₃), 2.38 (s, 6 H, pzCH₃), 2.34 (s, 3 H, pzCH₃). ¹³C{¹H} NMR (176 MHz, CDCl₃, 25 °C): δ_c 222.2 (¹J_{CW} = 125 Hz, μ –CCl), 213.8 (¹J_{CW} = 152 Hz, CO), 153.7, 151.8 [C⁵(pz)], 146.2, 145.9 [C³(pz)], 108.4, 108.0 [C⁴(pz)], 17.6, 16.0, 13.2, 12.8 (pzCH₃). MS (ESI, +ve ion, *m*/*z*): Found: 839.0344. Calcd for C₁₈H₂₂¹¹BN₆O₂²³Na³⁵Cl₂¹⁸⁴W¹⁹⁷Au [M]⁺: 839.0347. Anal. Found: C, 28.01; H, 3.03; N, 10.12%. Calcd for C₁₈H₂₂AuBCl₂N₆O₂W: C, 26.46; H, 2.71; N, 10.29%. We attribute, without evidence, the unsatisfactory elemental microanalytical data to partial desolvation of cyclochexane during extended drying under vacuum, noting that Calcd for C₁₈H₂₂AuBCl₂N₆O₂W.0.25C₆H₁₂: C, 27.95; H, 3.01; N, 10.03%.

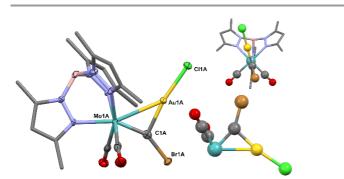


Figure S1: Molecular structure of **2b** in a crystal of **2b**.0.5C₆H₁₂ (50% displacement ellipsoids, pyrazolyl ligands simplified and hydrogen atoms and solvent omitted). Selected bond lengths (Å) and angles (°): W1–C1 1.891(6), C1–Cl1 1.697(6), Au1–Cl2 2.277(2), W1–Au1 2.7926(5), C1–Au1 2.026(6), Au1–C1–Cl1 120.2(3), W1–C1–Cl 148.9(4). Insets: view along the W–C axis and a model showing the tilting of the chlorocarbyne ligand.

Crystal data for $C_{18}H_{22}AuBCl_2N_6O_2W\cdot C_3H_6$, $M_w = 859.02$ gmol⁻¹, monoclinic, $P2_1/n$ (No. 14) a = 13.3472(2) Å, b = 10.4746(1) Å, c = 19.2527(3) Å, $\beta = 102.807(1)^\circ$, V = 2624.69(6) Å³, Z = 4, $D_{calc} = 2.174$ Mgm⁻³, μ (Cu $K\alpha$) = 20.46 mm⁻¹, T = 150.0(1) K, clear light orange plate, 0.15 × 0.06 × 0.04 mm, 5126 independent measured reflections ($2\theta_{max} = 147.0^\circ$), $R_1 = 0.032$, $wR_2 = 0.087$ for 4570 reflections [$I > 2\sigma(I)$] and 301 parameters without restraints. CDCC 2173040

Synthesis of [MoAu(µ-CBr)Cl(CO)2(Tp*)] (2c). A mixture of $[Mo(\equiv CBr)(CO)_2(Tp^*)]$ (1c: 94 mg, 0.173 mmol) and [AuCl(SMe₂)] (50 mg, 0.170 mmol) was dissolved in CH₂Cl₂ (10 mL) in a flask wrapped in aluminum foil to exclude light. The initially bright yellow solution darkened over 10 minutes to bright orange. The ensuing reaction was monitored by infraspectroscopy which indicated that the reaction was complete after ~90 minutes. At this point, the reaction mixture was eluted through a flash column (diatomaceous earth, neat CH_2CI_2) to remove traces of colloidal gold and provide a bright orange solution. This was diluted with *n*-hexane and concentrated under reduced pressure to provide an orange solid. Following ultrasonic trituration for 5 minutes, the orange solid was collected via vacuum filtration, washed with n-hexane (2 x 10 mL) and *n*-pentane (1 x 10 mL) before drying in vacuo for 4 hours, to give 2c (110 mg, 0.142 mmol, 84% yield). Crystals suitable for single-crystal X-ray diffraction studies were grown by vapour diffusion of *n*-hexane into a CH₂Cl₂ solution of compound at 5 °C overnight.

IR (CH₂Cl₂, cm⁻¹): 2032 vs v_{C0}, 1960 vs v_{C0}. IR (ATR, cm⁻¹): 2562 w v_{BH}, 2024 vs v_{C0}, 1957 vs v_{C0}, 1946 vs v_{C0}. ¹H NMR (600 MHz, CDCl₃, 25 °C) δ_{H} 5.92 (s, 3 H, pzCH), 2.48 (s, 6 H, pzCH₃), 2.45 (s, 3 H, pzCH₃), 2.40 (s, 6 H, pzCH₃), 2.37 (s, 3 H, pzCH₃). ¹³C{¹H} NMR (151 MHz, CDCl₃, 25 °C): δ_{C} 224.4 (µ-CCl), 218.5 (CO), 152.5, 151.9 [C⁵(pz)], 146.4, 145.9 [C³(pz)], 108.1, 107.7 [C⁴(pz)], 16.9, 15.4, 13.3, 12.9 [pzCH₃]. MS (ESI, +ve ion, *m/z*): Found: 740.9482. Calcd for C₁₆H₂₂¹¹BN₆²³Na³⁵Cl⁷⁹Br⁹⁸Mo¹⁹⁷Au [M–2CO+Na]⁺: 740.9488. Anal. Found: C, 27.92; H, 2.88; N, 10.62%. Calcd for C₁₈H₂₂AuBBrClMoN₆O₂: C, 27.95; H, 2.87; N, 10.87%.

Figure S2: Molecular structure of **2c** in a crystal of **2c**·0.5CH₂Cl₂ (50% displacement ellipsoids, pyrazolyl ligands simplified and hydrogen atoms and solvent omitted). Selected bond lengths (Å) and angles (°): Mo1A–C1A 1.887(9), C1A–Br1A 1.846(9), Au1A–C1A 2.289(2), Mo1A–Au1A 2.7830(7), C1A–Au1A 2.039(9), Au1A–C1A–Br1A 118.2(4), Mo1A–C1A–Br1A 151.5(5). Insets: view along the Mo–C axis and a model showing the tilting of the bromocarbyne ligand.

Crystal data for $2(C_{18}H_{22}AuBBrCIMON_6O_2) \cdot CH_2Cl_2$, $M_w = 1631.91 \text{ gmol}^{-1}$, orthorhombic, $Pca2_1$ (No. 21), a = 19.9121(1) Å, b = 10.8854(1) Å, c = 23.8615(1) Å, V = 5172.01(6) Å³, Z = 4, $D_{calc} = 2.096 \text{ Mgm}^{-3}$, $\mu(Cu K\alpha) = 18.43 \text{ mm}^{-1}$, T = 150.0(1) K, clear light orange block $0.37 \times 0.25 \times 0.09 \text{ mm}$, 10173 independent measured reflections ($2\theta_{max} = 147.4^\circ$), $R_1 = 0.032$, $wR_2 = 0.080$ for 10151 reflections [$I > 2\sigma(I)$] and 587 parameters with 16 restraints. CDCC 2173050.

Synthesis of $[WAu(\mu-CBr)Cl(CO)_2(Tp^*)]$ (2d). To a flask containing $[W(\equiv CBr)(CO)_2(Tp^*)]$ (1d: 0.100 g, 0.159 mmol) and $[AuCl(SMe_2)]$ (0.047 g, 0.160 mmol) was added CH_2Cl_2 (5 mL) and the resulting mixture was stirred for 30 min, during which time the yellow solution turned orange. The mixture was filtered through diatomaceous earth and ethanol was added to the filtrate. This was concentrated under reduced pressure to precipitate an orange solid, which was filtered and washed with pentane to yield 2d (0.091 g, 0.106 mmol, 66%). Single crystals suitable for X-ray diffractometry were grown by slow evaporation of a CH_2Cl_2/n -hexane mixture.

IR (CH₂Cl₂, cm⁻¹): 2019 vs, 1935 vs v_{C0}. ¹H NMR (400 MHz, CDCl₃, 25 °C) $\delta_{\rm H}$ 5.96 (s, 2 H, pzCH), 5.94 (s, 1 H, pzCH), 2.48 (s, 9 H, pzCH₃), 2.38 (s, 6 H, pzCH₃), 2.34 (s, 3 H, pzCH₃). ¹³C{¹H} NMR (101 MHz, CDCl₃, 298 K): $\delta_{\rm C}$ 214.4 (CO, ¹*J*_{WC} = 153 Hz), 212.1 (µ-CBr, ¹*J*_{WC} = 122.2 Hz), 153.8, 152.9 [C⁵(pz)], 146.5, 146.1 [C³(pz)], 108.7, 108.1 [C⁴(pz)], 17.8, 16.2, 13.4, 13.0 (pzCH₃). MS (ESI, +ve ion, *m*/*z*): Found: 866.0492. Calc. for C₂₀H₂₅Au¹¹B⁷⁹BrN₇O₂¹⁸⁴W [M–Cl+CH₃CN]⁺: 866.0522. Anal. Found: C, 24.89; H, 2.44; N, 9.89%. Calc. for C₁₈H₂₂AuBBrClN₆O₂W: C, 25.10; H, 2.57; N, 9.76%.

Crystal data for C₁₈H₂₂AuBBrClN₆O₂W, $M_w = 861.40 \text{ gmol}^{-1}$, monoclinic, space group $P2_1/c$ (no. 14), a = 25.3829(4) Å, b = 10.9902(1) Å, c = 19.8684(3) Å, $\beta = 107.856(2)^\circ$, V = 5275.57(14) A³, Z = 8, T = 150.0(1) K, μ (Cu K α) = 21.163 mm⁻¹, $D_{calc} = 2.169$ Mgm⁻³, 31402 reflections measured ($8.84^\circ \le 2\Theta \le 146.06^\circ$), 10375 unique ($R_{int} = 0.0499$, $R_{sigma} = 0.0499$) which were used in all calculations. The final R_1 was 0.0513 ($I > 2\sigma(I)$) and wR_2 was 0.1366 (all data) for 557 refined parameters without restraint. CCDC 2033040.

Synthesis of [MoPt(μ -CCI)(PPh₃)₂(CO)₂(Tp^{*})] (3a). A mixture of [Mo(=CCI)(CO)₂(Tp^{*})] (1a: 0.098 g, 0.197 mmol) and [Pt(η^{2} -C₂H₄)(PPh₃)₂] (0.161 g, 0.215 mmol) were dissolved in toluene (10 mL) to give a yellow solution. A small amount of gas was steadily liberated. The solution darkened over 90 minutes to an orange colour, after which the reaction was confirmed to be completed by infrared spectropscopy. The solvent was then removed under reduced pressure before the residue was then crystallised from a mixture of THF and EtOH affording an yellow powder identified as **3a** (0.190 g, 0.156 mmol, 79% isolated yield). Crystals suitable for X-ray diffractometry were acquired by vapour diffusion of *n*-hexane into a THF solution of compound **3a** at 5 °C overnight.

IR (CH₂Cl₂, cm⁻¹): 1906 vs v_{CO}, 1823 vs v_{CO}. Note: The complex is only briefly stable in CH₂Cl₂ as other bands at 1960/1870 arise from the onset of isomerisation to a μ -carbido complex **6**. IR

(ATR, cm⁻¹): 2518 w v_{BH}, 1898 vs v_{CO}, 1830 vs v_{CO}, 1816 vs v_{CO}. ¹H NMR (700 MHz, C₆D₆, 25 °C): δ_H 7.96 (m, 6 H, C₆H₅), 7.50 (m, 6 H, C_6H_5), 6.99 (m, 9 H, C_6H_5), 6.87 (m, 9 H, C_6H_5), 5.66 (s, 2 H, pzCH), 5.52 (s, 1 H, pzCH), 2.53 (s, 6 H, pzCH₃), 2.25 (s, 3 H, pzCH₃), 2.19 (s, 6 H, pzCH₃), 2.16 (s, 3 H, pzCH₃). ¹³C{¹H} NMR (176 MHz, C₆D₆, 25 °C): δ_C 314.8 (dd, ²J_{CP} = 75, 6 Hz, μ-CCl), 228.5 (m, ²*J*_{CP} = 70 Hz, CO), 153.1, 150.5 [C⁵(pz)], 144.1, 143.2 [C³(pz)], 136.6 [d, ${}^{1}J_{CP}$ = 38 Hz, C¹(C₆H₅)], 135.6 [d, ${}^{2}J_{CP}$ = 13 Hz, C^{2,6}(C₆H₅)], 135.1 [d, ${}^{2}J_{CP}$ = 12 Hz, $C^{2,6}(C_{6}H_{5})$], 134.3 [d, ${}^{1}J_{CP}$ = 46 Hz, $C^{1}(C_{6}H_{5})$], 129.5 [d, ${}^{3}J_{CP}$ = 10 Hz, $C^{3,5}(C_{6}H_{5})$], 128.4 [$C^{4}(C_{6}H_{5})$], 127.6 [d, ${}^{3}J_{CP}$ = 10 Hz, C^{3,5}(C₆H₅)], 106.7, 106.5 [C⁴(pz)], 16.1, 15.8, 13.0, 12.7 (pzCH₃). ³¹P{¹H} NMR (162 MHz, C₆D₆, 25 °C): δ_P 38.24 (d, ²J_{PP} = 24 Hz, ${}^{1}J_{PPt}$ = 4391 Hz), 25.82 (d, ${}^{2}J_{PP}$ = 24 Hz, ${}^{1}J_{PPt}$ = 2758 Hz). ¹⁹⁵Pt{¹H} NMR (150 MHz, C₆D₆, 25 °C): δ_{Pt} –3940 (dd, ¹J_{PtP} = 4398, 2761 Hz). MS (ESI, +ve ion, m/z): Found: 1217.2092. Calcd for C₅₄H₅₂¹¹BN₆O₂P₂³⁵Cl⁹⁸Mo¹⁹⁵Pt [M]⁺: 1217.2110. Anal. Found: C, 53.34; H, 4.29; N, 6.67%. Calcd for $C_{54}H_{52}BCIMoN_6O_2P_2Pt$: C, 53.33; H, 4.31; N, 6.91%.

Crystal data for $2(C_{54}H_{52}BCIMoN_6O_2P_2Pt) \cdot 2.5(C_2H_3N)$, $M_w = 2535.12$, triclinic, $P\overline{1}$ (No. 2), a = 11.5634(2) Å, b = 21.0076(4) Å, c = 24.0458(5) Å, $\alpha = 71.105(2)^\circ$, $\beta = 80.456(2)^\circ$, $\gamma = 78.496(2)^\circ$, V = 5383.22(19) Å³, Z = 2, $D_{calc} = 1.564$ Mgm⁻³, $\mu(Cu K\alpha) = 8.10$ mm⁻¹, T = 150.0(1) K, clear light orange block, $0.20 \times 0.09 \times 0.05$ mm, 20974 independent measured reflections ($2\theta_{max} = 147.4^\circ$), $R_1 = 0.037$, $wR_2 = 0.087$ for 19434 reflections [$I \ge 2\sigma(I)$] and 1303 parameters with 15 restraints. CDCC 2173043.

Synthesis of [WPt(µ-CCl)(PPh₃)₂(CO)₂(Tp*)] (3b). A mixture of [W(=CCl)(CO)₂(Tp*)] (1b: 0.115 g, 0.197 mmol) and [Pt(η^{2} - $C_2H_4)(PPh_3)_2$] (0.165 g, 0.221 mmol) was dissolved in THF (10 mL) and heated under reflux with stirring for 30 minutes and cooled for 30 minutes. During this time, the initially yellow solution developed an orange colour after which the reaction was deemed to be complete by infra-red spectroscopy. The solvent was removed under reduced pressure to give an orange solid, which could be recrystallised from THF and n-hexane and collected via vacuum filtration and washed with ethanol (2 x 10 mL) and n-hexane (10 mL). The collected sample was dried in vacuo for 4 hours to give a yellow powder identified as 3b (0.108 g, 0.083 mmol, 42% isolated yield). The same scale reaction performed in toluene (10 mL) at room temperature with stirring for 60 minutes returned comparable yields. Crystals suitable for single-crystal X-ray diffraction studies were grown from the vapour diffusion of MeCN into a THF solution of the compound at ambient temperature over 4 days.

IR (CH₂Cl₂, cm⁻¹): 1895 vs v_{C0}, 1810 vs v_{C0}. IR (ATR, cm⁻¹): 2529 w v_{BH}, 1897 sh v_{C0}, 1888 vs v_{C0}, 1818 vs v_{C0}, 1806 vs v_{C0}. ¹H NMR (700 MHz, C₆D₆, 25 °C): $\delta_{\rm H}$ 8.00 (m, 6 H, C₆H₅), 7.53 (m, 6 H, C₆H₅), 7.00 (m, 10 H, C₆H₅), 6.89 (m, 8 H, C₆H₅), 5.64 (s, 2 H, pzCH), 5.46 (s, 1 H, pzCH), 2.65 (s, 6 H, pzCH₃), 2.27 (s, 3 H, pzCH₃), 2.13 (s, 6 H, pzCH₃), 2.09 (s, 3 H, pzCH₃). ¹³C{¹H} NMR (151 MHz, C₆D₆, 25 °C): $\delta_{\rm C}$ 297.2 (dd, ²J_{CP} = 76, 5 Hz, µ-CCl), 223.2 (d, ³J_{CP} = 5 Hz, ¹J_{CW} = 67 Hz, CO), 153.6, 151.0 [C⁵(pz)], 143.8, 142.7 [C³(pz)], 136.5 [d, ¹J_{CP} = 37 Hz, C¹(C₆H₅)], 135.3 [d, ²J_{CP} = 13 Hz, C^{2,6}(C₆H₅)], 124.7 [d, ²J_{CP} = 12 Hz, C^{3,5}(C₆H₅)], 128.0

 $\begin{bmatrix} C^4(C_6H_5) \end{bmatrix}, 127.1 \quad \begin{bmatrix} d, \ ^3J_{CP} = 12 \ Hz, \ C^{3,5}(C_6H_5) \end{bmatrix}, 106.6, 106.4 \\ \begin{bmatrix} C^4(pz) \end{bmatrix}, 16.4, 15.9, 12.4, 12.2 \ (pzCH_3). \ ^{31}P\{^1H\} \ NMR \ (162 \ MHz, C_6D_6, 25 \ ^{\circ}C): \ ^{\circ}\delta_P \ 41.89 \ (d, \ ^{2}J_{PP} = 23 \ Hz, \ ^{1}J_{PPt} = 4312 \ Hz), 24.39 \ (d, \ ^{2}J_{PP} = 23 \ Hz, \ ^{1}J_{PPt} = 2762 \ Hz). \ ^{195}Pt\{^1H\} \ NMR \ (85.7 \ MHz, \ CDCI_3, 25 \ ^{\circ}C): \ ^{\circ}\delta_{Pt} \ -3992 \ (dd, \ ^{1}J_{PtP} = 4316, 2760 \ Hz, \ ^{1}J_{PtW} = 345 \ Hz). \ MS \ (ESI, +ve \ ion, \ m/z): \ Found: \ 1347.20589. \ Calcd \ for \ C_{54}H_{52}^{11}B^{79}BrN_6O_2P_2^{195}Pt^{184}W \ [M]^+: \ 1347.20534. \ Anal. \ Found: C, \ 49.73; \ H, \ 4.16; \ N, \ 7.08\%. \ Calcd \ for \ C_{54}H_{52}BCIN_6O_2P_2PtW: \ C, \ 49.73; \ H, \ 4.02; \ N, \ 6.44\%.$

Crystal data for $2(C_{54}H_{52}BCIN_6O_2P_2PtW) \cdot 2(C_2H_3N)$, $M_w = 2690.41$, triclinic, $P\overline{1}$ (No. 2), a = 11.5580(2) Å, b = 21.0234(3) Å, c = 24.0391(5) Å, $\alpha = 71.013(2)^\circ$, $\beta = 80.492(2)^\circ$, $\gamma = 78.102(1)^\circ$, V = 5374.3(2) Å³, Z = 2, $D_{calc} = 1.663$ Mgm⁻³, $\mu(Cu \ K\alpha) = 10.10$ mm⁻¹, T = 150.0(1) K, clear light red block $0.09 \times 0.05 \times 0.05$ mm, 21031 independent measured reflections $(2\theta_{max} = 147.4^\circ)$, $R_1 = 0.044$, $wR_2 = 0.100$ for 18930 reflections $[I > 2\sigma(I)]$ with 1357 parameters and 22 restraints. CDCC 2173046.

Synthesis of [MoPt(µ-CCl)(µ-CO)(dppe)(CO)(Tp*)] (4). A yellow solution containing [Mo(=CCl)(CO)₂(Tp*)] (0.100 g, 0.201 mmol) and $[Pt(\eta^2-C_2H_4)(PPh_3)_2]$ (0.165 g, 0.221 mmol) was heated under reflux in THF (10 mL) for 30 minutes. The resulting orange solution was cooled before a solution of dppe (0.094 g, 0.235 mmol) in THF (5 mL) was added. The mixture was stirred at ambient temperature for 16 hours during which time the colour darkened to red. Volatiles were removed under reduced pressure to give an orange/red residue that was then crystallised from a mixture of CH₂Cl₂ and EtOH to give a red solid, which was collected via vacuum filtration, washed with EtOH (1 x 10 mL) and n-hexane (2 x 10 mL) and dried in vacuo for 4 hours to provide 4 (0.136 g, 0.125 mmol, 62% isolated yield). Crystals suitable for single-crystal X-ray diffractometry were grown from the vapour diffusion of n-hexane into a THF solution of the compound at ambient temperature. IR (CH₂Cl₂, cm⁻¹): 1911 vs $\nu_{CO},$ 1808 sh $\nu_{CO},$ 1772 s $\nu_{\mu\text{-}CO}.$ IR (ATR, cm⁻¹): 2544 w v_BH, 2526 w v_BH, 1885 vs v_CO, 1786 s v_{\mu\text{-}CO}, 1767 vs v_{\mu\text{-}CO}. {}^1\text{H} NMR (700 MHz, C₆D₆, 25 °C): δ_H 7.73 (m, 4 H, C₆H₅), 7.51 (m, 4 H, C₆H₅), 6.96 (m, 3 H, C₆H₅), 6.92 (m, 3 H, C₆H₅), 6.83 (m, 3 H, C_6H_5), 6.79 (m, 3 H, C_6H_5), 5.40 (s, 2 H, pzCH), 5.26 (s, 1 H, pzCH), 2.53 (s, 3 H, pzCH₃), 2.16 (s, 6 H, pzCH₃), 1.96 (s, 6 H, pzCH₃), 1.90 (s, 3 H, pzCH₃), 1.84 (m, 4 H, PCH₂).¹³C{¹H} NMR (151 MHz, C₆D₆, 25 °C) $\delta_{\rm C}$ 324.2 (d, ²J_{CP} = 73 Hz, CCl), 232.9 (CO), 152.7, 150.3 $[C^{5}(pz)]$, 144.0, 143.1 $[C^{3}(pz)]$, 134.5 $[d, {}^{2}J_{CP} = 12 Hz, C^{2,6}(C_{6}H_{5})]$, 133.5 [d, ${}^{2}J_{CP}$ = 12 Hz, $C^{2,6}(C_{6}H_{5})$], 132.7 [dd, ${}^{1}J_{CP}$ = 36; ${}^{2}J_{CP}$ = 5 Hz, $C^{1}(C_{6}H_{5})]$, 130.5 [$C^{4}(C_{6}H_{5})$], 130.3 [$C^{4}(C_{6}H_{5})$], 128.6 [$C^{3,5}(C_{6}H_{5})$], 107.1, 106.6 [C⁴(pz)], 31.1 [dd, ${}^{1}J_{CP}$ = 34; ${}^{2}J_{CP}$ = 14 Hz, PCH₂), 16.1, 15.0, 12.9, 12.7 (pzCH₃). ${}^{31}P{}^{1}H$ NMR (162 MHz, C₆D₆, 25 °C): δ_P 48.17 (d, ²J_{PP} = 40 Hz, ¹J_{PPt} = 2675 Hz), 47.84 (d, ²J_{PP} = 40 Hz, ¹J_{PPt} = 4031 Hz). ¹⁹⁵Pt{¹H} NMR (85.7 MHz, C₆D₆, 25 °C): δ_{Pt} –4203 (dd, ¹*J*_{PtP} = 4031, 2673 Hz). MS (ESI, +ve ion, *m*/*z*): Found: 1035.1771. Calcd for $C_{42}H_{46}^{11}BN_6P_2^{35}Cl^{98}Mo^{195}Pt$ [M–2CO]⁺: 1035.1743. Anal. Found: C, 48.46; H, 4.57; N, 7.54%. Calcd for C₄₄H₄₆BClMoN₆O₂P₂Pt: C, 48.48; H, 4.25; N, 7.71%.

