Supplementary Information

Comparison of mononuclear and dinuclear copper(II) biomimetic complexes: Spectroelectrochemical mechanistic study of their catalytic pathways

Milan Sýs¹, Jana Kocábová², Jitka Klikarová¹, Miroslav Novák³, Robert Jirásko¹, Michaela

Obluková², Tomáš Mikysek^{*1}, Romana Sokolová^{*2}

¹ Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice,

Studentská 573, 532 10 Pardubice, Czech Republic

² J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 182 23 Prague 8, Czech

Republic

³ Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical

Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic

Content:

Scheme S1. Mechanism of tyrosinase catalytic activity	2
Fig. S1. Absorption spectra of 3,5-DTBQ at different concentrations, calibration curve	2
Fig. S2 . UV-Vis spectroelectrochemistry of compounds C1 (A), C2 (B) and C3 (C) in 0.1M T and acetonitrile during their oxidation	BAPF ₆
Fig. S3. UV-Vis spectroelectrochemistry of 3,5-DTBC in 0.1M TBAPF ₆ and acetonitrile	. 4
Table S1. Calculations of minimal energies for catalysts C1, C2 and C3 intermediates	5
Fig. S4-6. FTIR spectra of studied C1-C3 complexes	7
Fig. S7. ESI mass spectra of studied C1-C3 complexes	10

Scheme S1. Mechanism of tyrosinase catalytic activity toward oxidation of phenol and catechol according to Hamann J.N. et al. [5].

Fig. S1. Panel A represents UV-Vis spectra recorded at concentrations 10, 50, 100, 150, 200, 300, 400, 500, 750, 1000 and 1500 μ mol L⁻¹ of 3,5-DTBQ obtained in pure MeOH containing 0.1 mol L⁻¹ LiClO₄. Panel B shows the corresponding calibration curve for 3,5-DTBQ spectrophotometric detection at 400 nm.

Fig. S2. UV-Vis spectroelectrochemistry of compounds **C1** (A), **C2** (B) and **C3** (C) in 0.1M TBAPF₆ and acetonitrile during their irreversible oxidation at 1.7 V.

Fig. S3. UV-Vis spectroelectrochemistry of 3,5-DTBC during oxidation at potentials -0.45, -0.30, -0.25 and -0.2 V (A) and during continuous oxidation at potentials -0.20, -0.10, 0.05, 0.15, 0.40 V (B) in $0.1M \text{ TBAPF}_6$ and acetonitrile.

Table S1. Minimal energies calculated for different possible intermediates of catalysts **C1**, **C2** and **C3** proposed according to literature (Spartan 20', Wavefunction, Inc.).

C3			
E _{min} / kJ/mol	780.6402	732.8906	
C3			
E _{min} / kJ/mol	184.7303	602.6719	
C3			
E _{min} / kJ/mol	472.3717	399.0295	

Fig. S4. FTIR spectrum of **C1** complex obtained at single-bounce diamond ATR crystal using Nicolet[™] iS50 FTIR Spectrometer from Thermo Fisher Scientific[™] (Waltham, Massachusetts, USA).

Fig. S5. FTIR spectrum of **C2** complex obtained at single-bounce diamond ATR crystal using Nicolet[™] iS50 FTIR Spectrometer from Thermo Fisher Scientific[™] (Waltham, Massachusetts, USA).

Fig. S6. FTIR spectrum of **C3** complex obtained at single-bounce diamond ATR crystal using Nicolet[™] iS50 FTIR Spectrometer from Thermo Fisher Scientific[™] (Waltham, Massachusetts, USA).

Fig. S7. Full scan positive-ion ESI mass spectra of A/ complex **C1**, B/ complex **C2**, and C/ complex **C3** obtained using hybrid quadrupole time of flight mass analyzer (micrOTOF-Q, Bruker Daltonics, Germany) in positive-ion mode in the range of m/z 100 – 1000. Individual m/z values correspond to the most abundant ion peak within the characteristic isotopic distribution of annotated ions.