Crystal data for C₄₄H₄₆BClMoN₆O₂P₂Pt, M_w = 1090.10 gmol⁻¹, triclinic, $P\overline{1}$ (No. 2), a = 10.6762(2) Å, b = 13.5205(4) Å, c = 15.4074(4) Å, α = 83.317(2)°, β = 89.918(2)°, γ = 87.946 (2)°, V =

2207.48(10) Å³, Z = 2, $D_{calc} = 1.640 \text{ Mgm}^{-3}$, $\mu(\text{Cu } K\alpha) = 9.76 \text{ mm}^{-1}$, T = 150.0(1) K, clear light red block $0.21 \times 0.19 \times 0.14 \text{ mm}$, 8625 independent measured reflections ($2\theta_{max} = 145.2^{\circ}$), $R_1 = 0.029$, $wR_2 = 0.067$ for 8509 reflections [$I > 2\sigma(I)$], 548 parameters with 7 restraints. CDCC 2173047.

Synthesis of [W2Pt(µ-CCl)2(µ-CO)2(CO)2(Tp*)2] (5). A yellow solution containing [W(=CCl)(CO)₂(Tp*)] (1b: 0.050 g, 0.085 mmol) and [Pt(nbe)₃] (0.025 g, .052 mmol) was stirred in THF (20 mL) for 5 days at ambient temperature. The reaction was observed to darken to orange over several hours, and after 24 hours was a deep-red colour. At this point solvent was removed under reduced pressure to give a red residue which was purified via flash column chromatography (silica gel, neat petroleum ether then 1:1 CH_2Cl_2 /petroleum ether 60–80) to provide a red eluate which upon concentration gave a maroon powder. The resulting solid was collected via vacuum filtration, washed with n-hexane (3 x 10 mL) and dried in vacuo to afford a red microcrystalline powder (0.031 g, 0.023 mmol, 46% isolated yield). Crystals suitable for X-ray diffractometry were grown from the slow evaporation of Et₂O at 0 °C. IR (CH₂Cl₂, cm⁻¹): 2555 w v_{BH}, 1967 vs v_{CO}, 1865 vs v_{CO}, 1606 s v_{μ -CO}. IR (ATR, cm⁻¹): 2542 w v_{BH}, 1963 vs v_{CO}, 1852 vs v_{CO}, 1606 s v_{μ -CO}. ¹H NMR (700 MHz, CDCl₃, 25 °C): δ_H 5.92 (br, 2 H, pzCH), 5.85 (s, 2 H, pzCH), 5.81 (s, 2 H, pzCH), 2.66 (s, 6 H, pzCH₃), 2.43 (br, 12 H, pzCH₃), 2.36 (m, 12 H, pzCH₃), 2.30 (br, 6 H, pzCH₃). ¹H NMR (700 MHz, CDCl₃, -40 °C): δ_H 5.94, 5.87, 5.81 [s x 3, 2 H x 3, pzCH), 2.65, 2.43, 2.40, 2.34, 2.33, 2.24 (s x 6, 6 H x 6, pzCH₃). ¹³C{¹H} NMR (151 MHz, CDCl₃, -40 °C): δ_{C} 267.9 (CCl), 227.2, 219.2 (CO), 153.4, 153.1, 152.5 [C⁵(pz)], 145.6, 144.1, 143.9 [C³(pz)], 107.5, 107.2, 106.8 [C⁴(pz)], 17.3, 15.6, 15.5 [pzCH₃], 13.07 13.05 13.02 (overlapping singlets, pzCH₃). ¹⁹⁵Pt{¹H} NMR (150 MHz, CDCl₃, -40 °C): δ_{Pt} -2062 (s.br.). MS (ESI, +ve ion, m/z): Found: 1363.1827. Calcd for $C_{36}H_{44}^{11}B_2^{35}Cl^{37}ClN_{12}O_4^{195}Pt^{183}W_2$ [M]⁺: 1363.1827. Anal. Found: C, 31.78; H, 3.28; N, 12.14%. Calcd for C₃₆H₄₄B₂Cl₂N₁₂O₄PtW₂: C, 31.70; H, 3.25; N, 12.32%. All single crystals selected for analysis suffered from rotational disorder of CO and CCI ligands in addition to multiple sites for the central platinum atom. For this reason this structural model is reported as a confirmation of connectivity but does not return metrical parameters of sufficient precision for detailed analysis.

Crystal data for $C_{25.96}H_{44}B_2Cl_2N_{12}O_4Pt_{0.8}W_2 \cdot 0.19(Pt)$, $M_w = 1361.59$, triclinic, $P\overline{1}$ (No. 2), a = 10.4275(7) Å, b = 10.6735(7) Å, c = 11.3340(9) Å, $\alpha = 73.274(6)^\circ$, $\beta = 64.083(7)^\circ$, $\gamma = 83.109(5)^\circ$, V = 1086.56(15) Å³, Z = 1, $D_{calc} = 2.081$ Mgm⁻³, μ (Cu K α) = 16.98 mm⁻¹, T = 150.0(1) K, clear dark red plate, $0.10 \times 0.06 \times 0.04$ mm, 4291 independent measured reflections ($2\theta_{max} = 146.8^\circ$), $R_1 = 0.037$, $wR_2 = 0.088$ for 3579 reflections [$I > 2\sigma(I)$], 324 parameters without restraints CDCC 2173039.

Synthesis of $[WPt(\mu-C)Cl(PPh_3)_2(CO)_2(Tp^*)]$ (6). A yellow solution containing $[(Tp^*)W(\equiv CCl)(CO)_2]$ (1b: 0.204 g, 0.349 mmol) and $[Pt(PPh_3)_4]$ (0.431 g, 0.346 mmol) was heated in THF (20 mL) under reflux for 2 days. The solvent was removed from the resulting orange solution under reduced pressure to give an orange residue. The ³¹P{¹H} NMR spectrum of this material revealed a sample of the bridging halocarbyne **3b** was generated. Attempts to isolate the halocarbyne compound included purification by flash column chromatography (silica gel, neat petroleum ether then neat CH_2Cl_2) eluting a major orange compound before removing solvent under reduced pressure. This was identified as pure title compound, **6**, where isomerisation of **3b** occurs on silica gel with CH_2Cl_2 . Recrystallization from a mixture of CH_2Cl_2 and EtOH gave a yellow solid which was collected *via* vacuum filtration. The solid was washed with EtOH (2 x 10 mL) and n-hexane (10 mL) before drying in vacuo for 3 hours to afford compound **6** as a fine orange powder (0.124 g, 0.0951 mmol, 27% isolated yield). Crystals suitable for X-ray diffraction were grown from the vapour diffusion of *n*-hexane into a CHCl₃ solution of the title compound at 5 °C overnight.

IR (CH₂Cl₂, cm⁻¹): 1945 vs v_{c0}, 1852 vs v_{c0}. IR (ATR, cm⁻¹): 2548 w $\nu_{BH},$ 2539 w $\nu_{BH},$ 1933 vs $\nu_{CO},$ 1836 vs $\nu_{CO}.$ 1H NMR (400 MHz, CDCl₃, 25 °C): δ_H 7.96 – 7.90 (m, 6 H, C₆H₅), 7.43 – 7.40 (m, 9 H, C₆H₅), 7.39 – 7.34 (m, 6 H, C₆H₅), 7.14 (m, 3 H, C₆H₅), 6.96 (m, 6 H, C₆H₅), 5.55 (s, 2 H, pzCH), 5.51 (s, 1 H, pzCH), 2.57 (s, 6 H, pzCH₃), 2.32 (s, 6 H, pzCH₃), 2.19 (s, 3 H, pzCH₃), 2.00 (s, 3 H, pzCH₃). ¹³C{¹H} NMR (151 MHz, CDCl₃, 25 °C): δ_C 318.8 (t, ²J_{CP} = 7 Hz, W=C-Pt), 230.7 (¹J_{CW} = 179 Hz, CO), 151.7, 151.1 [C⁵(pz)], 143.6, 143.2 [C³(pz)], 135.2, 135.2 [overlapping doublets, ²J_{CP} =11 Hz, $C^{2,6}(C_6H_5)$], 132.4 [dd, ${}^{1}J_{CP}$ = 53 Hz, ${}^{3}J_{CP}$ = 5 Hz, $C^{1}(C_6H_5)$], 131.7, 130.7 [dd, ${}^{1}J_{CP}$ = 53 Hz, ${}^{3}J_{CP}$ = 5 Hz, $C^{1}(C_{6}H_{5})$], 130.0, 129.8 $[C^{4}(C_{6}H_{5})]$, 128.0 [d, ${}^{2}J_{CP}$ = 11 Hz, $C^{3,5}(C_{6}H_{5})]$, 127.2 [d, ${}^{2}J_{CP}$ = 10 Hz, C^{3,5}(C₆H₅)], 106.7, 106.0 [C⁴(pz)], 17.2, 14.8, 12.9, 12.4 (pzCH₃). ³¹P{¹H} NMR (162 MHz, CDCl₃, 25 °C): δ_P 28.32 (d, ²J_{PP} = 443 Hz, ${}^{1}J_{PPt}$ = 3200 Hz), 24.01 (d, ${}^{2}J_{PP}$ = 443 Hz, ${}^{1}J_{PPt}$ = 3223 Hz). ¹⁹⁵Pt{¹H} NMR (85.7 MHz, CDCl₃, 25 °C): δ_{Pt} -3718 (t, ¹J_{PtP} = 3223 Hz). MS (ESI, +ve ion, m/z): Found: 1268.2902. Calcd for $C_{54}H_{52}^{11}BN_6O_2P_2^{195}Pt^{184}W$ [M–Cl]⁺: 1268.2877. Anal. Found: C, 49.82; H, 4.08; N, 6.47%. Calcd for C54H52BCIN6O2P2PtW: C, 49.73; H, 4.02; N, 6.44%.

Crystal data for $C_{54}H_{52}BCIN_6O_2P_2PtW$, $M_w = 1304.15 \text{ gmol}^{-1}$, monoclinic, $P2_1/n$, a = 9.5614(1) Å, b = 22.6311(2) Å, c = 23.3107(3) Å, $\beta = 98.430(1)^\circ$, V = 4989.59(9) Å³, Z = 4, $D_{calc} = 1.736 \text{ Mgm}^{-3}$, $\mu(Cu K\alpha) = 10.21 \text{ mm}^{-1}$, T = 150.0(1) K, clear light yellow plate, $0.1 \times 0.06 \times 0.05 \text{ mm}$, 9939 independent measured reflections ($2\theta_{max} = 147.2^\circ$), $R_1 = 0.032$, $wR_2 = 0.086$ for 8797 reflections [$I > 2\sigma(I)$] with 623 parameters and no restraints. CDCC 2173042.

Observations concerning the isomerism of 3b to 6. As noted above, attempts to purify 3b by column chromatography on silica gel eluting with dichloromethane resulted in immediate conversion to the μ -carbido complex 6. Initially it was suspected that polar solvents favoured this isomerism, perhaps *via* ionisation to form an intermediate cationic μ carbido complex. The following observations however argue against this interpretation in that whilst C–Cl ionisation still seems plausible, we suspect it is adventitious proton sources that initiate isomerism, most likely by assisting chloride dissociation.

(i) A solution of **3b** in dry (ex CaH₂) CD₂Cl₂ shows no conversion to spectroscopically discernible

(³¹P{¹H} NMR) amounts of 6 over 24 hours at room temperature.

- (ii) A sample of **3b** in was heated to 60 °C in CD₃CN (distilled from CaH₂, stored over 3Å molecular sieves) for 2 days. The bulk of the solid remained undissolved while the small amount that dissolved was primarily isomerised μ-carbido complex **6**. This was decanted from the solid which was then dissolved in purified CDCl₃ and found to be pure **3b**. Thus, while the very small proportion of the solid that dissolves does isomerise to the μ-carbido, the bulk remains as a solid a=that does not interconvert.
- (iii) A sample of **3b** in d_8 -toluene was heated to 60 °C for 48 hours and found to comprise exclusively the μ -chlorocarbyne **3b** with no sign of measurable conversion to **6**.
- (iv) A sample of **3b** in CDCl₃ (distilled and stored over silver wire) was heated to 60 °C for 4 hours, assayed by ³¹P{¹H} NMR spectroscopy and then heated for a further 2 days and re-assayed. A second sample of **3b** was treated similarly except that 'bench-top' CDCl₃ as received from the supplier was used. Integration of signals due to **6** against those for **3b** provided the following

Time at °C		at °C	% Conversion to (6)	% Conversion to (6)
(min)			Purified CDCl ₃	'Benchtop' CDCl₃
	30	25 °C	0	0
	60	60 °C	$\approx 0^{a}$	$\approx 0^a$
	240	60 °C	9	19
	960	60 °C	50	75
	2880	60 °C	83	100 ^b

 $^{\it o}$ Discernible, but below accurate integration levels. $^{\it b}$ Accompanied by onset of decomposition.

(v) A sample of **3b** (21 mg) was dissolved in dichloromethane and chromatographed on silica gel eluting with the same solvent to afford an orange eluate that was freed of volatiles and found to be pure 6, with no traces of **3b**.

Together these observations suggest that either adventitious water/HCl or the hydroxylic surface of silica gel accelerate the isomerism of the chlorocarbyne **3b** to the m-carbido complex **6**.

Synthesis of [WPt(μ_2 -CCI)(CO)₃(PPh₃)(Tp*)] (7). A yellow solution of [W(=CCI)(CO)₂(Tp*)] (1b: 0.203 g, 0.347 mmol) and [Pt(η^2 -C₂H₄)(PPh₃)₂ (0.257 g, 0.344 mmol) in THF (36 mL) was stirred for 2 hours at 60 °C. The solution darkened gradually to orange-red. Upon cooling to ambient temperature, carbon monoxide (CO) was bubbled through the mixture, which immediately changed colour from orange to dark red. After one hour, excess CO was purged from the flask with N₂ and the mixture was then freed of volatiles under reduced pressure to

give a yellow/red solid that could be purified by flash column chromatography (silica gel, petroleum ether/CH₂Cl₂ gradient elution). After eluting a yellow band of unreacted $[W(\equiv CCI)(CO)_2(Tp^*)],$ further elution with 20% CH₂Cl₂/petroleum ether provided a deep red coloured band that could be recrystallised by concentration. The resulting olive coloured solid was collected via vacuum filtration, washing with *n*-hexane $(3 \times 10 \text{ mL})$ before drying *in vacuo* for 16 hours. The olive coloured solid was confirmed as the title compound (0.126 g, 0.118 mmol, 34% isolated yield), noting the deep red colour returns when redissolved. Furthermore, the yield of this reaction is reduced as heat also provides the μ_2 -carbido complex $[WPt(\mu_2-C)Cl(CO)_2(PPh_3)_2(Tp^*)]$ and incomplete retains μ_2 -halocarbyne consumption $[WPt(\mu_2 -$ CCI)(PPh₃)₂(CO)₂(Tp*)]. Crystals suitable for X-ray diffraction were grown from the vapour diffusion of n-hexane into a THF solution of compound at 0 °C.

IR (CH_2Cl_2, cm^-1): 2027 vs v_{CO}, 1917 vs v_{CO}, 1833 vs v_{CO}. IR (ATR, cm $^{-1}$): 2545 w v_{BH}, 2040 vs v_{CO}, 1917 vs v_{CO}, 1843 vs v_{CO}. ^{1}H NMR (600 MHz, CDCl₃, 25 °C): δ_H 7.56 (m, 6 H, C₆H₅), 7.39 (m, 9 H, C₆H₅), 5.83 (s, 1 H, pzCH), 5.77 (s, 2 H, pzCH), 2.74 (s, 3 H, pzCH₃), 2.41 (s, 6 H, pzCH₃), 2.34 (s, 3 H, pzCH₃), 2.06 (s, 6 H, pzCH₃). ¹³C{¹H} NMR (151 MHz, CDCl₃, 25 °C): δ_C 295.6 (d, ²J_{CP} = 6; ¹*J*_{CW} = 151; ¹*J*_{CPt} = 885 Hz, CCl), 225.2 (d, ¹*J*_{CW} = 152 Hz, W-CO), 196.8 (¹*J*_{CPt} = 1381 Hz, PtCO), 154.0, 151.0 [C⁵(pz)], 145.1, 143.5 $[C^{3}(pz)]$, 134.1 [d, ${}^{2}J_{CP}$ = 12 Hz, $C^{2,6}(C_{6}H_{5})]$, 132.8 [d, ${}^{1}J_{CP}$ = 50 Hz, $C^{1}(C_{6}H_{5})]$, 130.5 [d, ${}^{4}J_{CP}$ = 3 Hz, $C^{4}(C_{6}H_{5})]$, 128.4 [d, ${}^{3}J_{CP}$ = 11 Hz, C^{3,5}(C₆H₅)], 107.5, 106.6 [C⁴(pz)], 16.7, 15.6, 12.9 [pzCH₃]. ³¹P{¹H} NMR (283 MHz, CDCl₃, 25 °C): δ_P 35.69 (¹*J*_{PPt} = 3857 Hz). ¹⁹⁵Pt{¹H} NMR (150 MHz, CDCl₃, 25 °C): δ_{Pt} –4197 (d, ${}^{1}J_{PtP}$ = 3840; ${}^{1}J_{PtW}$ = 295 Hz]. MS (ESI, +ve ion, m/z): Found: 1041.1670. Calcd for $C_{36}H_{37}^{11}BN_6O_2P^{35}CI^{184}W^{195}Pt$ [M–CO]⁺: 1041.1654. Anal. Found: C, 41.50; H, 3.60; N, 7.64%. Calc. for C₃₇H₃₇BCIN₆O₃PPtW: C, 41.54; H, 3.49; N, 7.86%.

Crystal data for C₃₇H₃₇BClN₆O₃PPtW, *M*_w = 1069.89 gmol⁻¹, monoclinic, *P2*₁/*n*, *a* = 15.0798(1) Å, *b* = 16.5138(1) Å, *c* = 15.4322(3) Å, β = 93.404(1)°, *V* = 3836.22(4) Å³, *Z* = 4, *D*_{calc} = 1.852 Mgm⁻³, μ (Cu *K*α) = 13.57 mm⁻¹, *T* = 150(0) K, clear light pink prism 0.18 × 0.10 × 0.08 mm, 7008 independent measured reflections (2 θ _{max} = 147.4°), *R*₁ = 0.024, *wR*₂ = 0.058 for 6747 reflections [*I* >2 σ (*I*)], 466 parameters without restraints. CDCC 2173048.

Synthesis of [WCl₃(Tp*)] (8) and [W(\equiv CCl)Cl₂(Tp*)] (9). To a flask containing [W(\equiv CBr)(CO)₂(Tp*)] (1d: 0.150 g, 0.238 mmol) and PhICl₂ (0.130 g, 0.473 mmol) was added CH₂Cl₂ (5 mL) and the resulting mixture was stirred for 1 hour, during which time the yellow solution turned dark red-green. The volatiles were removed under vacuum and the residue was subjected to column chromatography (10 × 1 cm silica gel column), eluting with petroleum ether initially and gradually increasing the polarity to 2:1 v/v petrol/CH₂Cl₂. The first intense blue band was collected, and the volatiles were removed under reduced pressure to give a bright blue solid of pure **9** (0.035 g, 0.035 mmol, 15%). Single crystals suitable for X-ray diffractometry were grown by slow evaporation of a CH₂Cl₂/*n*-hexane mixture.

6

| Dalton Trans., 2022, ESI

¹H NMR (600 MHz, CDCl₃, 25 °C): δ_{H} 2.37 (s, 9 H, pzCH₃), 2.48 (s, 3 H, pzCH₃), 2.57 (s, 6 H, pzCH₃), 5.84 (s, 1 H, pzCH), 5.97 (s, 2 H, pzCH). ¹³C{¹H} NMR (151 MHz, CDCl₃, 25 °C): δ_{C} 12.7, 13.2, 14.3, 18.1 (pzCH₃), 108.5, 108.7 (pzCH), 143.6, 147.0, 154.2, 155.4 [C^{3,5}(pz]], 240.9 (W=C). MS (ESI, +ve ion, *m/z*): Found: 563.0876. Calc. for C₁₆H₂₂¹¹B³⁵Cl₂N₆¹⁸⁴W [M–Cl]⁺: 563.0882. Anal. Found: C, 31.87; H, 3.62; N, 13.89%. Calc. for C₁₆H₂₂BCl₃N₆W: C, 32.06; H, 3.70; N, 14.02%.

Crystal data for $C_{16}H_{22}BCl_3N_6W$: $M_w = 599.40 \text{ gmol}^{-1}$, orthorhombic, Pnma (no. 62)*, a* = 16.2810(4) Å, *b* = 12.8355(3) Å, c = 13.3658(3) Å, V = 2793.09(11) Å³, Z = 4, T = 150.0(1) K, μ(Cu Kα) = 10.390 mm⁻¹, D_{calc} = 1.425 Mgm⁻³, 17210 reflections measured ($2\Theta_{max}$ = 170.30°), 2930 unique (R_{int} = 0.0462, R_{sigma} = 0.0280) which were used in all calculations. The final R_1 was 0.0401 ($l > 2\sigma(l)$) and wR_2 was 0.1116 (all data) for 143 refined parameters without restraint. A solvent mask was calculated for hexane solvent molecules that could not be modelled satisfactorily, and 212 electrons were found in a volume of 928 Å³ in 1 void per unit cell. This is consistent with the presence of one C₆H₁₄ solvate per asymmetric unit which accounts for 200 electrons per unit cell. CCDC 2033076.

The reaction to form 9 also yielded compound 8 as the major product, isolated as the second yellow-green band by column chromatography. Volatiles were removed to afford 8 as a yellow-green solid (0.093 g, 0.16 mmol, 66%). Single crystals suitable for X-ray diffractometry were grown by slow evaporation of a CH₂Cl₂/n-hexane mixture. ¹H NMR (600 MHz, CDCl₃, 25 °C): δ_{H} 1.28 (s, 9 H, pzCH₃), 1.52 (s, 3 H, pzCH₃), 2.40 (s, 6 H, pzCH₃), 9.41 (s, 1 H, pzCH), 10.6 (s, 2 H, pzCH). ¹³C{¹H} NMR (151 MHz, CDCl₃, 25 °C): δ_{C} 11.2, 12.4, 13.9, 14.1 (pzCH₃), 100.0 (pzCH), 139.5, 163.1 (pzC^{3,5}CH₃). MS (ESI, +ve ion, *m/z*): Found: 609.0446. Calc for $C_{15}H_{22}^{11}B^{35}Cl_3N_6^{184}WNa$ [M+Na]⁺: 609.0452. Satisfactory elemental analytical data were not obtained. Crystal data for $C_{15}H_{22}BCl_3N_6W$: $M_w = 587.39 \text{ gmol}^{-1}$: monoclinic, *P2*₁/m (No. 11), a = 8.0658(3) Å, b = 99.903(3)°, V = 14.0050(6) Å, c = 9.0433(3) Å*, β* = 1006.32(7) Å³, Z = 2, T = 150.0(1) K, μ (Mo K α) = 6.150 mm⁻ ¹, D_{calc} = 1.939 Mgm⁻³, 4499 reflections measured (2 Θ_{max} = 116.56°), 2381 unique ($R_{int} = 0.0357$, $R_{sigma} = 0.0576$) which were used in all calculations. The final R_1 was 0.0329 ($l > 2\sigma(l)$) and wR₂ was 0.0684 (all data) for 124 refined parameters with one restraint. CCDC 2033078.

References

- 1 T. Desmond, F. J. Lalor, G. Ferguson and M. Parvez, J. Chem. Soc., Chem. Commun., 1983, 457-459.
- 2 S. Frischhut, F. Kaiser, W. Klein, M. Drees, F. E. Kühn and T. F. Fässler, *Organometallics* 2018, **37**, 4560–4567.
- 3 F. G. A. Stone, Acc. Chem. Res., 1981, 14, 318-325.
- 4 J. Holz, M. A. García, W. Frey, F. Kruppa and R. Peters, *Dalton Trans.*, 2018, **47**, 3880-3905
- 5 Agilent, Journal, 2014.
- 6 G. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64, 112-122.
- 7 G. M. Sheldrick, Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 2015, **71**, 3-8.

- 8 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallog., **2009**, 42, 339-341.
- 9 C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453-457.
- C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Crystallogr.*, 2008, **41**, 466-470.
- 11 Spartan 20[®] (2020) Wavefunction, Inc., 18401 Von Karman Ave., Suite 370 Irvine, CA 92612 U.S.A.
- 12 J. D. Chai and M. Head-Gordon, *J Chem Phys.*, 2008, **128**, 084106.
- J. D. Chai and M. Head-Gordon, *Phys Chem Chem Phys*, 2008, 10, 6615-6620.
- 14 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270-283.
- 15 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299-310.
- 16 W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284-298.
- W. J. Hehre, R. Ditchfeld and J. A. Pople, J. Chem. Phys., 1972, 56, 2257–2261.

Optimised Geometries and Cartesian Coordinates

Free [CF]⁺

Figure S3: Optimised structure of [CF]+ in the gas phase

Table S1: Cartesian coordinates of optimised [CF]*

Atom	х	Y	Z
С	0.000000	0.000000	0.582764
F	0.000000	0.000000	-0.582764

Free [CCI]⁺

Figure S4: Optimised structure of [CCI]⁺ in the gas phase

Table S2: Cartesian coordinates of optimised [CCI]+

Atom	Х	Y	Z
Cl	0.000000	0.000000	-0.770898
С	0.000000	0.000000	0.770898

Atom x

-0.977286

0

z

-3.190713

Free [CBr]⁺						
Figure S5: Optimised structure of [CBr] ⁺ in the gas phase						
Table S3: Cartes	ian coordinates of optim	iised [CBr]+				
Atom X Y Z						
С	0.000000	0.000000	0.847017			
Br	0.000000	0.000000	-0.847017			

Free [CI]⁺

---- 1+

Figure S6: Optimised structure of [CI]⁺ in the gas phase

Table S4: Cartesian coordinates of optimised [CI]⁺

Atom	x	Y	Z
С	0.000000	0.000000	0.948345
I	0.000000	0.000000	-0.948345

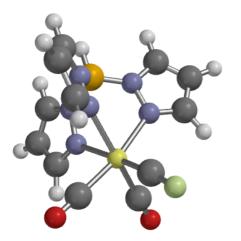

Ν 1.161480 -0.151808 -1.213326 1.128985 1.126991 -0.784227 Ν Ν 0.349696 -0.608101 1.586879 Ν 0.444245 0.738240 1.596516 -1.684584 0.022630 Ν -0.432587 Ν -1.288633 1.276472 -0.129088 С -1.320535 -3.005386 0.389567 С 1.291512 -3.006895 -0.157340 -0.705677 -2.387314 С -2.133902 С 2.096086 -0.221181 -2.161671 С 2.685038 1.030969 -2.357752 1.296157 н 3.467417 -3.051646 С 2.035212 1.856441 -1.456881С 0.662832 -1.028362 2.811961 С 0.966353 0.058590 3.637670 н 1.254289 0.042746 4.677236 С 0.814082 1.162029 2.818085 С -2.966049 0.095364 -0.790161 С -3.417847 1.416736 -0.718565 -4.403014 н 1.794706 -0.943393 С -2.312992 2.132191 -0.294168 В 0.154235 1.565678 0.329211 0.291386 2.740436 н 0.557880 -3.492977 -0.802960 н -1.077768Н -2.178964 3.185716 -0.098160 н 2.151715 2.909221 -1.245761 Н 0.942385 2.216589 3.012462 Н 2.295508 -1.163829 -2.651780 Н 0.652991 -2.085821 3.033434 F -2.023697 -3.998889 0.794652

Table S6: Thermodynamic Properties at 298.15 K

y

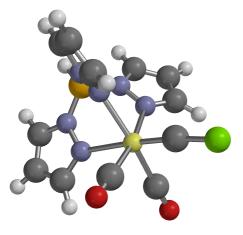
-2.753815

[Mo(≡CF)(CO)₂(Tp)]

(ZPE)	kJ/mol	567.71	Zero Point Energy :
(vibration + gas law + rotation + translation)	kJ/mol	47.65	Temperature Correction :
(ZPE + temperature correction)	kJ/mol	615.36	Enthalpy Correction :
(Electronic Energy + Enthalpy Correction)	au	-1134.001045	Enthalpy :
	J/mol•K	545.14	Entropy :
(Enthalpy - T*Entropy)	au	-1134.062951	Gibbs Energy :
	J/mol•K	328.61	C _v :

Figure S7: Optimised structure of [Mo(CF)(CO)₂(Tp)] in the gas phase

Table S5. Cartesian Coordinates for [Mo(CF)(CO)₂(Tp)]


Atom	х	У	z
Мо	-0.253260	-1.720173	-0.287322
0	2.180068	-3.733371	-0.069343

8

| Dalton Trans., 2022, ESI

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2022

[Mo(≡CCl)(CO)₂(Tp)]

(ZPE)	kJ/mol	563.64	Zero Point Energy :
(vibration + gas law + rotation + translation)	kJ/mol	48.38	Temperature Correction :
(ZPE + temperature correction)	kJ/mol	612.02	Enthalpy Correction :
(Electronic Energy + Enthalpy Correction)	au	-1494.373267	Enthalpy :
	J/mol•K	550.92	Entropy :
(Enthalpy - T*Entropy)	au	-1494.435829	Gibbs Energy :
	J/mol•K	332.51	C _v :

 Table S8:
 Thermodynamic Properties at 298.15 K

Figure S8: Optimised structure of $[Mo(CCI)(CO)_2(Tp)]$ in the gas phase

Table S7. Cartesian Coordinates for [Mo(CCl)(CO)₂(Tp)]

Ato	m x		z
Mo	-0.255342	y -1.710905	-0.284200
0	2.165554	-3.745197	-0.284200
0	-1.017252	-2.770420	-3.174037
N	1.170627	-0.131035	-1.229599
N	1.140719	1.145793	-0.790753
N	0.355942	-0.597202	1.579140
N	0.452757	0.749407	1.589332
N	-1.678549	0.030613	-0.428609
N	-1.279888	1.286600	-0.135722
C	-1.303278	-3.004401	0.383196
c	1.289366	-3.006745	-0.153954
C	-0.727196	-2.387856	-2.129103
С	2.109023	-0.195585	-2.174518
С	2.702157	1.056589	-2.358417
н	3.488704	1.324767	-3.046609
С	2.051445	1.877921	-1.454384
С	0.665990	-1.019954	2.804394
С	0.970674	0.065922	3.630838
Н	1.255793	0.048864	4.671245
С	0.823102	1.170557	2.811595
С	-2.960200	0.100861	-0.787387
С	-3.409795	1.423327	-0.726620
Н	-4.394773	1.801810	-0.951818
С	-2.303716	2.140968	-0.308417
В	0.162104	1.578835	0.323016
Н	0.297201	2.752486	0.555343
Н	-3.488329	-0.800093	-1.064377
Н	-2.169310	3.195957	-0.120885
Н	2.170988	2.928514	-1.233948
Н	0.953991	2.224553	3.007167
Н	2.309305	-1.134763	-2.670959
Н	0.650421	-2.077476	3.024966
Cl	-2.198238	-4.322712	0.900473

[Mo(≡CBr)(CO)₂(Tp)]

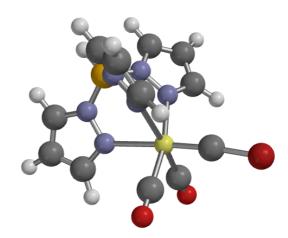
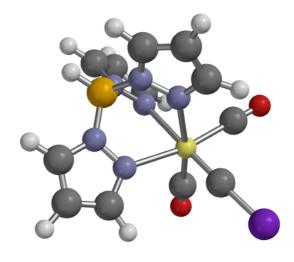


Figure S9: Optimised structure of [Mo(CBr)(CO)2(Tp)] in the gas phase


Table	Table S9. Cartesian Coordinates for [Mo(CBr)(CO) ₂ (Tp)]				
Atom x		у	z		
Мо	-0.253195	-1.707774	-0.289345		
0	2.165978	-3.746114	-0.054444		
0	-1.014308	-2.771914	-3.180060		
Ν	1.184023	-0.127277	-1.230936		
Ν	1.148468	1.150294	-0.795371		
Ν	0.356282	-0.596141	1.572257		
Ν	0.458022	0.750058	1.583852		
Ν	-1.668924	0.035537	-0.440352		
Ν	-1.271560	1.290658	-0.141452		
С	-1.299981	-2.991819	0.389348		
С	1.292034	-3.005748	-0.154332		
С	-0.723655	-2.387882	-2.136154		
С	2.119483	-0.189140	-2.178908		

Atom x z у С 2.706229 1.065458 -2.367236 3.489141 1.335845 -3.058567 н С 2.053706 1.885477 -1.463331 С 0.656453 -1.020792 2.799227 С 0.959333 0.063616 3.628184 1.237947 0.044862 4.670232 н 0.820506 1.169373 С 2.809052 С -2.952829 0.105182 -0.790637 С -3.404926 1.426165 -0.718886 -4.391914 1.802580 -0.938108 Н С -2.298359 2.143936 -0.302353 В 0.170657 1.581816 0.317813 н 0.303768 2.755306 0.551229 -3.480279 -0.795442 -1.069995 н Н -2.165019 3.198029 -0.109002 2.167764 2.937470 -1.246810 н 0.953243 2.222820 3.006402 н Н 2.322606 -1.128551 -2.673982 Н 0.634990 -2.078430 3.018997 -2.275683 -4.417459 0.993667 Br

Table S10: Thermodynamic Properties at 298.15 K

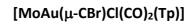
(ZPE)	kJ/mol	562.15	Zero Point Energy :
(vibration + gas law + rotation + translation)	kJ/mol	48.82	Temperature Correction :
(ZPE + temperature correction)	kJ/mol	610.97	Enthalpy Correction :
(Electronic Energy + Enthalpy Correction)	au	-3608.108907	Enthalpy :
	J/mol•K	557.13	Entropy :
(Enthalpy - T*Entropy)	au	-3608.172175	Gibbs Energy :
	J/mol•K	334,24	C _v :

 $[Mo(\equiv CI)(CO)_2(Tp)]$

Dalton Transactions

Figure S10: Optimised structure of [Mo(CI)(CO)2(Tp)] in the gas phase

Table S11. Cartesian Coordinates for [Mo(Ci)(CO) ₂ (Tp)]				
Ato	m x	y	z	
Mo	-0.249275	-1.705333		
0	2.166647	-3.748165	-0.026470	
0	-0.993872	-2.786882	-3.181969	
Ν	1.192263	-0.117302	-1.240061	
Ν	1.156943	1.158624	-0.799539	
Ν	0.362886	-0.592192	1.566430	
Ν	0.464618	0.753873	1.578865	
Ν	-1.662031	0.036307	-0.442799	
Ν	-1.265551	1.292469	-0.147013	
С	-1.309050	-2.976107	0.381716	
С	1.295530	-3.007053	-0.140172	
С	-0.710184	-2.393829	-2.139901	
С	2.125665	-0.174809	-2.189954	
С	2.710869	1.081215	-2.374940	
Н	3.492242	1.354839	-3.066707	
С	2.060454	1.897390	-1.466103	
С	0.662689	-1.019073	2.792781	
С	0.964645	0.064205	3.623294	
Н	1.242275	0.044853	4.665676	
С	0.825938	1.171166	2.805270	
С	-2.948085	0.102353	-0.786292	
С	-3.402825	1.422228	-0.713530	
Н	-4.391893	1.795529	-0.928071	
С	-2.295633	2.142664	-0.302943	
В	0.175859	1.586380	0.313723	
Н	0.306413	2.759797	0.550113	
Н	-3.474135	-0.800695	-1.060842	
Н	-2.164537	3.196959	-0.109635	
Н	2.172966	2.948927	-1.246560	
Н	0.957624	2.224459	3.004189	
Н	2.327679	-1.111860	-2.690059	


10 | Dalton Trans., 2022, ESI

Ato	om x	У	z
н	0.640311	-2.076886	3.011668
T	-2.437446	-4.524052	1.050798

Table S12: Thermodynamic Properties at 298.15 K

(ZPE)	kJ/mol	561.07	Zero Point Energy :
(vibration + gas law + rotation + translation)	kJ/mol	49.10	Temperature Correction :
(ZPE + temperature correction)	kJ/mol	610.17	Enthalpy Correction :
(Electronic Energy + Enthalpy Correction)	au	-1045.586777	Enthalpy :
	J/mol•K	562.28	Entropy :
(Enthalpy - T*Entropy)	au	-1045.650629	Gibbs Energy :
	J/mol•K	335.44	C _v :

I–C≡N

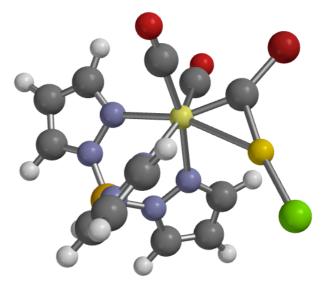


Figure S13: Optimised structure of $[MoAu(\mu\text{-}CBr)Cl(CO)_2(Tp)]$ in the gas phase

z

Table S15. Cartesian Coordinates for [MoAu(μ -CBr)Cl(CO)₂(Tp)]

у

Atom x

Figure S11: Optimised structure of I-CN in the gas phase

Table	e S13. Cartesian Co	oordinates for I–C	≡N
Ato	m x	у	z
Ν	0.000000	0.000000	1.436388
С	0.000000	0.000000	0.276632
L	0.000000	0.000000	-1.713020

I–C≡C–H

Figure S12: Optimised structure of I-CC-H in the gas phase

Table	e S14. Cartesian Co	oordinates for I–C	N
Ato	m x	У	z
С	0.000000	0.000000	-0.373061
н	0.000000	0.000000	1.899368
С	0.000000	0.000000	0.832528
I	0.000000	0.000000	-2.358835

		•	
Au	3.567785	-0.387285	-0.075193
Mo	1.130936	1.058446	-0.084642
Br	4.140950	2.798720	-1.002091
CI	4.629765	-2.409821	0.371369
N	-1.054954	1.484567	0.149809
N	-1.923598	0.447319	0.139377
0	1.598065	3.091150	2.297799
N	0.433628	-0.490769	-1.531110
N	-0.672783	-1.216544	-1.273349
0	0.743772	3.263586	-2.318863
С	0.895742	2.480756	-1.496512
С	2.918449	1.493950	-0.509853
N	-0.483456	-1.291974	1.218200
N	0.634767	-0.551200	1.382810
С	1.429727	2.360451	1.430016
С	0.108716	-1.923831	-3.220887
н	0.239244	-2.465391	-4.144601
С	1.242879	-0.997480	2.484482
С	-0.886997	-2.087929	-2.275541
С	-0.576974	-2.195341	2.209054
С	0.514097	-2.046791	3.046207
Н	0.754333	-2.620275	3.927512
С	-3.174075	0.911983	0.286375
С	-3.129222	2.292209	0.389520
Н	-3.956850	2.973045	0.513362
С	-1.772473	2.601207	0.301580
С	0.914208	-0.905862	-2.703427

Ator	m x	У	z
В	-1.443371	-1.025658	0.043794
Н	-2.388878	-1.766109	0.092343
Н	1.815713	-0.463098	-3.102077
Н	-1.730057	-2.761629	-2.239294
Н	-1.412752	-2.878141	2.244359
Н	2.177975	-0.558849	2.801630
Н	-4.007327	0.225522	0.310402
Н	-1.276983	3.561066	0.337439

[MoPt(µ-CCl)(CO)₂(PMe₃)₂Tp)]

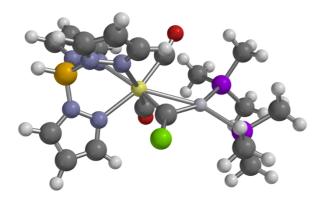


Figure S14: Optimised structure of $[MoPt(\mu\text{-CCl})(CO)_2(PMe_3)_2(Tp)]$ in the gas phase

Table	S16. Cartesian Co	ordinates for [Mol	Pt(µ-CCl)(CO) ₂ (PMe ₃) ₂ Tp)]
Ator	m x	y	Z
Pt	-1.090707	y 0.846749	-0.906141
Mo		-0.694264	
P	-1.916864	2.800475	
P	-2.137871		
Cl	0.050670		-2.304755
0	-2.064440	-0.500176	2.449337
N	0.595079	-2.961129	
N	2.659688	-1.096027	-0.089729
Ν	3.454960	-2.066271	0.404622
0	1.295796	2.328085	1.200179
Ν	1.783417	-1.013170	2.687602
Ν	2.721688	-1.974859	2.795850
Ν	1.703269	-3.649666	1.248476
С	3.308910	-0.542839	-1.111879
С	-1.115035	-0.540424	1.784715
С	0.946148	1.243048	0.943827
С	2.698181	-0.902789	4.732470
н	2.916631	-0.594027	5.742985
С	1.441425	-4.968882	1.247667
С	-0.138288	-0.847820	-1.042662
С	3.286710	-1.929134	4.014129
С	1.760187	-0.359705	3.849075
С	0.118568	-5.152584	0.889284

Ato	m x	v	z
н	-0.415332	-6.084776	0.788410
С	-0.365986	-3.855875	0.686467
с	4.552129	-1.159285	-1.290510
н	5.303952	-0.937060	-2.031832
С	4.599378	-2.123345	-0.300196
в	3.008506	-2.917195	1.608400
н	3.867907	-3.709762	1.901232
н	2.215677	-5.677356	1.502535
н	5.361185	-2.844483	-0.043386
н	4.065181	-2.629021	4.279751
н	1.074067	0.464063	3.985737
Н	2.842346	0.260827	-1.662987
Н	-1.347705	-3.519185	0.386279
С	-1.892492	2.795846	2.035567
Н	-0.868562	2.652187	2.386200
Н	-2.503017	1.970119	2.408243
Н	-2.278125	3.742647	2.428580
С	-1.016045	4.350930	-0.192198
Н	0.031191	4.216477	0.090971
Н	-1.432382	5.206264	0.350327
Н	-1.060140	4.547596	-1.266836
С	-3.937265	0.776096	-2.951220
Н	-4.460660	1.394535	-2.217467
Н	-4.080893	-0.271795	-2.672650
Н	-4.367581	0.948685	-3.943895
С	-2.063755	2.851539	-3.615781
Н	-1.013915	3.133765	-3.739986
Н	-2.528538	3.567333	-2.932881
Н	-2.568877	2.909380	-4.586009
С	-1.543614	0.173821	-4.355864
Н	-0.470509	0.333616	-4.491403
Н	-2.077415	0.464632	-5.267149
Н	-1.699224	-0.890478	-4.166139
С	-3.674500	3.264145	-0.097807
Н	-4.316253	2.428745	0.198311
Н	-3.849966	3.472398	-1.156715
Н	-3.954313	4.149513	0.483025

Table S17: Thermodynamic Properties at 298.15 K

(ZPE)	kJ/mol	1146.36	Zero Point Energy :
(vibration + gas law + rotation + translation)	kJ/mol	85.05	Temperature Correction :
(ZPE + temperature correction)	kJ/mol	1231.41	Enthalpy Correction :
(Electronic Energy + Enthalpy Correction)	au	-2535.526172	Enthalpy :
	J/mol•K	794.48	Entropy :
(Enthalpy - T*Entropy)	au	-2535.616393	Gibbs Energy :
	J/mol•K	597.04	C _v :

12

| Dalton Trans., 2022, ESI

[WPt(µ-CCl)(CO)₂(PMe₃)₂Tp)]

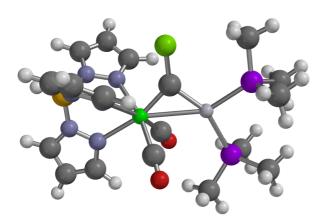


Figure S15: Optimised structure of $[WPt(\mu-CCI)(CO)_2(PMe_3)_2(Tp)]$ in the gas phase

Table S18. Cartesian Coordinates for [WPt(µ-CCl)(CO)₂(PMe₃)₂Tp)]

Ato	m x	у	z
Pt	-1.085342	0.835616	-0.905861
W	0.616316	-0.695395	0.732445
Р	-1.907674	2.784999	0.200622
Р	-2.155528	1.137094	-2.909997
Cl	0.090455	-2.012060	-2.348288
0	-2.026784	-0.485416	2.435397
Ν	0.630042	-2.938097	0.885828
Ν	2.671555	-1.109427	-0.068124
Ν	3.477943	-2.071728	0.427812
0	1.297563	2.330038	1.211335
Ν	1.781134	-1.017680	2.663451
Ν	2.718130	-1.977783	2.802289
Ν	1.720946	-3.646397	1.246589
С	3.316167	-0.546986	-1.090032
С	-1.075265	-0.529422	1.766307
С	0.966433	1.235824	0.952653
С	2.642750	-0.888131	4.728151
н	2.835737	-0.570114	5.740851
С	1.438805	-4.960253	1.227383
С	-0.104752	-0.848595	-1.061936
С	3.251253	-1.919780	4.033307
С	1.728504	-0.351748	3.818277
С	0.120907	-5.120290	0.839257
Н	-0.424769	-6.043131	0.718776
С	-0.340885	-3.816440	0.637166
С	4.565869	-1.148545	-1.264307
Н	5.315883	-0.916927	-2.004431
С	4.623416	-2.112922	-0.274282
В	3.026532	-2.925851	1.625525
Н	3.880843	-3.717677	1.930469
Н	2.196802	-5.682554	1.492098
Н	5.393486	-2.825014	-0.016830
Н	4.024173	-2.615504	4.324625
н	1.039394	0.473063	3.929104

Ato	om x	у	z
Н	2.839770	0.250600	-1.640953
Н	-1.309662	-3.460264	0.319214
С	-1.883543	2.777133	2.036270
Н	-0.859926	2.624364	2.383764
Н	-2.498807	1.954539	2.407928
Н	-2.260697	3.726667	2.431066
С	-0.995360	4.329664	-0.189207
Н	0.050945	4.184566	0.092507
Н	-1.403416	5.187952	0.355229
Н	-1.039141	4.527977	-1.263720
С	-3.960920	0.792121	-2.917230
Н	-4.467472	1.422465	-2.182526
Н	-4.115713	-0.251560	-2.629321
Н	-4.399957	0.962927	-3.906458
С	-2.064210	2.832076	-3.621069
Н	-1.012445	3.094103	-3.768670
Н	-2.500682	3.561531	-2.933889
Н	-2.588506	2.892135	-4.581045
С	-1.601294	0.141470	-4.347025
Н	-0.528868	0.284496	-4.502840
Н	-2.147377	0.432546	-5.250949
Н	-1.767586	-0.918505	-4.144390
С	-3.660644	3.269106	-0.097287
Н	-4.312053	2.438835	0.192182
Н	-3.831073	3.486085	-1.155488
н	-3.931398	4.154202	0.488281

Table S19: Thermodynamic Properties at 298.15 K

(ZPE)	kJ/mol	1148.09	Zero Point Energy :
(vibration + gas law + rotation + translation)	kJ/mol	84.71	Temperature Correction :
(ZPE + temperature correction)	kJ/mol	1232.80	Enthalpy Correction :
(Electronic Energy + Enthalpy Correction)	au	-2535.833458	Enthalpy :
	J/mol•K	793.09	Entropy :
(Enthalpy - T*Entropy)	au	-2535.923521	Gibbs Energy :
	J/mol•K	595.44	C _v :

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2022

[MoPt(µ-CCl)(CO)₃(PMe₃)Tp)]

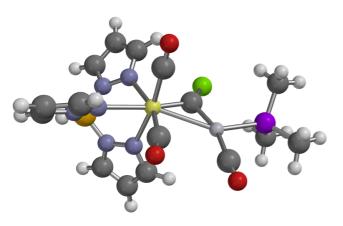


Figure S16: Optimised structure of [WPt(µ-CCI)(CO)₃(PMe₃)(Tp)] in the gas phase

Table S20. Cartesian Coordinates for [MoPt(µ-CCl)(CO)₃(PMe₃)Tp)]

Atom x		У	z	
Pt	-1.147014	1.888804	-0.917156	
Мо	-0.063442	0.074356	0.946641	
Р	-2.497201	1.969276	-2.815006	
Cl	-1.553544	-1.359870	-1.763042	
0	-2.780224	0.145970	2.578791	
Ν	0.011540	-2.188760	1.083241	
Ν	1.991924	-0.192270	0.056830	
Ν	2.832263	-1.156849	0.483722	
0	0.597940	2.997128	1.867062	
Ν	1.160275	-0.291772	2.869056	
Ν	2.159238	-1.197378	2.899290	
Ν	1.167571	-2.844111	1.323568	
С	2.594395	0.431960	-0.954182	
С	-1.792060	0.139802	1.985370	
С	0.269349	1.993200	1.380490	
С	2.120683	-0.238272	4.894474	
Н	2.347263	0.028137	5.915061	
С	0.940011	-4.167884	1.382818	
С	-1.033127	-0.086797	-0.699432	
С	2.750964	-1.184747	4.105427	
С	1.130078	0.295899	4.065592	
С	-0.407112	-4.391809	1.166522	
Н	-0.925499	-5.337768	1.144703	
С	-0.943705	-3.112985	0.989371	
С	3.852323	-0.131341	-1.191936	
Н	4.577566	0.154521	-1.937905	
С	3.959425	-1.138333	-0.249657	
В	2.455716	-2.072131	1.662515	
Н	3.354990	-2.838647	1.896623	
Н	1.753020	-4.851012	1.579833	
Н	4.752819	-1.842338	-0.046453	
Н	3.576855	-1.849000	4.313433	
Н	0.407259	1.074419	4.263933	
Н	2.085707	1.245996	-1.450789	

Ator	n x	у	z
Н	-1.962605	-2.812830	0.793918
С	-4.109036	1.119995	-2.642148
Н	-4.670806	1.583241	-1.826375
Н	-3.937048	0.070879	-2.390232
Н	-4.690737	1.183639	-3.567749
С	-2.979934	3.652413	-3.358353
Н	-2.082185	4.232945	-3.589905
Н	-3.515184	4.157034	-2.548970
Н	-3.620975	3.614807	-4.245273
С	-1.767311	1.246368	-4.329979
Н	-0.858826	1.797948	-4.587758
Н	-2.470329	1.293154	-5.168408
Н	-1.496575	0.205550	-4.137692
С	-0.854133	3.779398	-0.665442
0	-0.690562	4.910064	-0.564443

Table S21: Thermodynamic Properties at 298.15 K

(ZPE)	kJ/mol	877.18	Zero Point Energy :
(vibration + gas law + rotation + translation)	kJ/mol	73.14	Temperature Correction :
(ZPE + temperature correction)	kJ/mol	950.32	Enthalpy Correction :
(Electronic Energy + Enthalpy Correction)	au	-2187.857604	Enthalpy :
	J/mol•K	718.84	Entropy :
(Enthalpy - T*Entropy)	au	-2187.939235	Gibbs Energy :
	J/mol•K	509.61	C _v :

[WPt(µ-CCl)(CO)₃(PMe₃)Tp)]



Figure S17: Optimised structure of [WPt(µ-CCI)(CO)₃(PMe₃)(Tp)] in the gas phase

This journal is © The Royal Society of Chemistry 2022

Table S22. Cartesian Coordinates for $[WPt(\mu-CCI)(CO)_3(PMe_3)Tp)]$					
Ato		y	Z		
Pt	-1.135888	1.875694	-0.923839		
W	-0.024641	0.071976	0.929765		
P	-2.510154	1.964384	-2.809286		
Cl	-1.506737	-1.363854	-1.810220		
0	-2.712545	0.193632	2.578810		
Ν	0.036533	-2.164052	1.066974		
Ν	2.015367	-0.225028	0.068922		
Ν	2.862193	-1.182439	0.502984		
0	0.652569	3.004408	1.826326		
Ν	1.170255	-0.299023	2.836671		
Ν	2.158922	-1.215488	2.900931		
Ν	1.175927	-2.847953	1.316411		
С	2.622331	0.410437	-0.934093		
С	-1.730025	0.168367	1.968053		
С	0.324845	1.986988	1.360120		
С	2.083798	-0.228046	4.881143		
н	2.290003	0.049369	5.902991		
С	0.912939	-4.164008	1.378162		
С	-0.995427	-0.099562	-0.724361		
С	2.721846	-1.192153	4.119223		
С	1.118132	0.305895	4.025425		
С	-0.438736	-4.353483	1.155253		
н	-0.980516	-5.286013	1.130517		
С	-0.943387	-3.063841	0.971675		
С	3.886473	-0.140649	-1.159869		
н	4.615416	0.154087	-1.898490		
С	3.995309	-1.149195	-0.218908		
В	2.470996	-2.098779	1.674030		
н	3.358331	-2.873330	1.921263		
н	1.706645	-4.867375	1.582273		
н	4.794116	-1.845170	-0.009595		
н	3.536142	-1.861489	4.354894		
н	0.399058	1.094081	4.195984		
н	2.109691	1.220434	-1.432475		
н	-1.952965	-2.737687	0.772477		
С	-4.107234	1.086372	-2.631830		
н	-4.668679	1.531438	-1.805783		
н	-3.914415	0.037965	-2.392036		
н	-4.698919	1.149321	-3.551270		
С	-3.030280	3.645207	-3.326772		
Н	-2.146240	4.245882	-3.559138		
н	-3.566170	4.128836	-2.505031		
н	-3.680141	3.607352	-4.207371		
С	-1.792784	1.271807	-4.344816		
Н	-0.894003	1.837373	-4.606054		
Н	-0.894003	1.321461	-4.000034 -5.173805		
	-2.506910	0.231740	-3.173805 -4.169511		
H					
C O	-0.865080	3.766099	-0.666018		
0	-0.708249	4.898011	-0.560705		

(ZPE)	kJ/mol	878.69	Zero Point Energy :
(vibration + gas law + rotation + translation)	kJ/mol	72.84	Temperature Correction :
(ZPE + temperature correction)	kJ/mol	951.53	Enthalpy Correction :
(Electronic Energy + Enthalpy Correction)	au	-2188.165747	Enthalpy :
	J/mol•K	718.94	Entropy :
(Enthalpy - T*Entropy)	au	-2188.247390	Gibbs Energy :
	J/mol•K	508.16	C _v :

[W(≡CCI)Cl₂(Tp)]

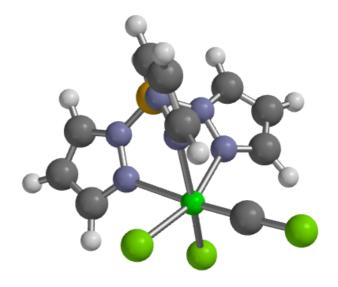


Figure S18: Optimised structure of $[W(CCI)Cl_2(Tp)]$ in the gas phase

Table	able S24. Cartesian Coordinates for [Mo(CCl)(CO) ₂ (Tp)]					
Atom x		У	z			
w	-1.830143	0.000509	0.671090			
CI	-2.374033	-1.831782	2.044201			
CI	-4.655793	0.002792	-1.280440			
N	1.367991	-0.000054	1.201375			
N	-0.713558	1.353293	-0.616755			
N	0.615570	1.235939	-0.838939			
N	0.178733	0.000425	1.838980			
С	1.815182	-0.001783	3.366406			
н	2.333924	-0.003601	4.312401			
С	-1.133657	2.449197	-1.258120			
С	2.369043	-0.003143	2.099075			
С	0.433999	0.001303	3.145218			
С	1.025150	2.248728	-1.613765			
С	-3.295682	0.000721	-0.316048			

Ator	n x	у	z
С	-0.061741	3.060639	-1.901646
н	-0.073459	3.960622	-2.495970
В	1.393778	0.001033	-0.325699
Н	2.517815	-0.000482	-0.750909
Ν	-0.712823	-1.352056	-0.616318
Ν	0.615328	-1.233951	-0.840063
С	-1.131511	-2.449500	-1.255809
С	1.026323	-2.246289	-1.614345
С	-0.059538	-3.060331	-1.899854
Н	-0.069065	-3.961731	-2.492064
Cl	-2.374332	1.830989	2.046206
Н	2.061816	-2.312976	-1.913514
Н	-0.384162	0.004617	3.850659
Н	3.398126	-0.007735	1.770787
Н	2.060563	2.316364	-1.912644
Н	-2.173282	2.735127	-1.204087
Н	-2.170715	-2.736669	-1.199890

 Table S25:
 Thermodynamic Properties at 298.15 K

(ZPE)	kJ/mol	535.99	Zero Point Energy :
(vibration + gas law + rotation + translation)	kJ/mol	45.88	Temperature Correction :
(ZPE + temperature correction)	kJ/mol	581.87	Enthalpy Correction :
(Electronic Energy + Enthalpy Correction)	au	-2188.515258	Enthalpy :
	J/mol•K	541.17	Entropy :
(Enthalpy - T*Entropy)	au	-2188.576712	Gibbs Energy :
	J/mol•K	308.52	C _v :

[W(≡CCl)(CO)₂(Tp)]

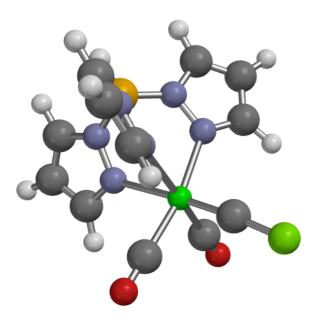


Figure S19: Optimised structure of [W(CCI)(CO)2(Tp)] in the gas phase


Table S26. Cartesiar	Coordinates	for [Mo(CCI)(CO) ₂ (Tp)]
----------------------	-------------	---------------------------------	------

Ato	m x	у	z
W	-0.443779	-0.861948	1.438553
0	-1.800865	0.641636	3.860367
0	1.765186	-2.054841	3.352732
Ν	0.881935	0.977851	1.046584
Ν	1.060856	1.449791	-0.206083
Ν	-1.687836	0.186809	-0.094789
Ν	-1.144455	0.780528	-1.180401
Ν	0.602487	-1.538938	-0.415672
Ν	0.837622	-0.708625	-1.455574
С	-1.468823	-2.294104	1.850731
С	-1.296069	0.094041	2.978261
С	0.958602	-1.609375	2.657365
С	1.580642	1.766460	1.865409
С	2.225650	2.769085	1.138156
Н	2.861955	3.555412	1.513050
С	1.864239	2.525242	-0.175893
С	-3.008149	0.358589	-0.174467
С	-3.333709	1.073732	-1.329508
Н	-4.313165	1.368209	-1.672330
С	-2.115106	1.321339	-1.936178
С	1.096004	-2.732681	-0.748566
С	1.660396	-2.683822	-2.025504
Н	2.135674	-3.484189	-2.570735
С	1.473245	-1.375278	-2.434149
В	0.379141	0.761369	-1.407405
Н	0.662387	1.326794	-2.430970
Н	1.014357	-3.555955	-0.054090
Н	1.746039	-0.869240	-3.348332

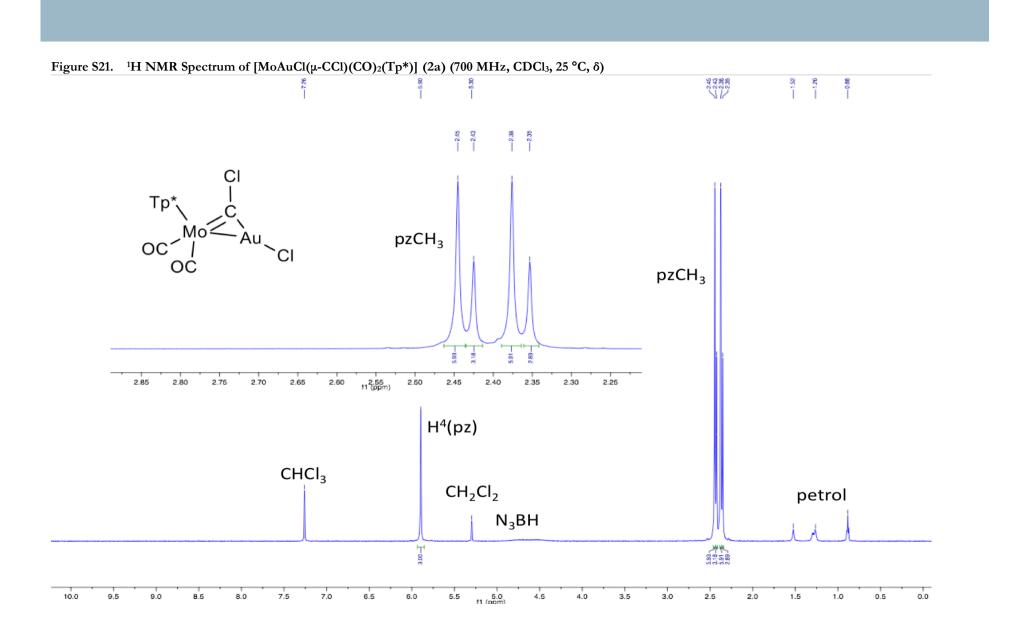
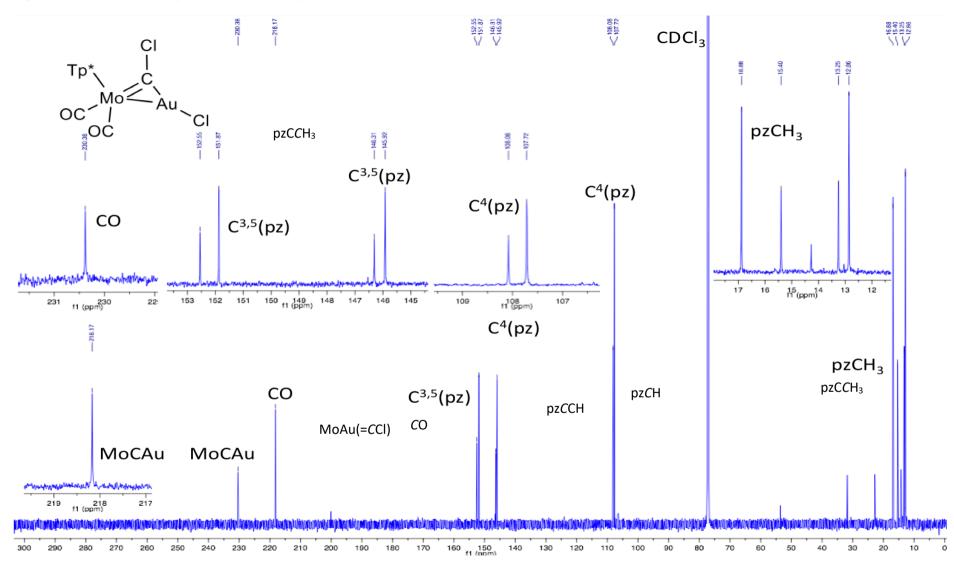
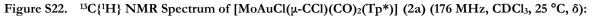
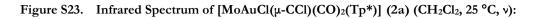

Atom x		У	z
Н	2.120564	3.039165	-1.090601
H ·	-1.866827	1.842838	-2.848670
Н	1.581128	1.570859	2.928469
H ·	-3.645704	-0.043029	0.599480
CI -	2.383624	-3.597723	2.370757

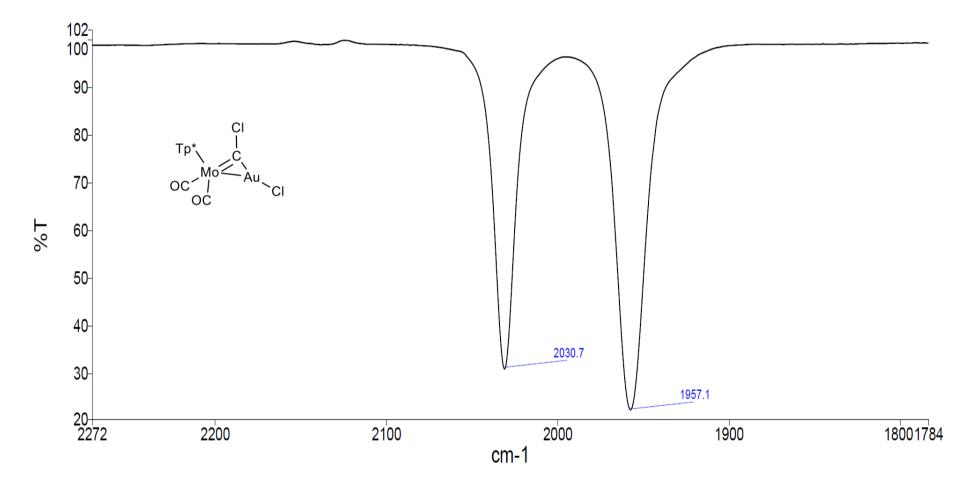
Table S27: Thermodynamic Properties at 298.15 K


(ZPE)	kJ/mol	570.59	Zero Point Energy :
(vibration + gas law + rotation + translation)	kJ/mol	47.86	Temperature Correction :
(ZPE + temperature correction)	kJ/mol	618.45	Enthalpy Correction :
(Electronic Energy + Enthalpy Correction)	au	-1494.680366	Enthalpy :
	J/mol•K	550.28	Entropy :
(Enthalpy - T*Entropy)	au	-1494.742855	Gibbs Energy :
	J/mol•K	329.18	C _v :



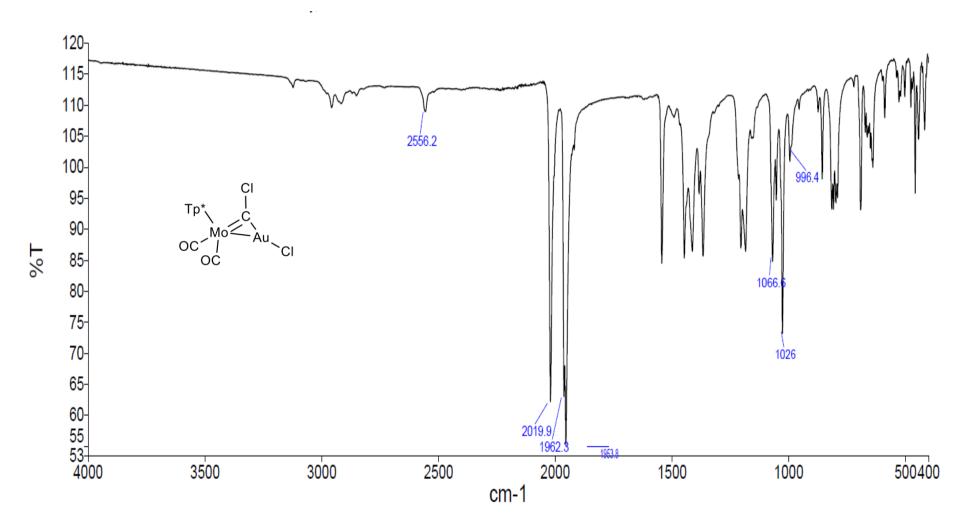
 $\label{eq:Figure S20. Orbital energies for the complexes [MPt(\mu-CCl)(CO)_2(L)(PMe_3)(Tp^*)] (L = PMe_3, CO; M = Mo, W, DFT: \\ \\ \varpi BP96-X/6-31G^*/LANL2D\zeta/gas phase).$


ELECTRONIC SUPPORTING INFORMATION



This journal is © The Royal Society of Chemistry 2022

Dalton Transactions



20

| Dalton Trans., 2022, ESI

This journal is © The Royal Society of Chemistry 2022

ELECTRONIC SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2022

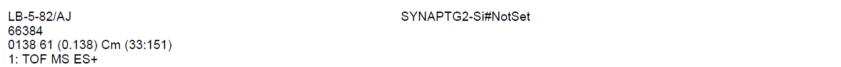
DaltonTransactions

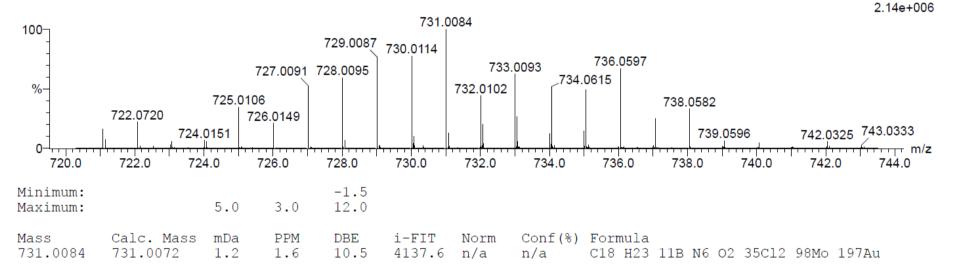
Please do not adjust margins

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

11-Feb-2021


16:04:37


Figure S25. Mass Spectrum of [MoAuCl(µ-CCl)(CO)₂(Tp*)] (2a):

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 12.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

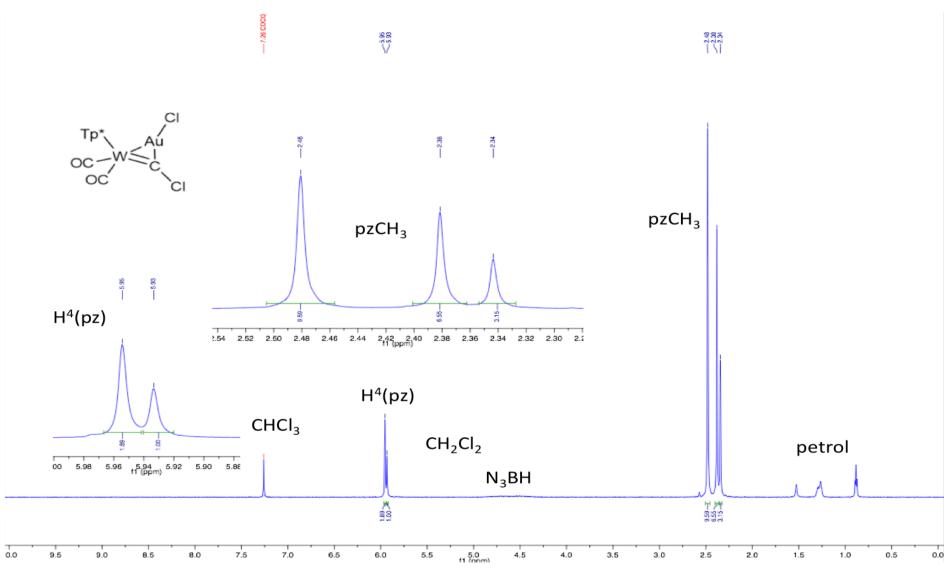
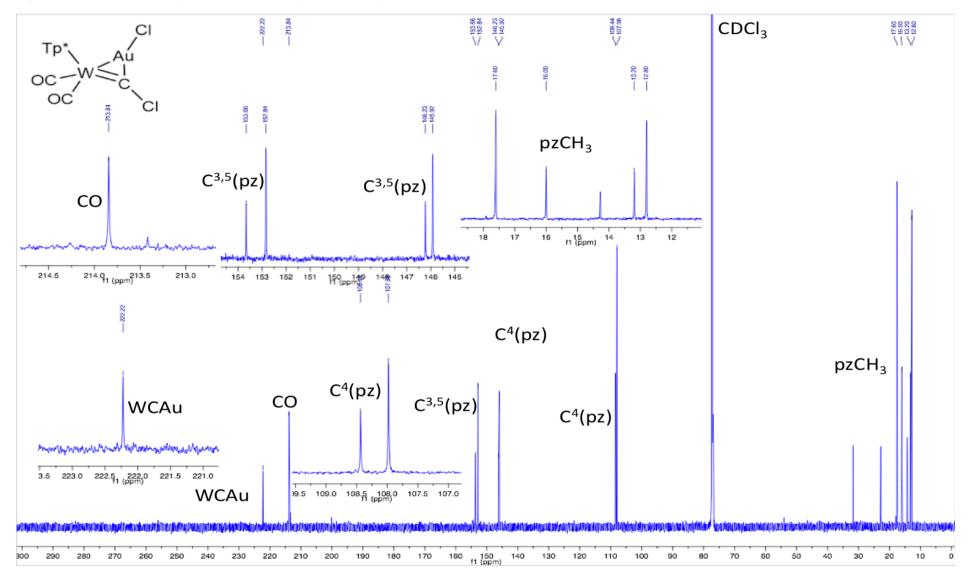
491 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-20 H: 0-25 11B: 0-1 N: 0-6 O: 0-2 35CI: 0-2 98Mo: 0-1 197Au: 0-1

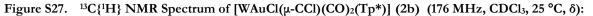
22

| Dalton Trans., 2022, ESI

This journal is © The Royal Society of Chemistry 2022

ELECTRONIC SUPPORTING INFORMATION

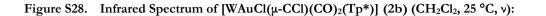

Figure S26. ¹H NMR Spectrum of [WAuCl(μ-CCl)(CO)₂(Tp*)] (2b) (700 MHz, CDCl₃, 25 °C, δ):

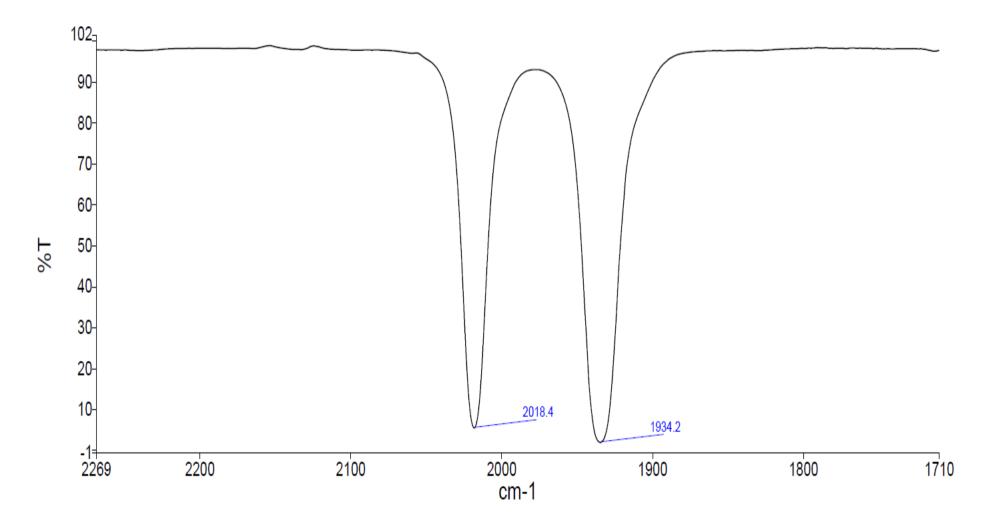
This journal is © The Royal Society of Chemistry 2022

DaltonTransactions

Dalton Transactions

24

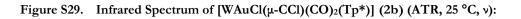

| Dalton Trans., 2022, ESI

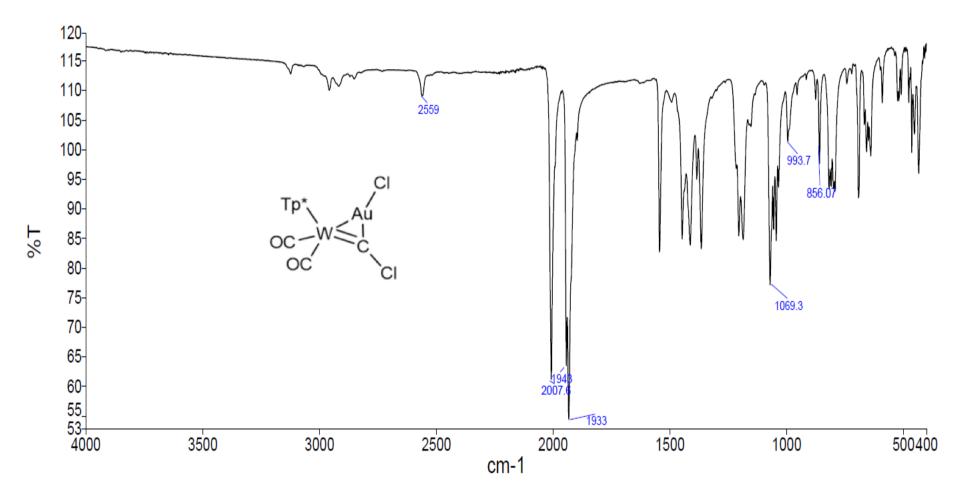

This journal is © The Royal Society of Chemistry 2022

Please do not adjust margins

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION

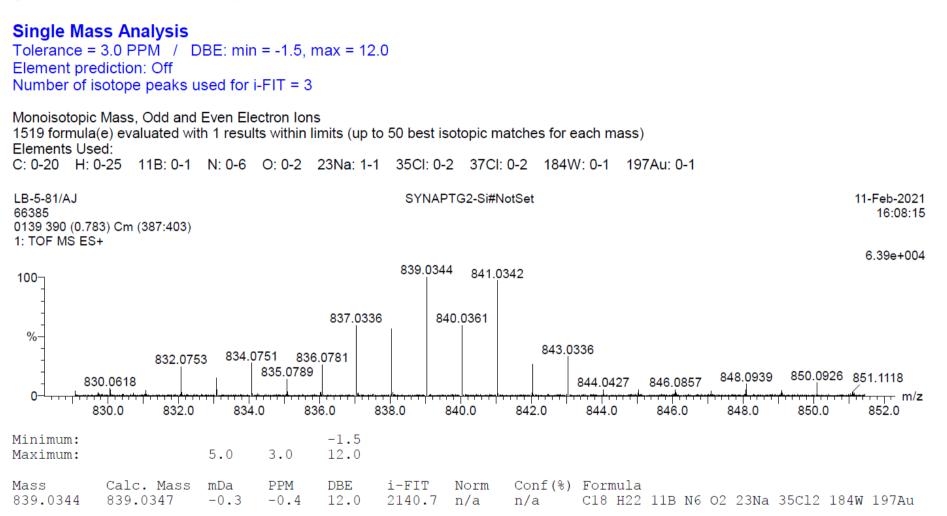




This journal is © The Royal Society of Chemistry 2022

DaltonTransactions

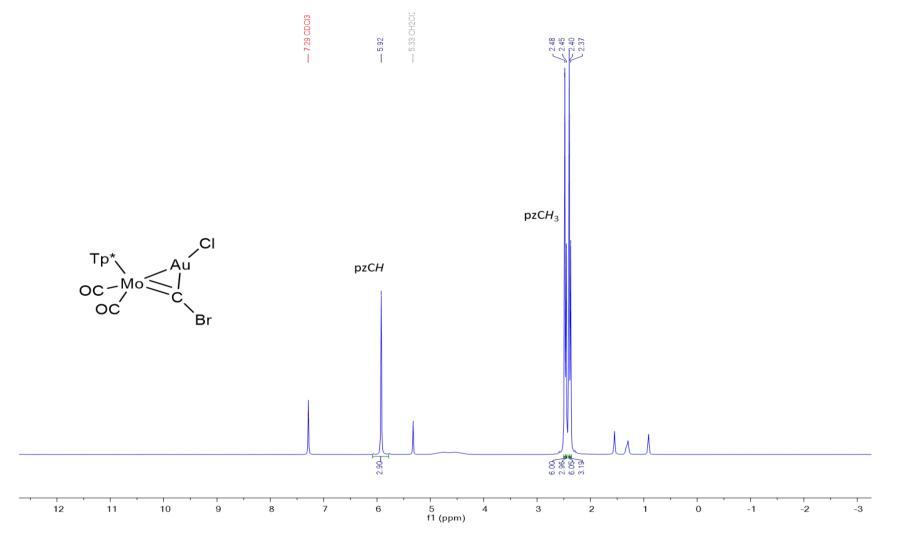
Dalton Transactions

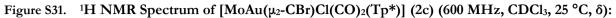

26

| Dalton Trans., 2022, ESI

This journal is © The Royal Society of Chemistry 2022

ELECTRONIC SUPPORTING INFORMATION

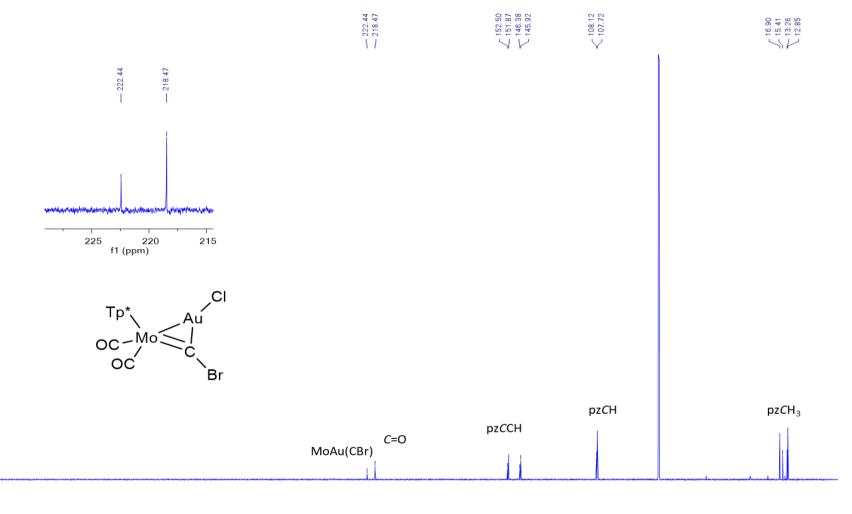

Figure S30. Mass Spectrum of [WAuCl(µ-CCl)(CO)₂(Tp*)] (2b):



This journal is © The Royal Society of Chemistry 2022

DaltonTransactions

Dalton Transactions

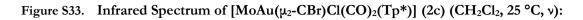


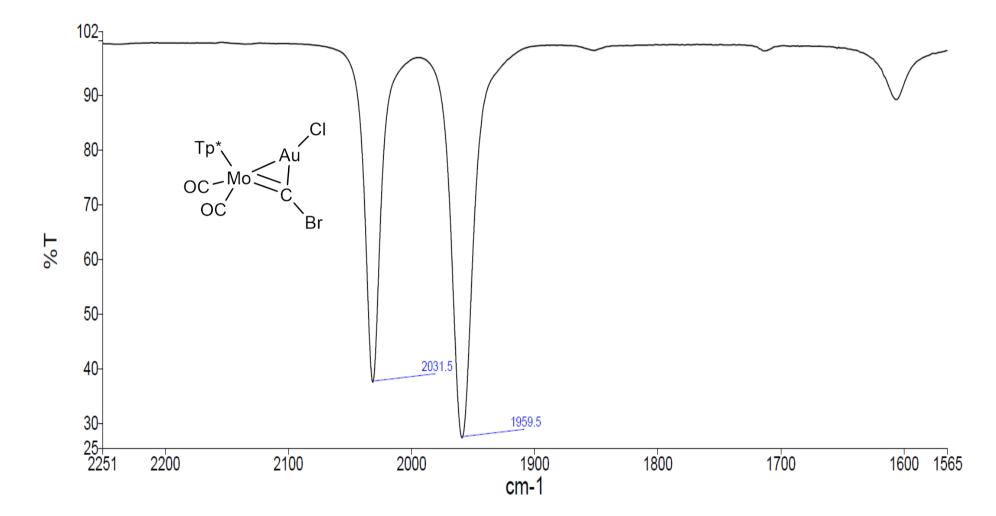
| Dalton Trans., 2022, ESI

28

This journal is © The Royal Society of Chemistry 2022

This journal is © The Royal Society of Chemistry 2022

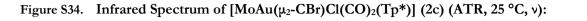


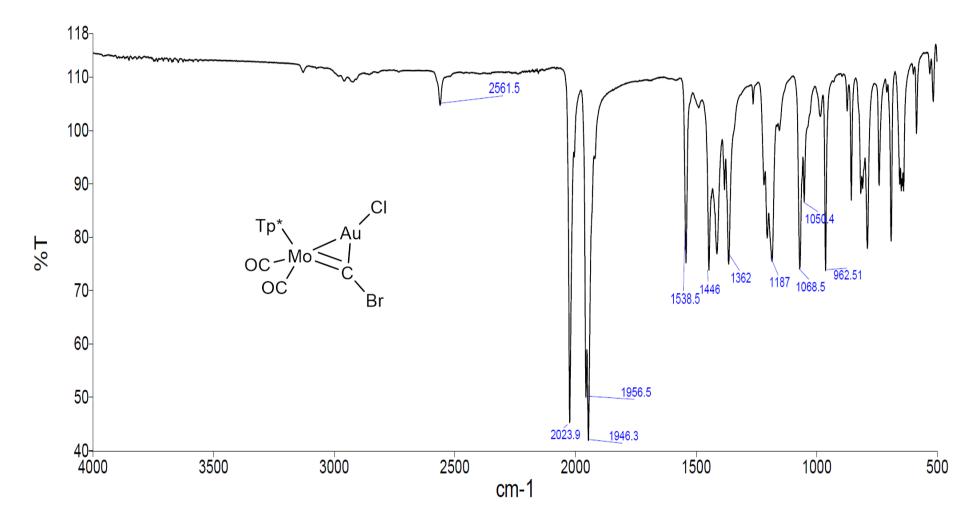

Figure S32. ¹³C{¹H} NMR Spectrum of [MoAu(μ₂-CBr)Cl(CO)₂(Tp*)] (2c) (151 MHz, CDCl₃, 25 °C, δ):

410 400 390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

DaltonTransactions

Dalton Transactions




| Dalton Trans., 2022, ESI

This journal is © The Royal Society of Chemistry 2022

³⁰

ELECTRONIC SUPPORTING INFORMATION

Please do not adjust margins

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

17-Jun-2021

14:26:04

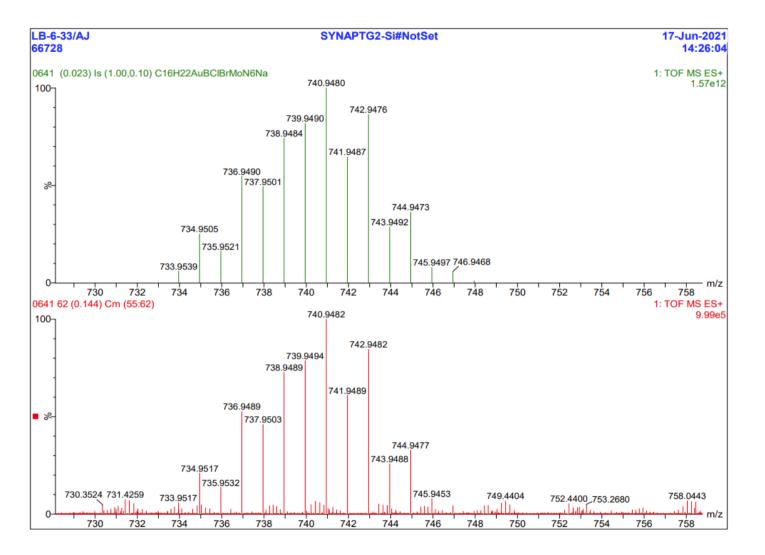
1.00e+006

Figure S35a. Mass Spectrum of [MoAu(µ₂-CBr)Cl(CO)₂(Tp*)] (2c):

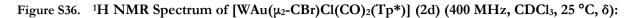
Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 10.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 1941 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-20 H: 0-25 11B: 0-1 N: 0-6 23Na: 0-1 35CI: 0-1 37CI: 0-1 79Br: 0-1 81Br: 0-1 98Mo: 0-1 197Au: 0-1 LB-6-33/AJ SYNAPTG2-Si#NotSet 66728 0641 62 (0.144) Cm (55:62) 1: TOF MS ES+ 740.9482 100-739,9494 742,9482 736,9489 % 744,9477

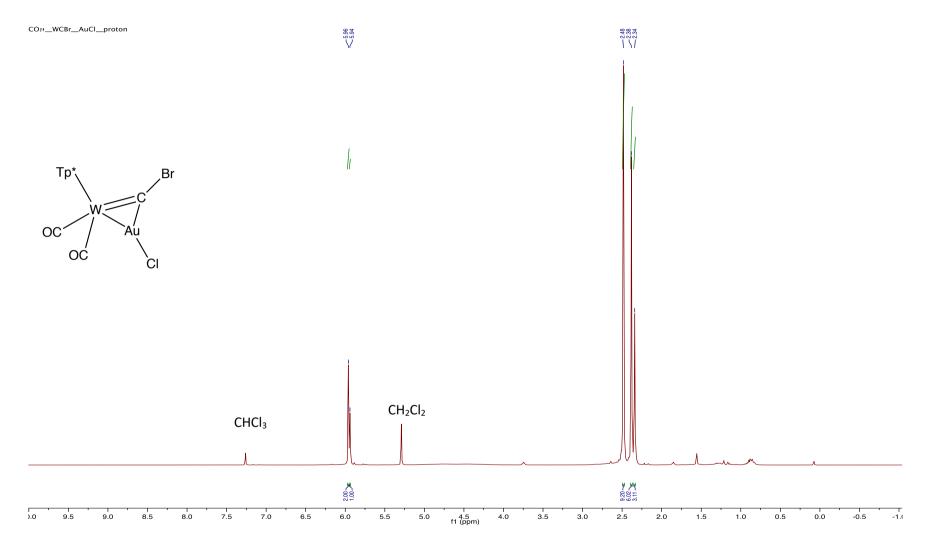
734,9517 745.9453 730.3524 731.4259 733.9517 749,4404 752.4400.753.2680 758.0443 սես m/z 740.0 735.0 737.5 742.5 727.5 730.0 732.5 745.0 747.5 750.0 752.5 755.0 757.5 -1.5Minimum: Maximum: 5.0 3.0 10.0 Calc. Mass mDa i-FIT Conf(%) Formula Mass PPM DBE Norm 740.9482 740.9488 -0.6 -0.8 8.5 2332.9 n/a n/a C16 H22 11B N6 23Na 35Cl 79Br 98Mo

Figure S35b. Mass Spectrum of [MoAu(µ₂-CBr)Cl(CO)₂(Tp*)] (2c):


32

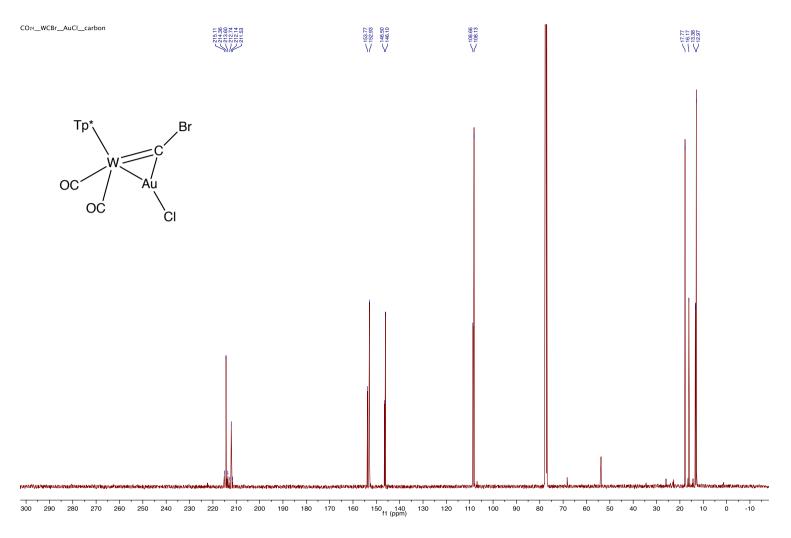
ቡ


Dalton Trans., 2022, ESI


This journal is © The Royal Society of Chemistry 2022

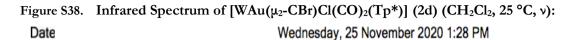
197Au

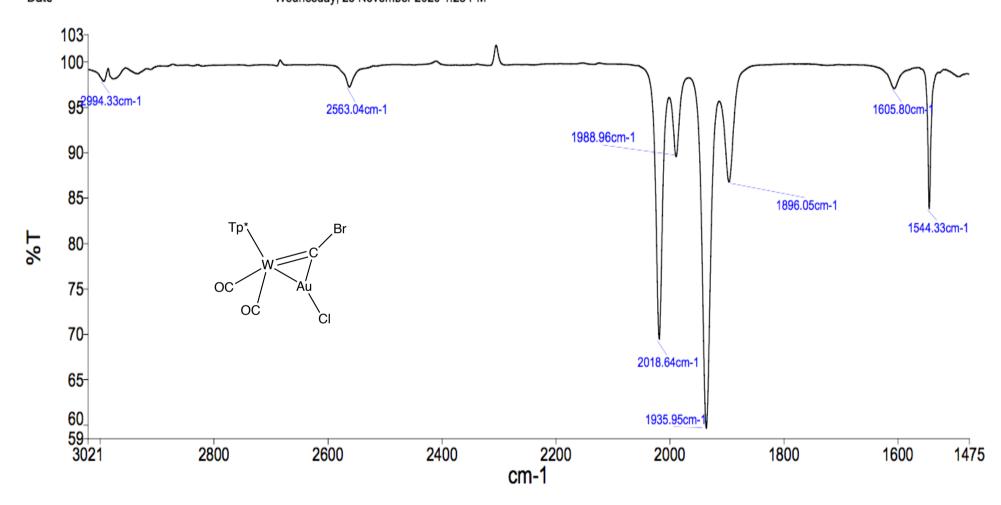
Dalton Transactions



34

| Dalton Trans., 2022, ESI


This journal is © The Royal Society of Chemistry 2022



This journal is © The Royal Society of Chemistry 2022

Dalton Transactions

| Dalton Trans., 2022, ESI

36

This journal is © The Royal Society of Chemistry 2022

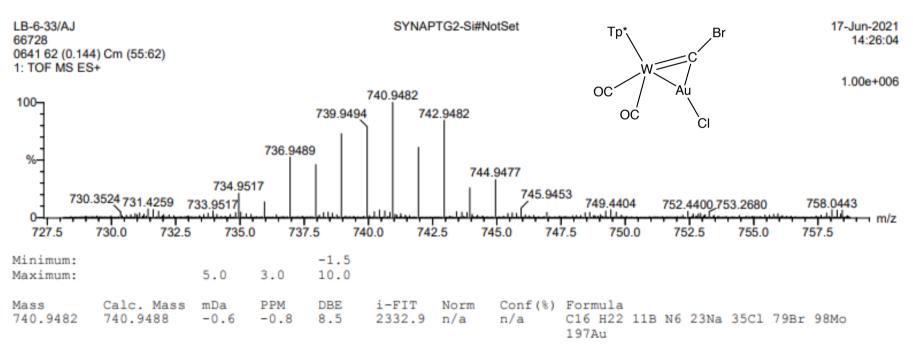
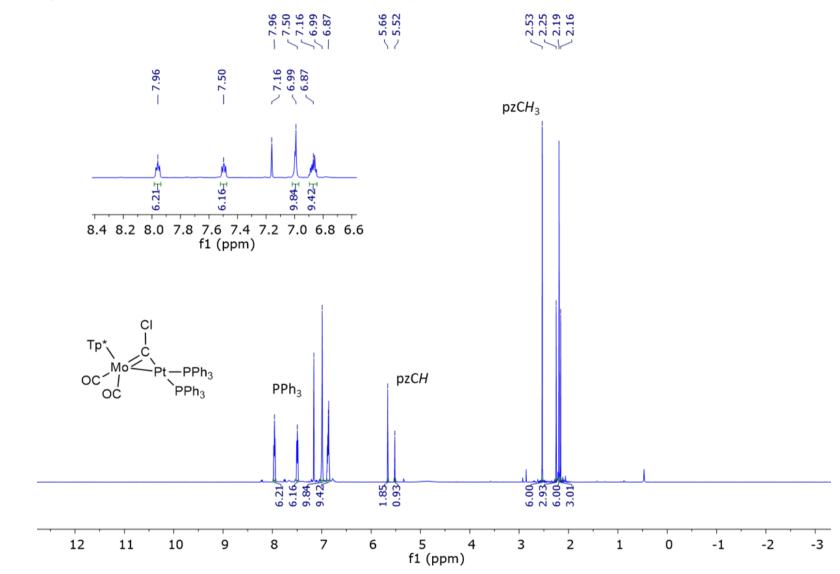
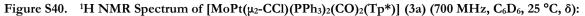

ELECTRONIC SUPPORTING INFORMATION

Figure S39. Mass Spectrum of [WAu(µ₂-CBr)Cl(CO)₂(Tp*)] (2d):

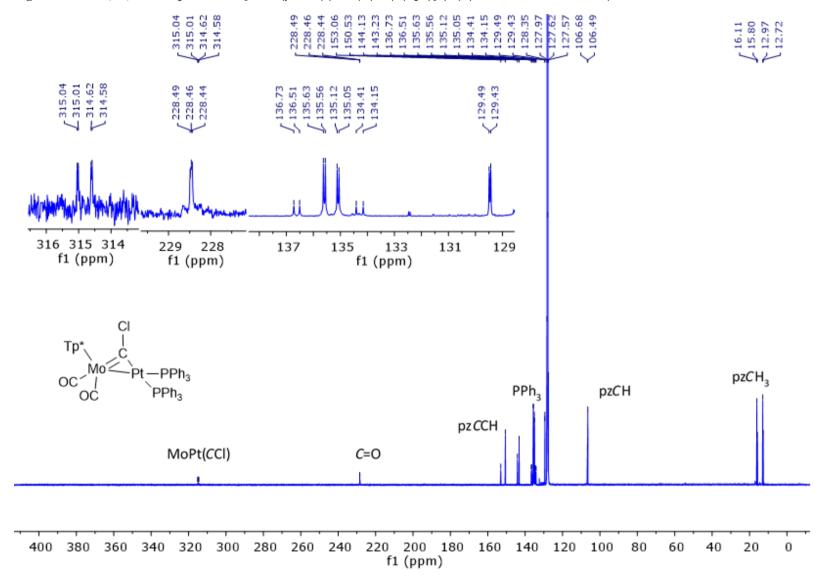
Single Mass Analysis

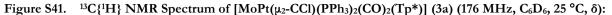

Tolerance = 3.0 PPM / DBE: min = -1.5, max = 10.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3


Monoisotopic Mass, Even Electron Ions 1941 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-20 H: 0-25 11B: 0-1 N: 0-6 23Na: 0-1 35CI: 0-1 37CI: 0-1 79Br: 0-1 81Br: 0-1 98Mo: 0-1 197Au: 0-1

This journal is © The Royal Society of Chemistry 2022

Dalton Transactions

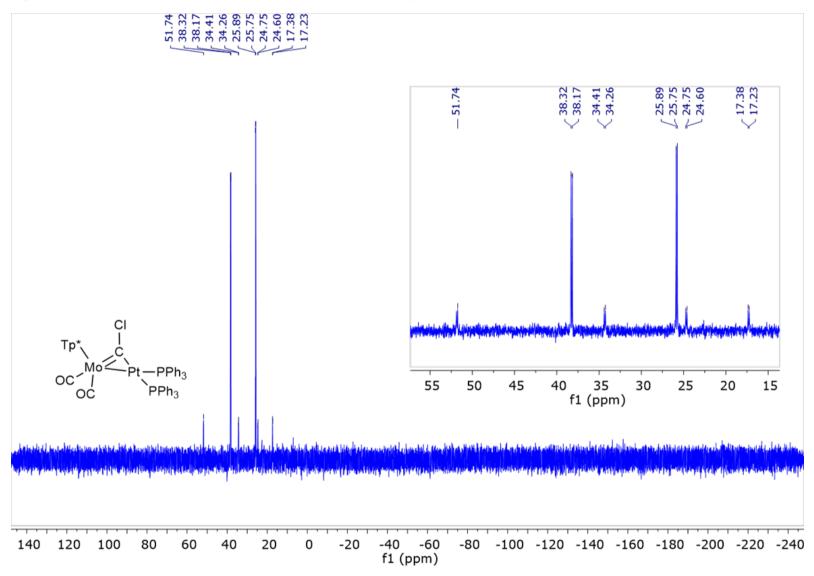



| Dalton Trans., 2022, ESI

38

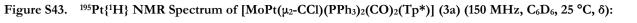
This journal is © The Royal Society of Chemistry 2022

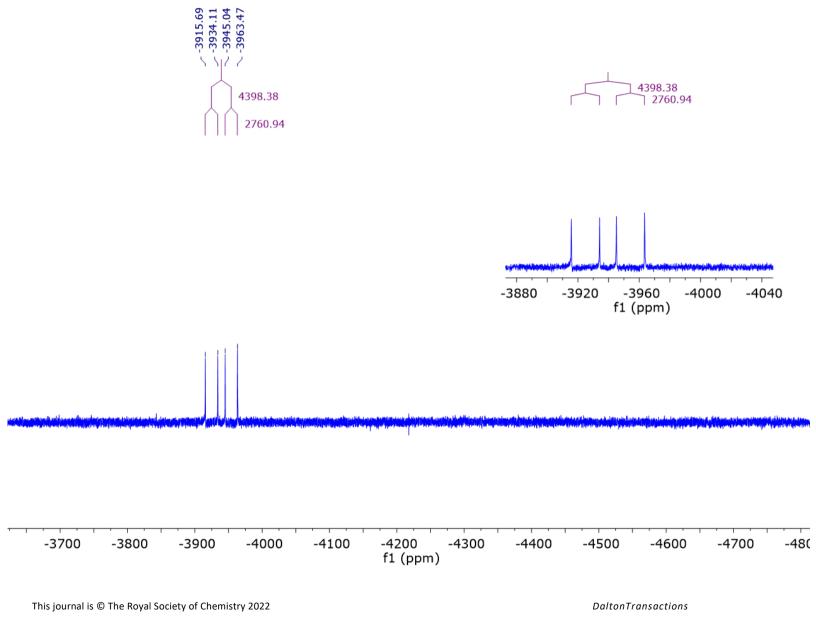
ELECTRONIC SUPPORTING INFORMATION



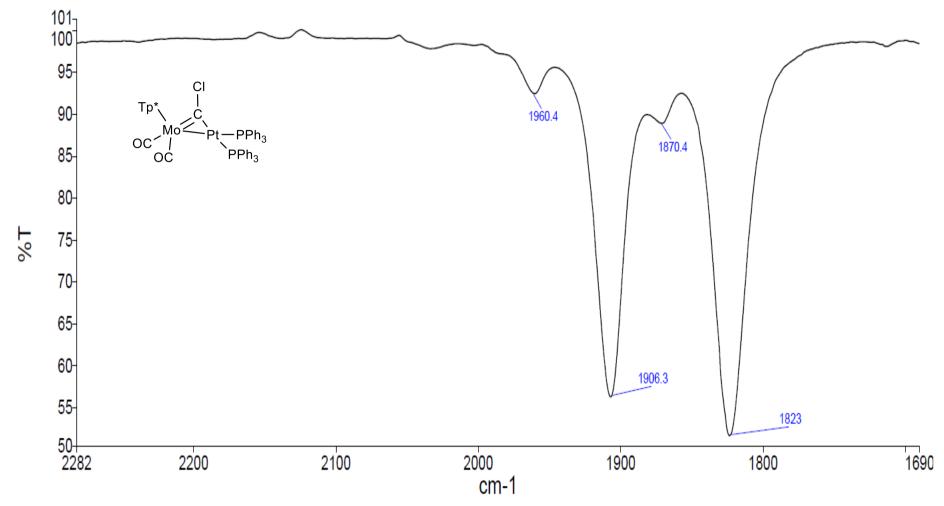
This journal is © The Royal Society of Chemistry 2022

DaltonTransactions

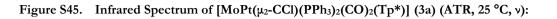

Dalton Transactions

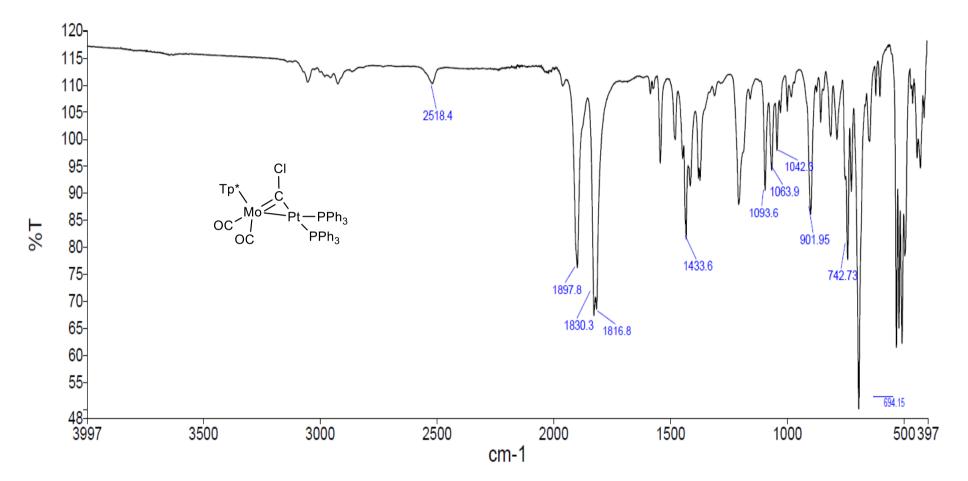


This journal is © The Royal Society of Chemistry 2022


| Dalton Trans., 2022, ESI

Dalton Transactions




42

| Dalton Trans., 2022, ESI

This journal is © The Royal Society of Chemistry 2022

ELECTRONIC SUPPORTING INFORMATION

Please do not adjust margins

ELECTRONIC SUPPORTING INFORMATION

Dalton Transactions

Figure S46. Mass Spectrum of $[MoPt(\mu_2-CCl)(PPh_3)_2(CO)_2(Tp^*)]$ (3a) (ESI):

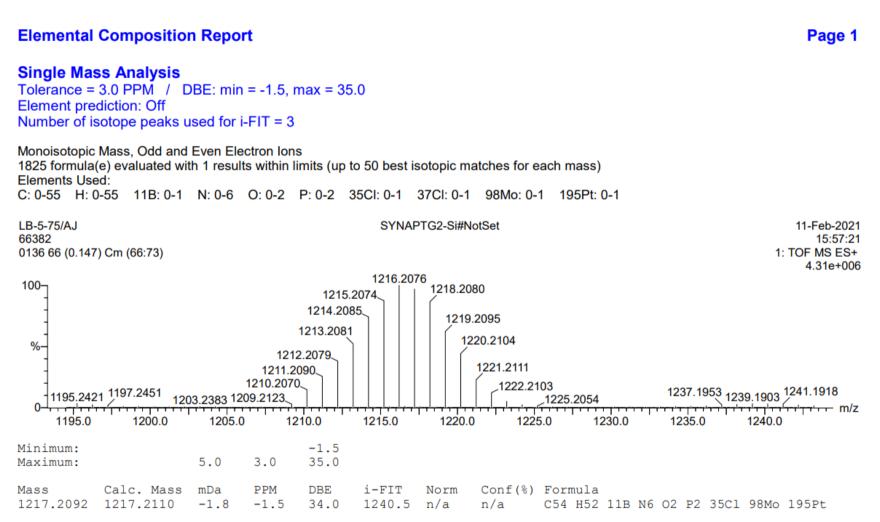
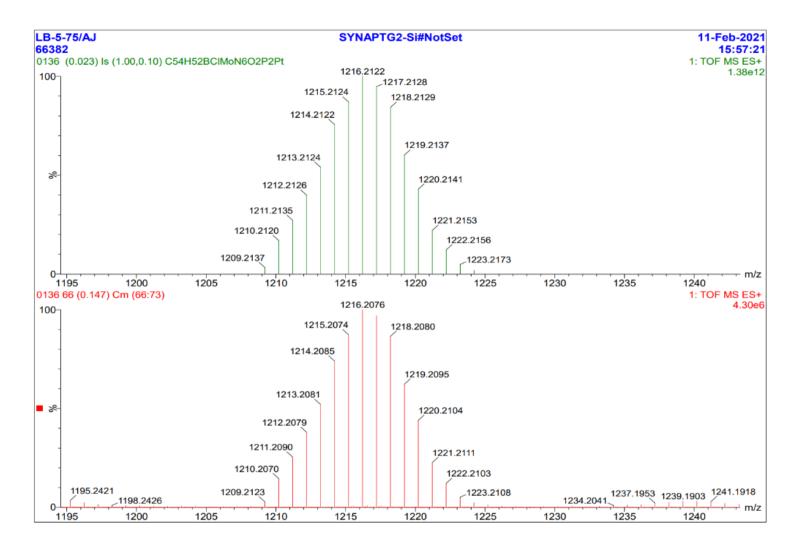



Figure S47. Mass Spectrum of [MoPt(µ₂-CCl)(PPh₃)₂(CO)₂(Tp*)] (3a) (ESI):

44

| Dalton Trans., 2022, ESI

This journal is © The Royal Society of Chemistry 2022

Dalton Transactions

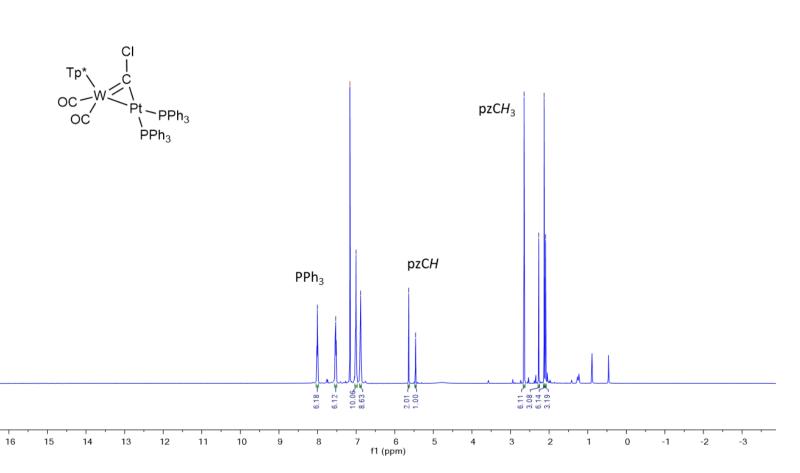
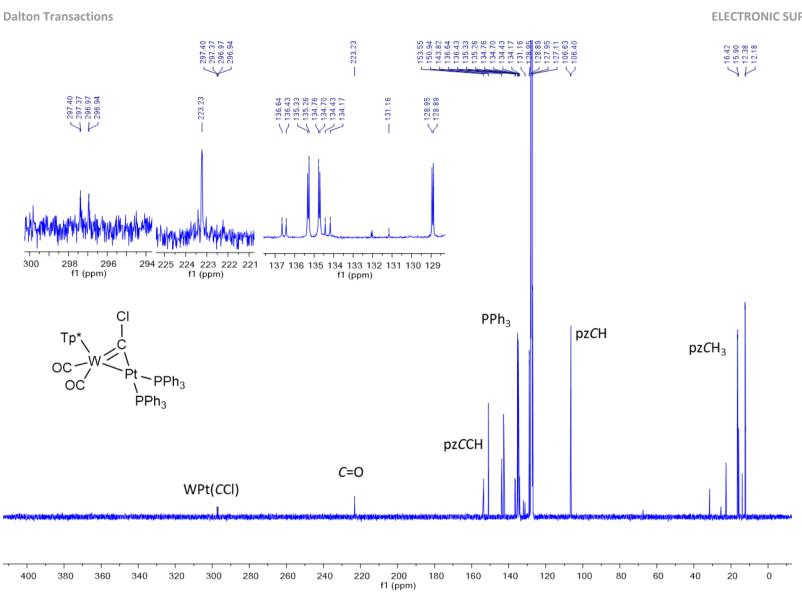



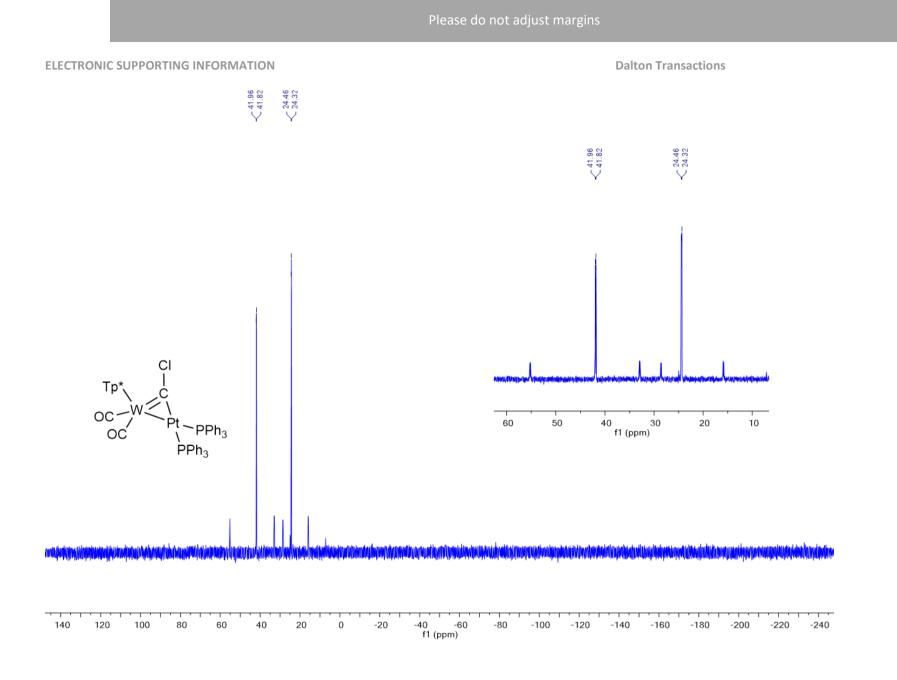
Figure S49. ¹³C{¹H} NMR Spectrum of [WPt(μ-CCl)(PPh₃)₂(CO)₂(Tp*)] (3b) (151 MHz, C₆D₆, 25 °C, δ):

46

| Dalton Trans., 2022, ESI

This journal is © The Royal Society of Chemistry 2022

Please do not adjust margins

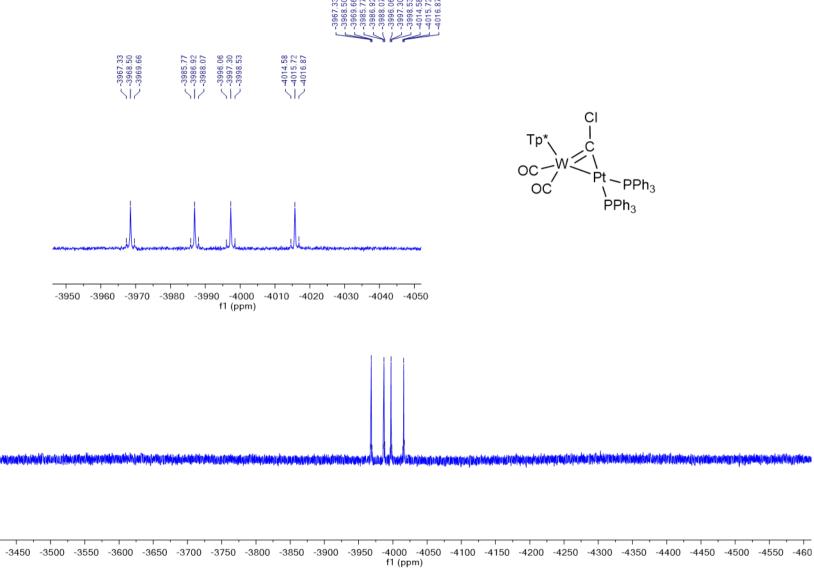

Figure S50. ³¹P{¹H} NMR Spectrum of [WPt(μ-CCl)(PPh₃)₂(CO)₂(Tp*)] (3b) (162 MHz, C₆D₆, 25 °C, δ):

This journal is © The Royal Society of Chemistry 2022

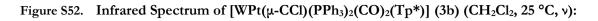
DaltonTransactions

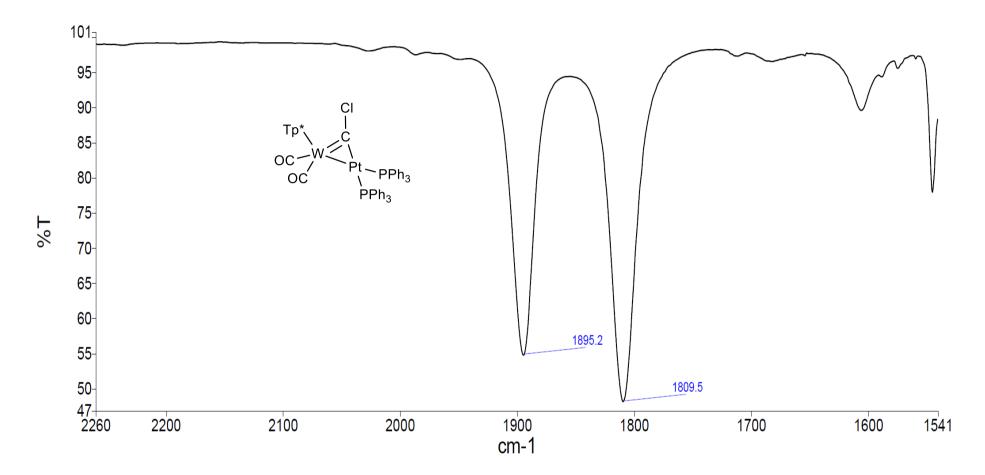
ELECTRONIC SUPPORTING INFORMATION

Please do not adjust margins

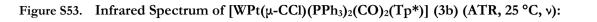

48 | Dalton Trans., 2022, ESI

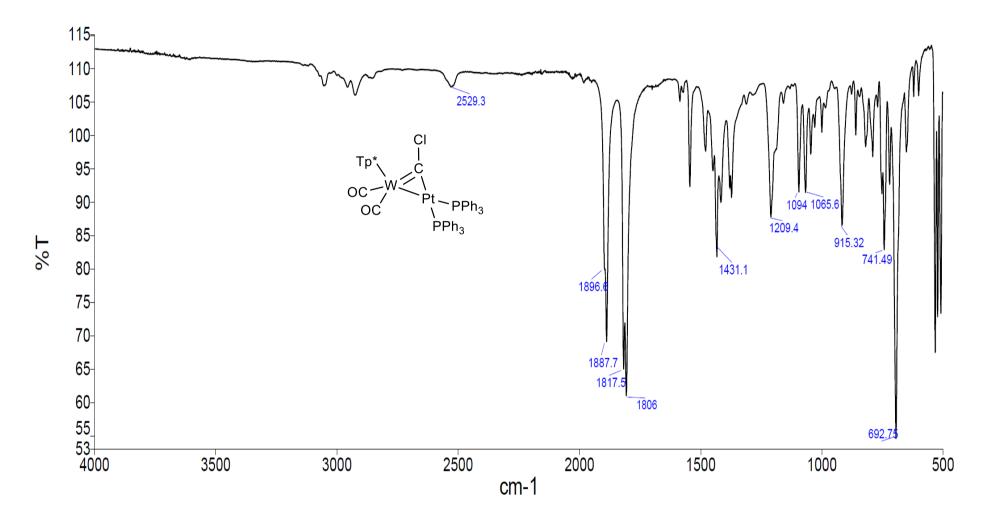
This journal is © The Royal Society of Chemistry 2022


This journal is © The Royal Society of Chemistry 2022


ELECTRONIC SUPPORTING INFORMATION

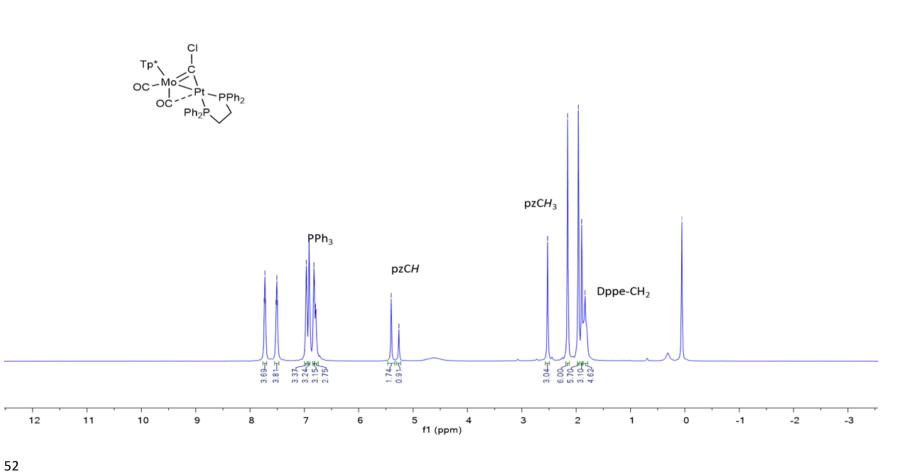
Dalton Transactions

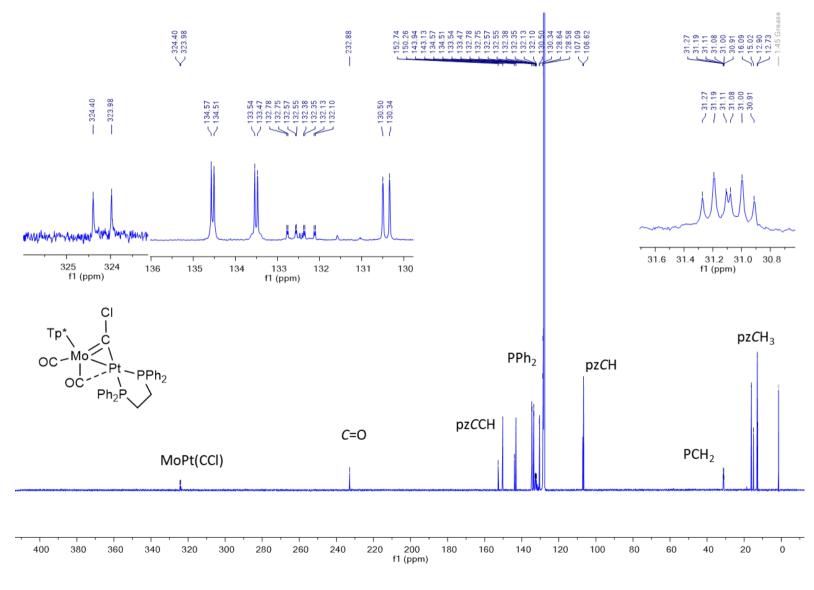


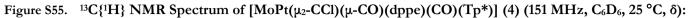


50 | Dalton Trans., 2022, ESI

This journal is © The Royal Society of Chemistry 2022

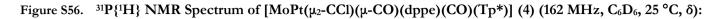

ELECTRONIC SUPPORTING INFORMATION

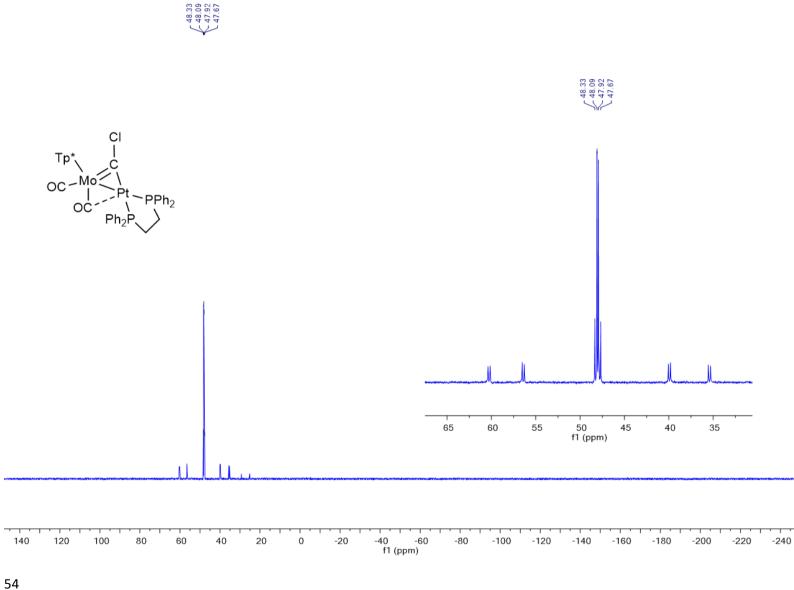




Dalton Trans., 2022, ESI

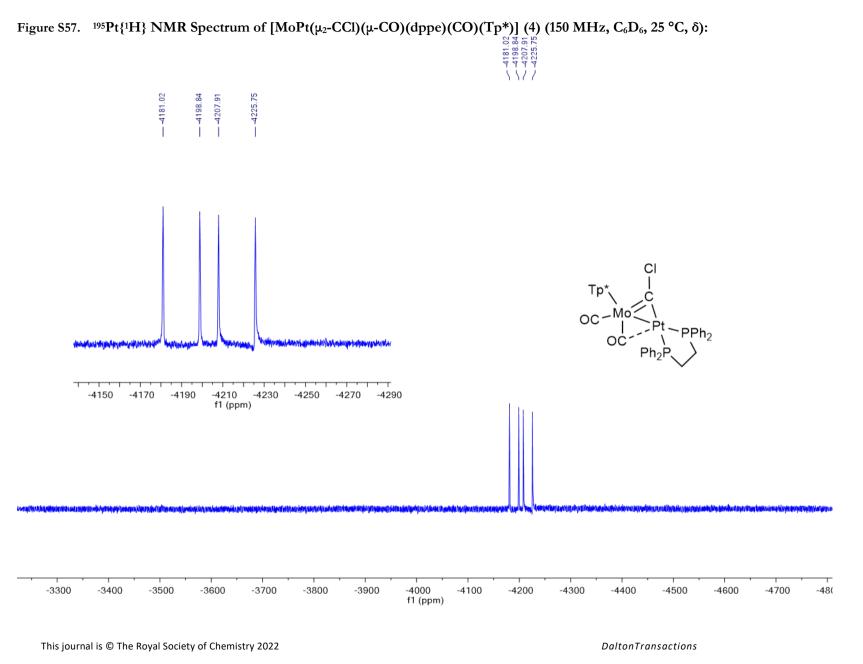
This journal is © The Royal Society of Chemistry 2022

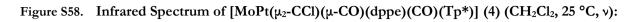


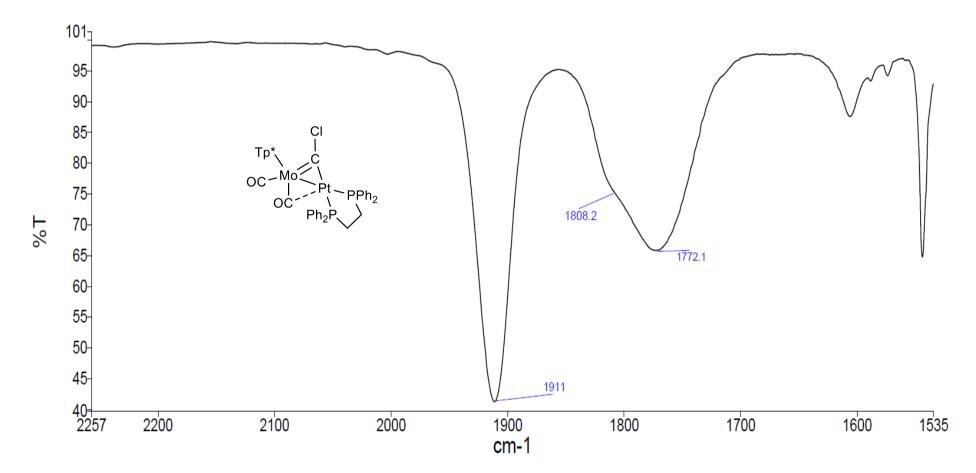


This journal is © The Royal Society of Chemistry 2022

DaltonTransactions

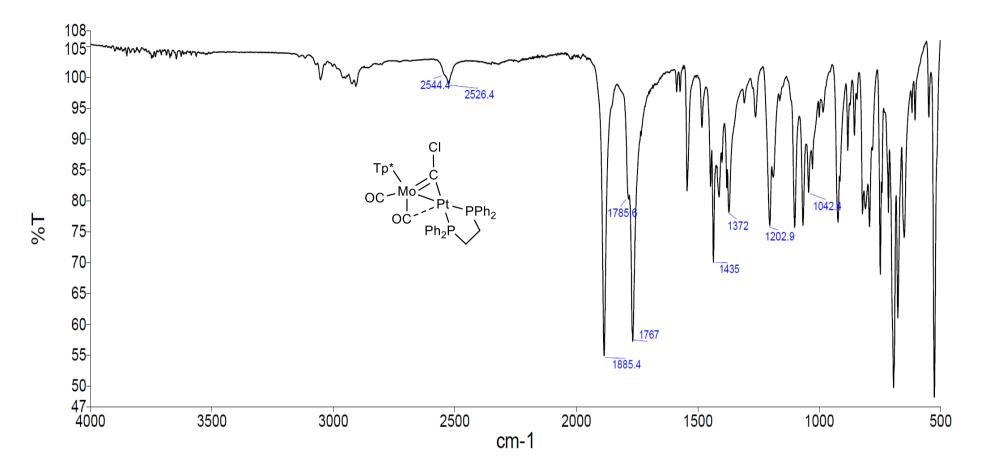

Dalton Transactions

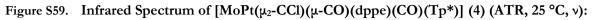



Dalton Trans., 2022, ESI

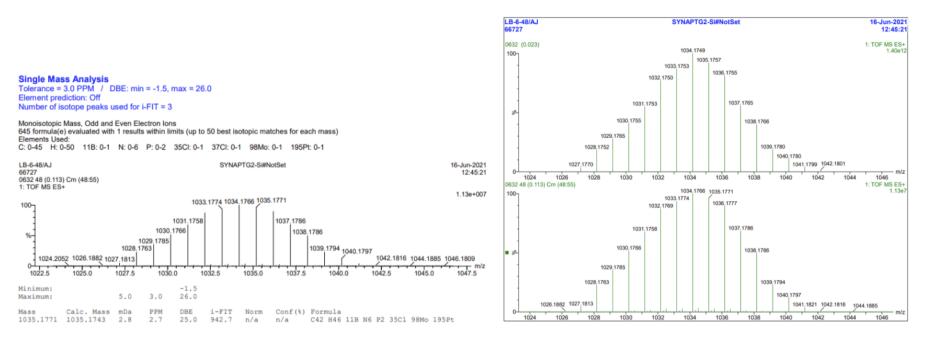
This journal is © The Royal Society of Chemistry 2022

Dalton Transactions

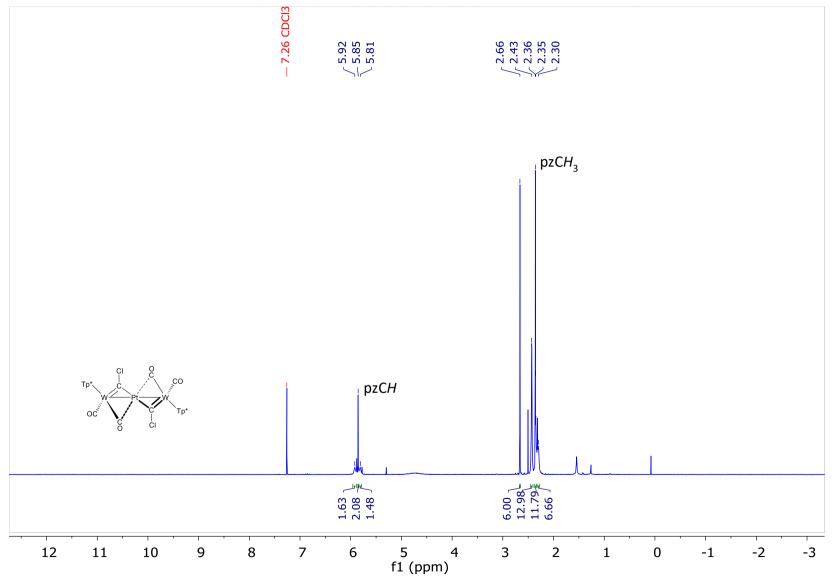




56 | Dalton Trans., 2022, ESI


This journal is © The Royal Society of Chemistry 2022

ELECTRONIC SUPPORTING INFORMATION



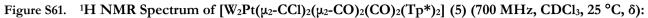
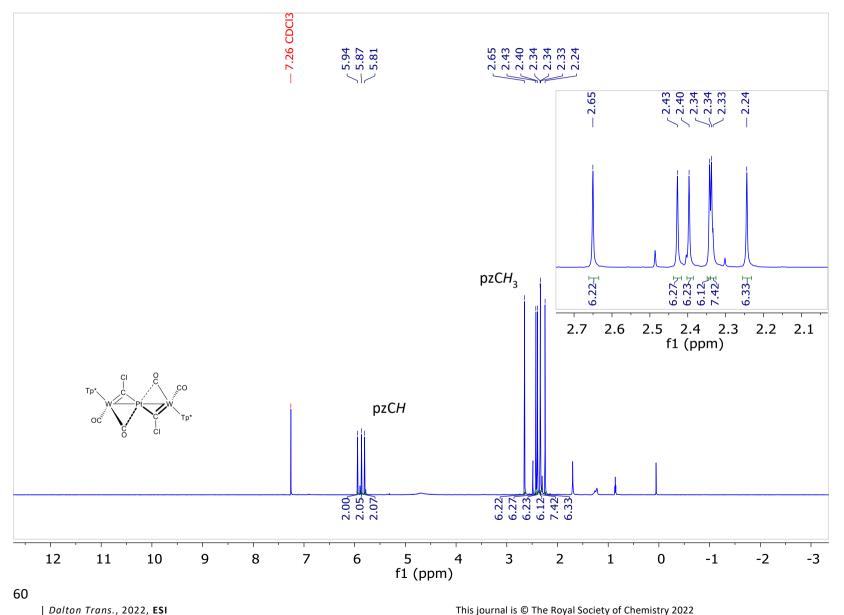
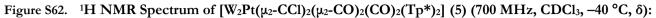
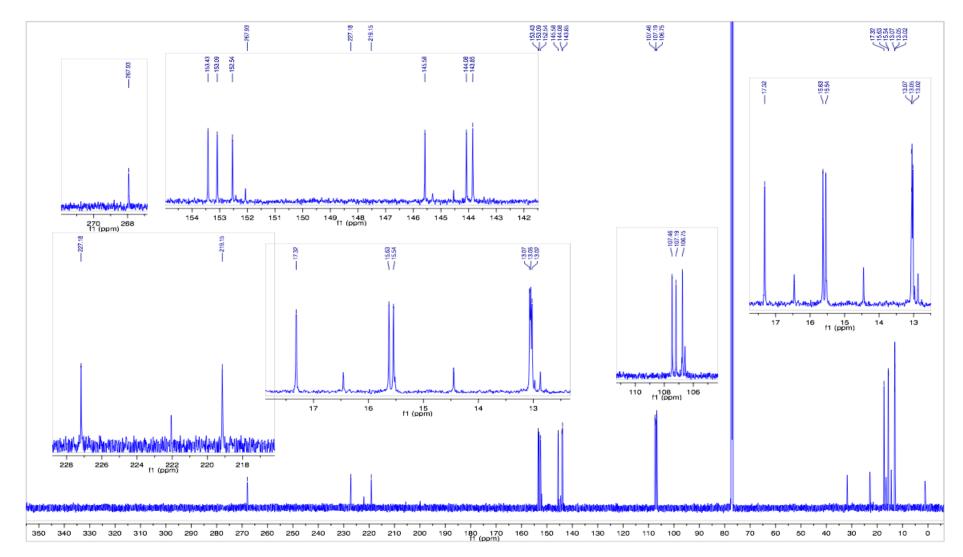


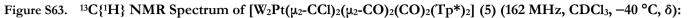
Figure S60. Mass Spectrum of $[MoPt(\mu_2-CCl)(\mu-CO)(dppe)(CO)(Tp^*)]$ (4):

58

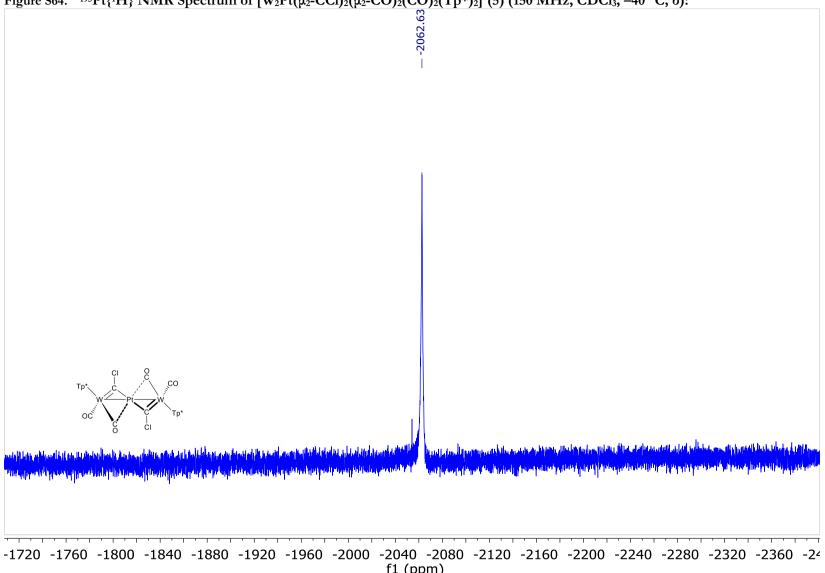




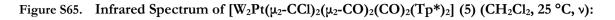

This journal is © The Royal Society of Chemistry 2022

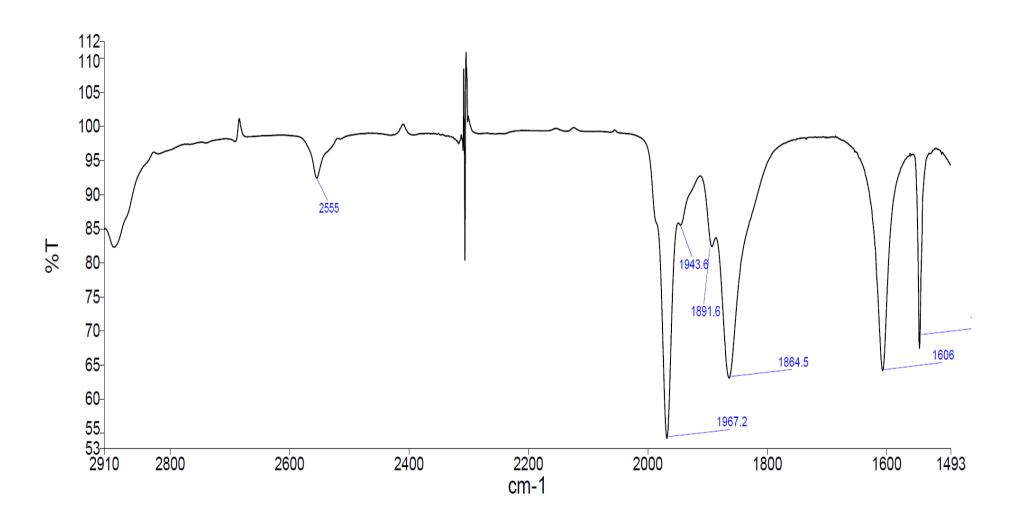

DaltonTransactions

Dalton Transactions



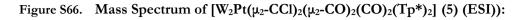
This journal is © The Royal Society of Chemistry 2022

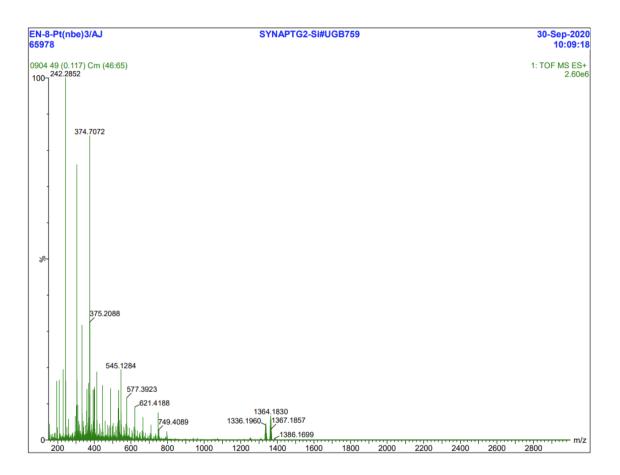

Figure S64. ¹⁹⁵Pt{¹H} NMR Spectrum of $[W_2Pt(\mu_2-CCl)_2(\mu_2-CO)_2(CO)_2(Tp^*)_2]$ (5) (150 MHz, CDCl₃, -40 °C, δ):


f1 (ppm)

This journal is © The Royal Society of Chemistry 2022

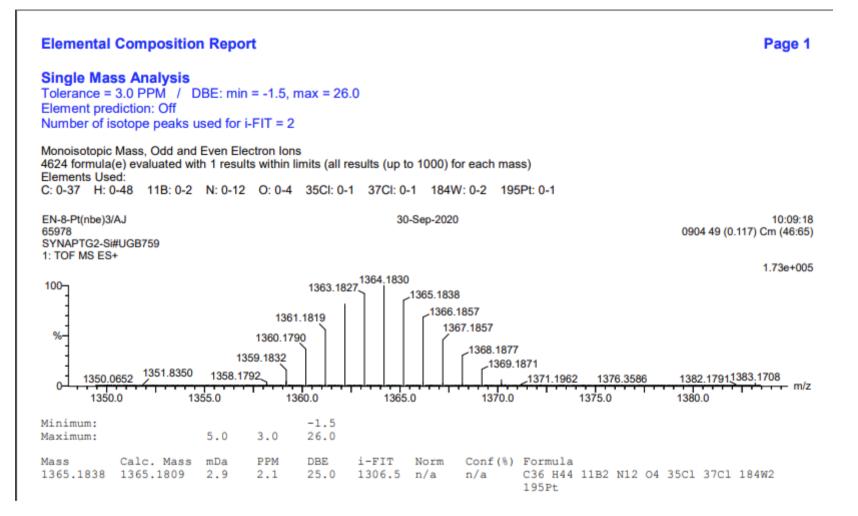
| Dalton Trans., 2022, ESI


ELECTRONIC SUPPORTING INFORMATION



DaltonTransactions

Dalton Transactions


64

| Dalton Trans., 2022, ESI

This journal is © The Royal Society of Chemistry 2022

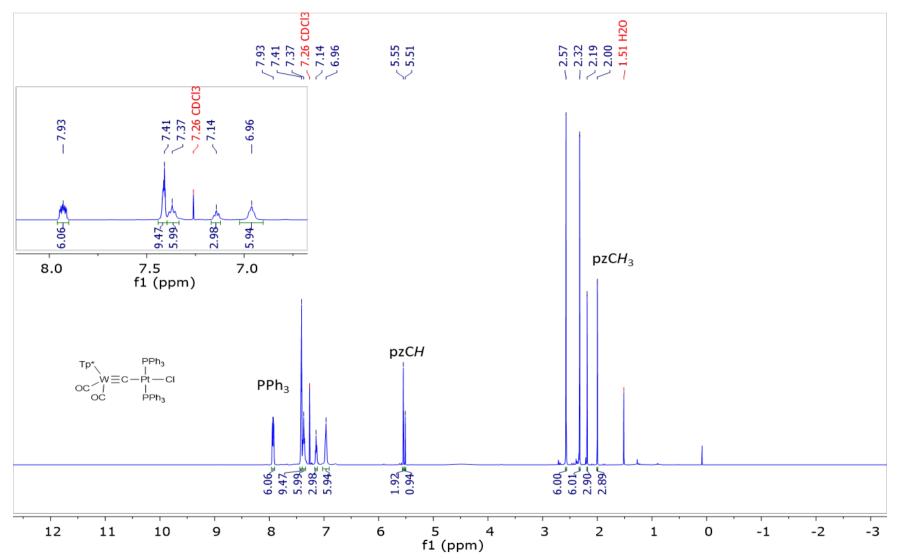
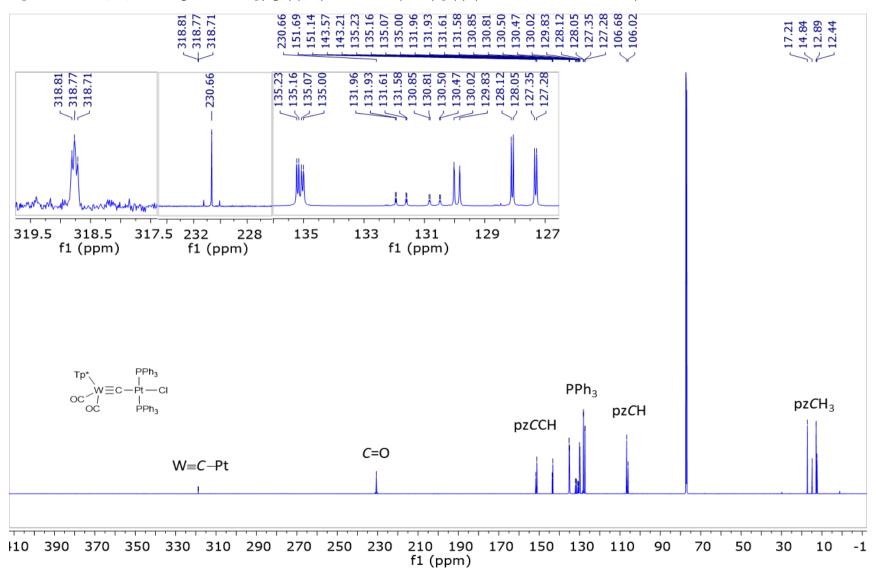
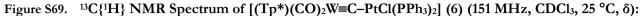

ELECTRONIC SUPPORTING INFORMATION

Figure S67. Mass Spectrum of $[W_2Pt(\mu_2-CCl)_2(\mu_2-CO)_2(CO)_2(Tp^*)_2](5)$ (ESI):

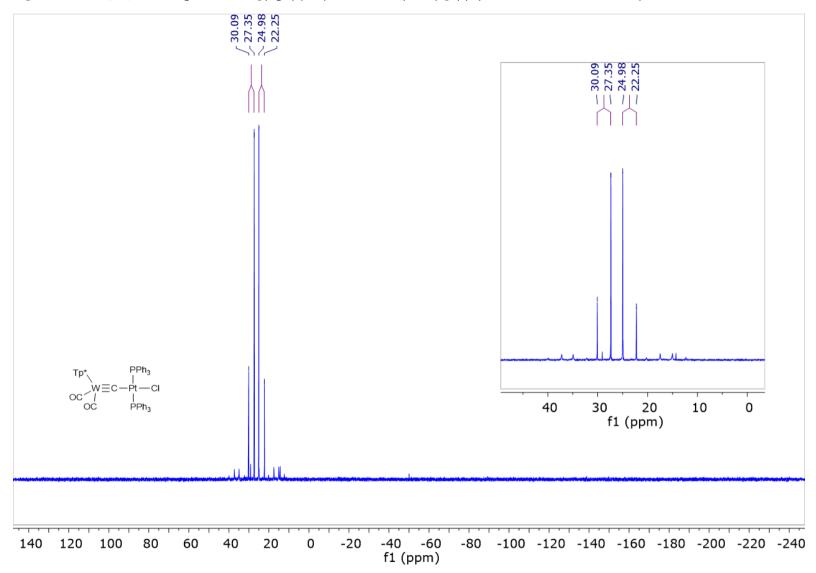
This journal is © The Royal Society of Chemistry 2022

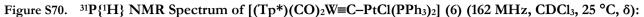

Dalton Transactions



66 | Dalton Trans., 2022, ESI

This journal is © The Royal Society of Chemistry 2022

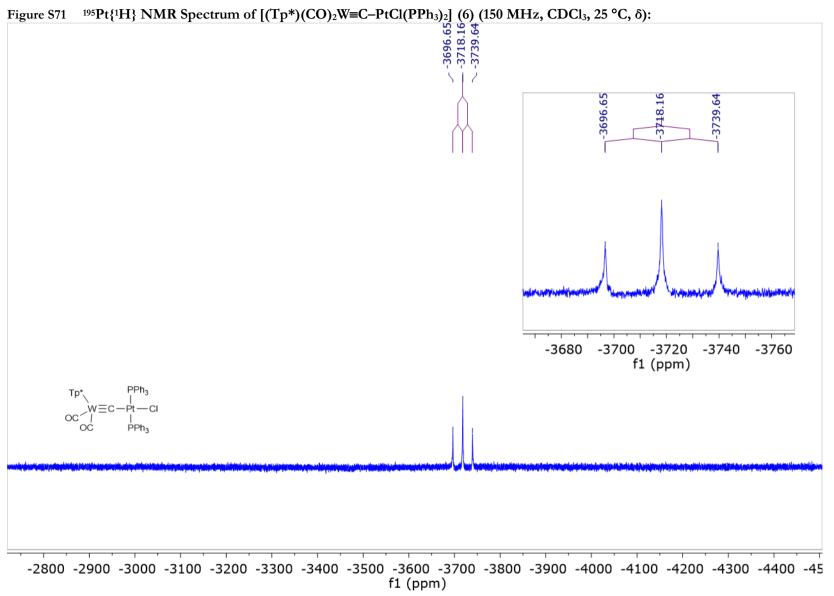


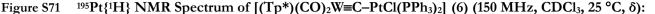


This journal is © The Royal Society of Chemistry 2022

DaltonTransactions

Dalton Transactions

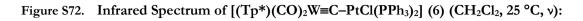


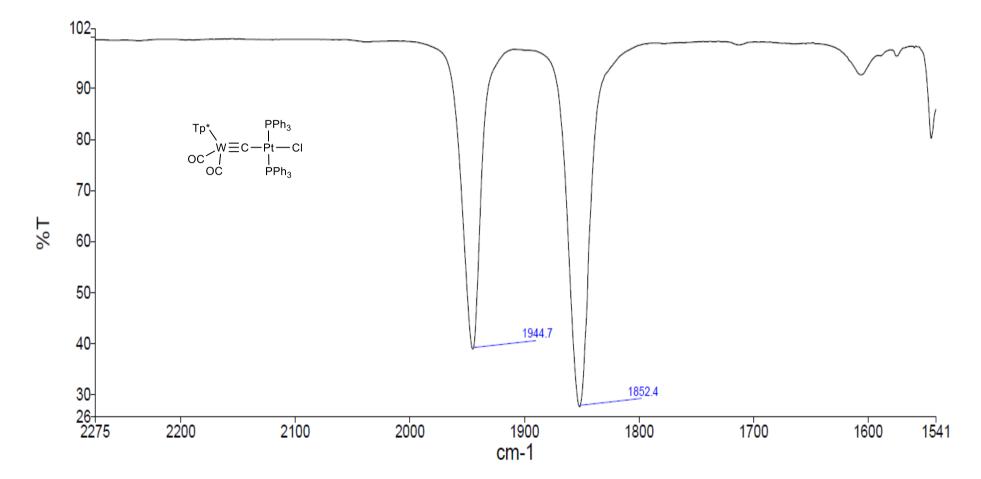

| Dalton Trans., 2022, ESI

68

This journal is © The Royal Society of Chemistry 2022

ELECTRONIC SUPPORTING INFORMATION

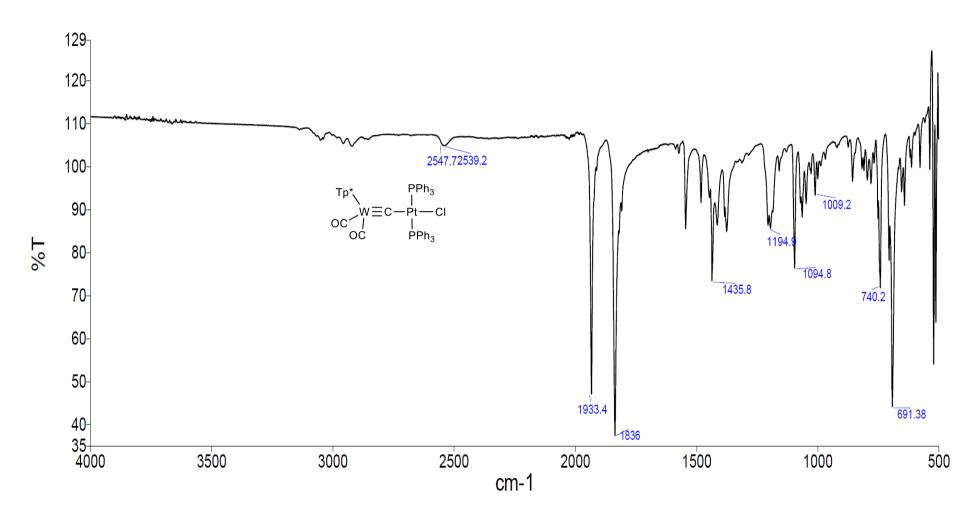




DaltonTransactions

This journal is © The Royal Society of Chemistry 2022

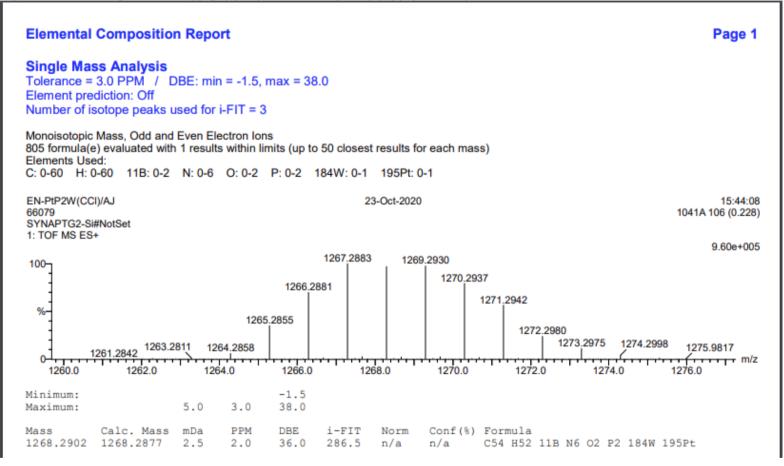
Dalton Transactions



70

| Dalton Trans., 2022, ESI

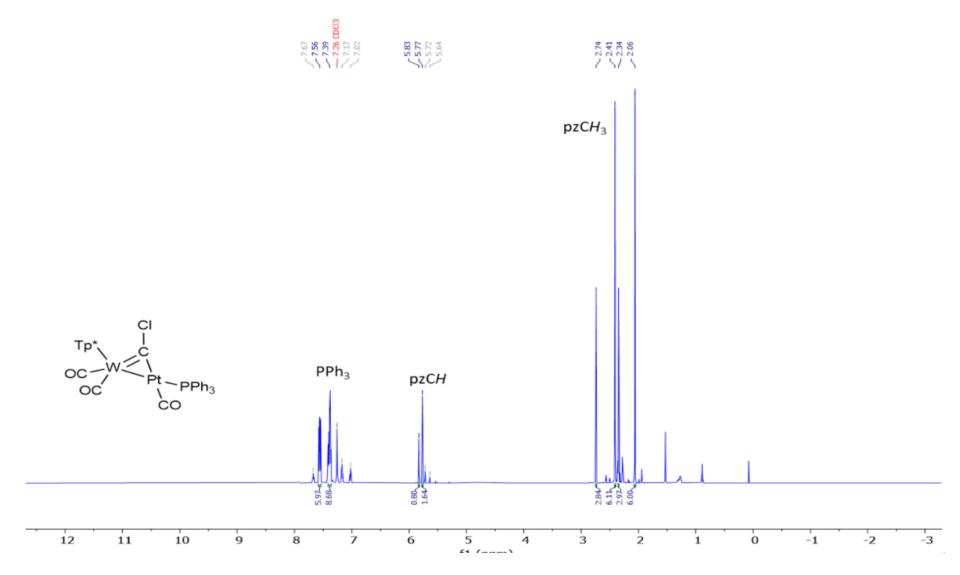
This journal is © The Royal Society of Chemistry 2022



Please do not adjust margins

Dalton Transactions

Figure S74. Mass Spectrum of [(Tp*)(CO)₂W≡C−PtCl(PPh₃)₂] (6) (HR-ESI):



72

| Dalton Trans., 2022, ESI

This journal is © The Royal Society of Chemistry 2022

ELECTRONIC SUPPORTING INFORMATION

Figure S75. ¹H NMR Spectrum of [WPt(μ-CCl)(CO)₃(PPh₃)(Tp*)] (7) (600 MHz, CDCl₃, 25 °C, δ):

This journal is © The Royal Society of Chemistry 2022

DaltonTransactions

Dalton Transactions

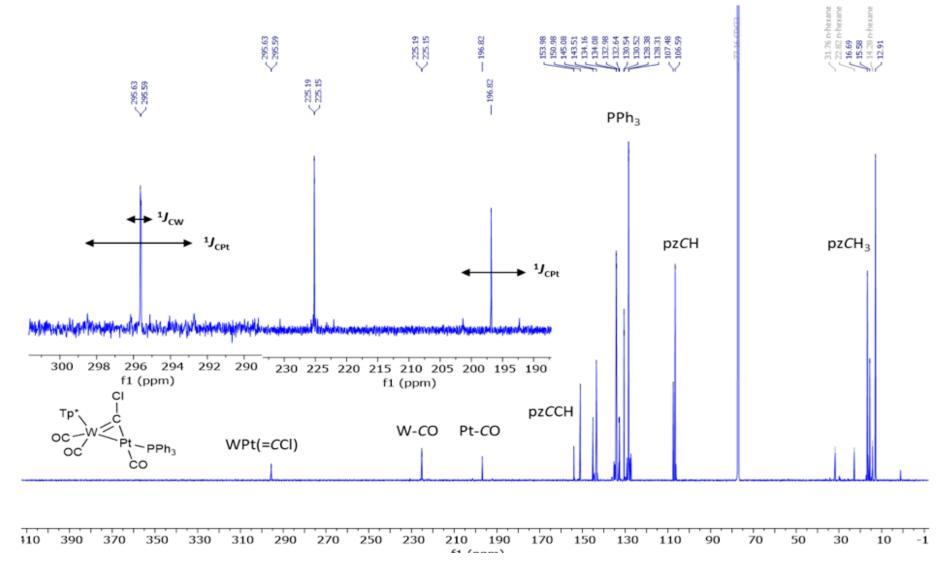
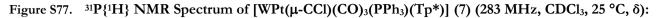
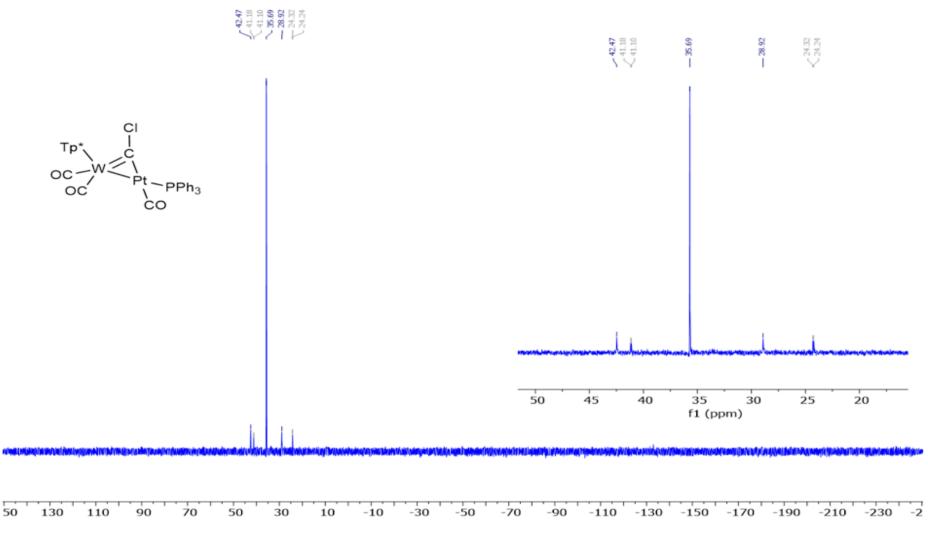


Figure S76. ¹³C{¹H} NMR Spectrum of [WPt(μ-CCl)(CO)₃(PPh₃)(Tp*)] (7) (151 MHz, CDCl₃, 25 °C, δ):

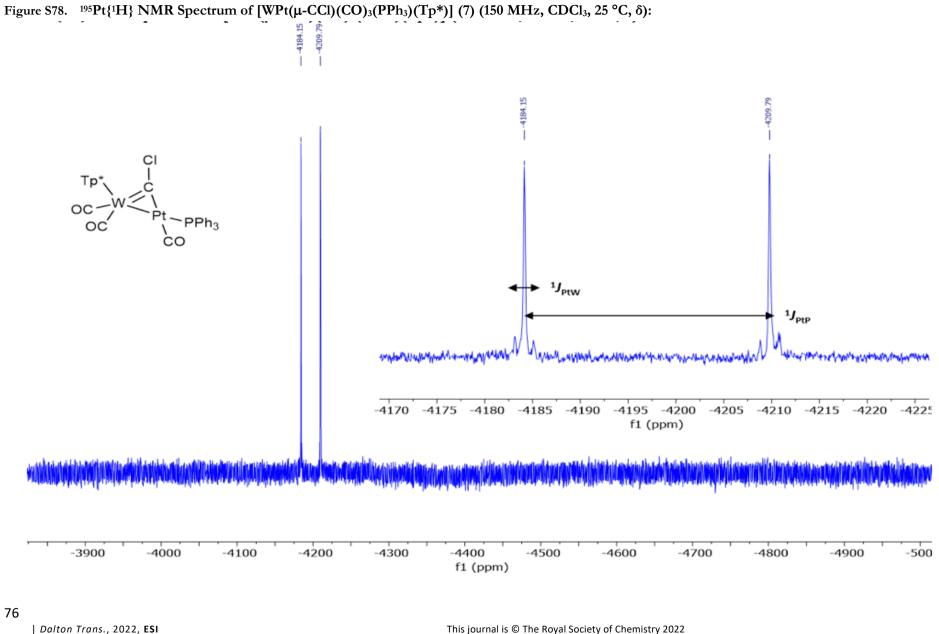

74


| Dalton Trans., 2022, ESI

This journal is © The Royal Society of Chemistry 2022

This journal is © The Royal Society of Chemistry 2022

ELECTRONIC SUPPORTING INFORMATION



DaltonTransactions

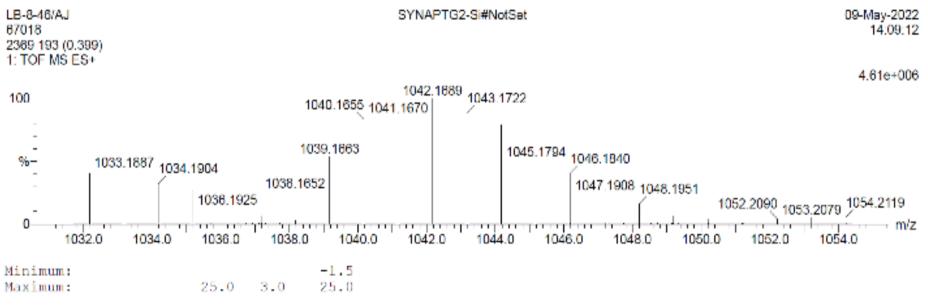
Dalton Transactions

| Dalton Trans., 2022, ESI

Please do not adjust margins

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION


Figure S79. Mass Spectrum of $[WPt(\mu-CCl)(CO)_3(PPh_3)(Tp^*)]$ (7) (ESI):

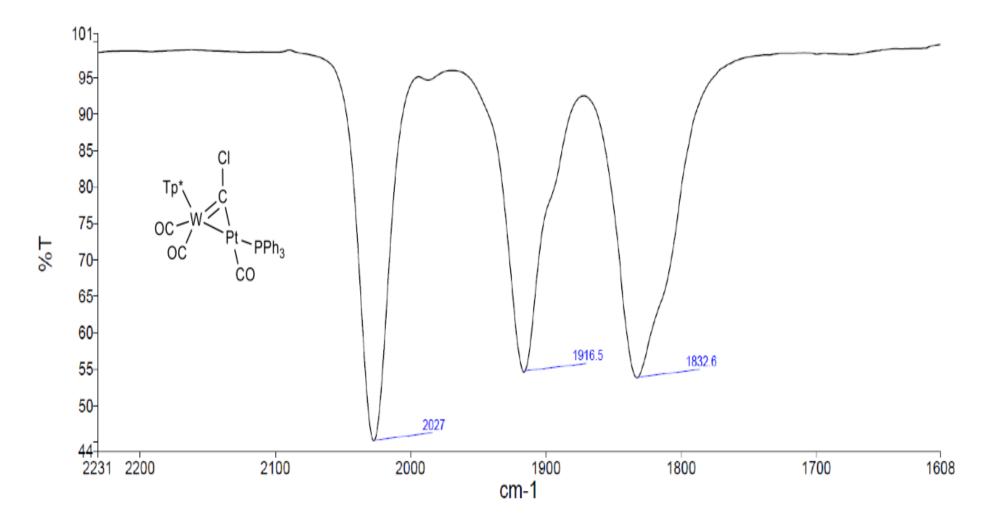
Single Mass Analysis

Tolerance = 3.0 PPM / DBE: min = -1.5, max = 25.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron lons 1308 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

Elements Used: C: 0-40 H: 0-40 11B: 0-1 N: 0-6 O: 0-2 P: 0-1 35CI: 0-1 37CI: 0-1 184W: 0-1 195Pt: 0-1

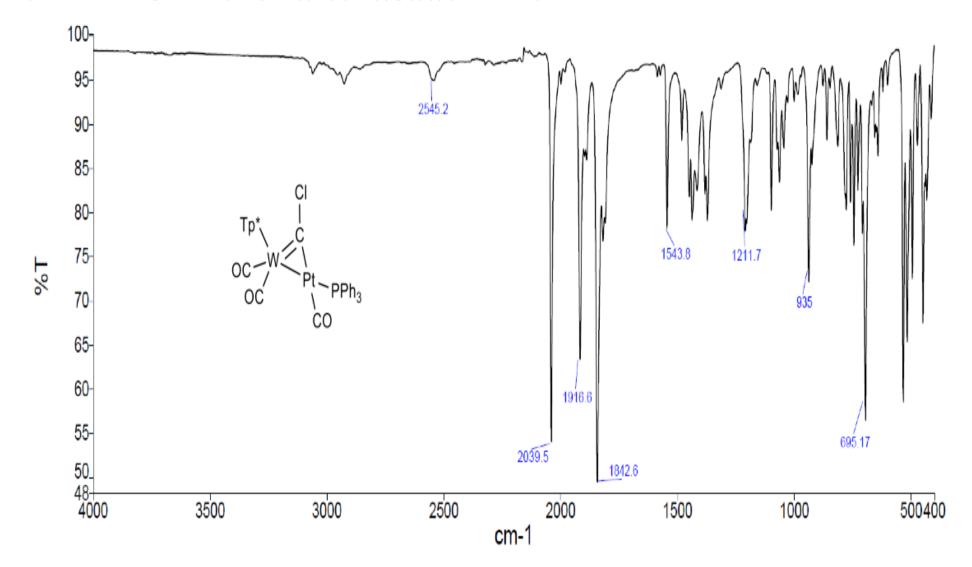
Mass Calc. Mass mDa PPM DBE i-FIT Formula 1041.1670 1041.1654 1.6 1.5 24.5 2269.4 C36 H37 11B N6 02 P 35Cl 184W 195Pt

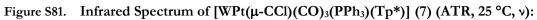

This journal is © The Royal Society of Chemistry 2022

DaltonTransactions

77

Dalton Transactions

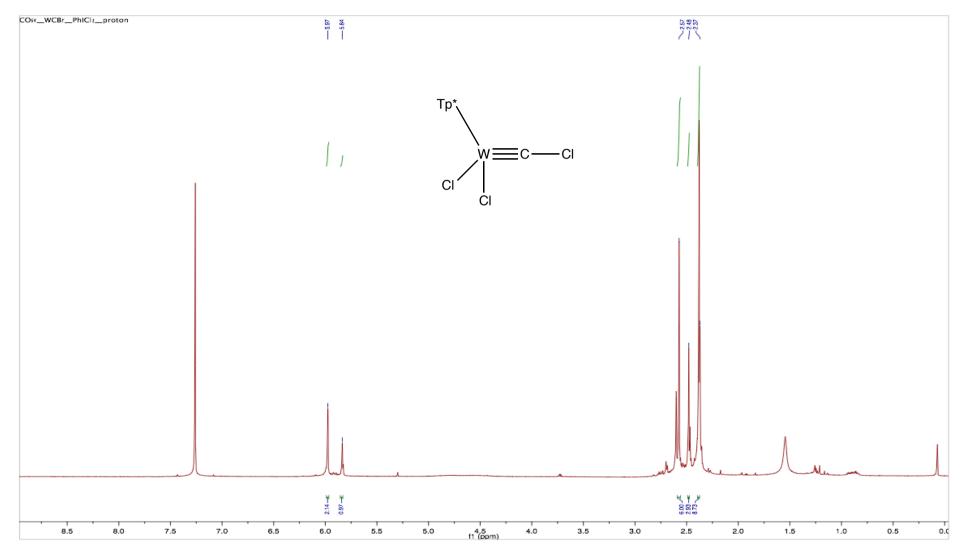

Figure S80. Infrared Spectrum of [WPt(μ-CCl)(CO)₃(PPh₃)(Tp*)] (7) (CH₂Cl₂, 25 °C, ν):



78 | Dalton Trans., 2022, ESI

This journal is © The Royal Society of Chemistry 2022

ELECTRONIC SUPPORTING INFORMATION



This journal is © The Royal Society of Chemistry 2022

DaltonTransactions

Dalton Transactions

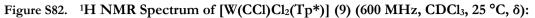


Figure S83. ¹³C{¹H} NMR Spectrum of [W(CCl)Cl₂ (Tp*)] (9) (151 MHz, CDCl₃, 25 °C, δ):

80

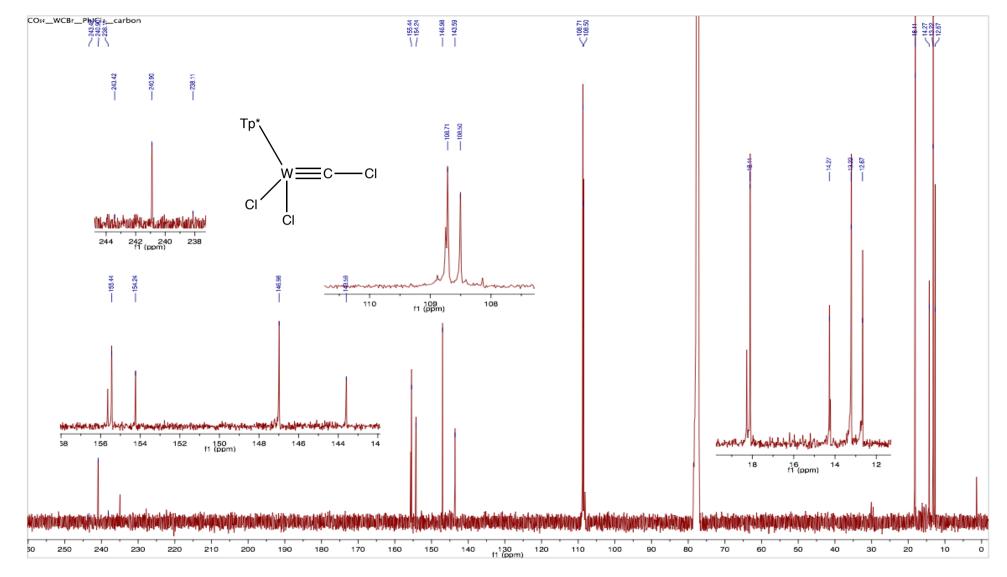
| Dalton Trans., 2022, ESI

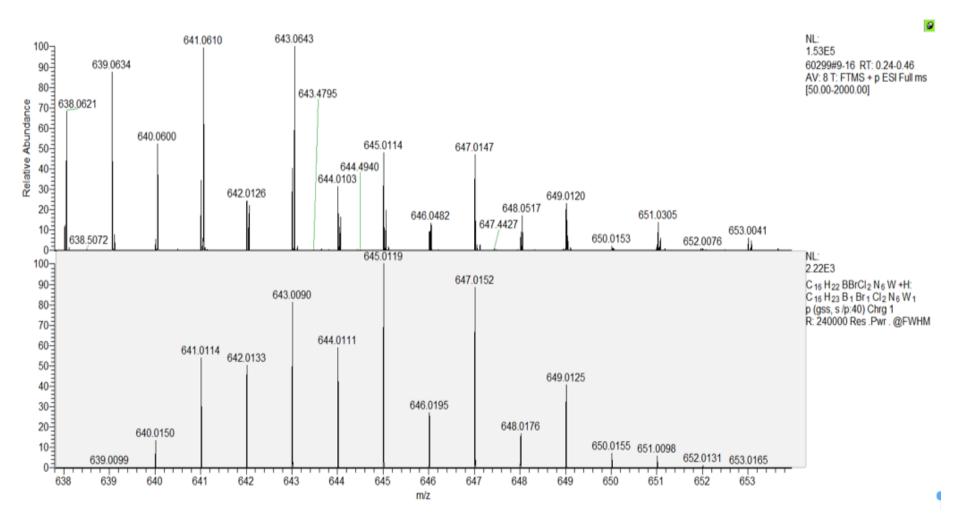
This journal is © The Royal Society of Chemistry 2022

Please do not adjust margins

Dalton Transactions

ELECTRONIC SUPPORTING INFORMATION




Figure S84. Mass Spectrum of [W(CCl)Cl₂(Tp*)] (9) (ESI):

This journal is © The Royal Society of Chemistry 2022

DaltonTransactions

81

Observed versus simulated spectrum for detected target formulas [M+H]+ ion ¶

82 | Dalton Trans., 2022, ESI

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2022