Supporting Information

Metal-organic framework (MOF) derived plate-shaped CoS_{1.097} nanoparticles for improved hydrogen evolution reaction

Nachiketa Sahu,^{a, b} Jiban K. Das ^{a, b} and J. N. Behera ^{a, b*}

^a School of Chemical Sciences, National Institute of Science Education and Research (NISER),
An OCC of Homi Bhabha National Institute (HBNI), Khurdha, 752050, Odisha, India
^b Centre for Interdisciplinary Sciences (CIS), NISER, 752050, Jatni, Odisha, India

E-mail: jnbehera@niser.ac.in

Fig. S1 Crystal structures arrangement of Co-MOF (a-d).

Fig. S2 X-ray diffraction study of bare CoS_x.

Fig. S3 FESEM images of Co-MOF at lower to higher magnifications.

Fig. S4 FESEM study of CoS_{1.097}-140 at varied magnifications.

Fig. S5 FESEM pictures of CoS_{1.097}-180 at different magnifications.

Fig. S6 EDX spectrum of optimized $CoS_{1.097}$ -160 showing the presence and percentage of elements Co and S.

Fig. S7 Full scan X-ray photoelectron survey spectrum of $CoS_{1.097}$ -160.

Fig. S8 Polarization curves of CoS_{1.097}-T products, Pt/C and bare CoS_x before and after iR compensation.

Fig. S9 Cyclic voltammograms (CVs) of $CoS_{1.097}$ -140 (a), $CoS_{1.097}$ -180 (b) and bare CoS_X (c) in a non-faradaic potential region of 0.31 V vs. RHE to 0.41 V vs. RHE.

Fig. S10 PXRD study of $CoS_{1.097}$ -160 after chronopotentiometry measurement of 25 h at 10 mA cm⁻² current density under acidic electrolytic conditions.

Electrocatalyst	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Electrolyte	References
CoS _{1.097} /MoS ₂	228	59.7	0.5 M H ₂ SO ₄	ACS Appl. Energy Mater. 2019, 2, 10, 7504–7511
CoP-CoS composite nanorods	156	74	0.5 M H ₂ SO ₄	ChemCatChem 2019, 11, 6099– 6104
MoS ₂ /Co ₃ S ₄	175	55.6	0.5 M H2SO4	Electrochim. Acta 2018, 269, 262–273
CoS ₂	192	52	0.5 M H2SO4	J. Phys. Chem. C. 2014, 118, 21347–21356.
CoS ₂	165	86.57	0.5 M H ₂ SO ₄	ACS Appl. Mater. Interfaces 2021, 13, 41573–41583
Ni-doped CoS ₂	156	52	0.5 M H2SO4	Electrochim. Acta, 2017, 228, 428-435
CoS ₂ /CC	288	210.7	0.5 M H ₂ SO ₄	J. Mater. Chem. A, 2015, 3, 22886-22891
CoS ₂ microwires	158	58	0.5 M H2SO4	J. Am. Chem. Soc., 2014, 136,10053-10061
Co _X S _Y	188	96	0.5 M H ₂ SO ₄	ChemElectroChem 2018, 5, 3639– 3644
CoS-MoS ₂	270	74	0.5 M H2SO4	J. Solid State Electrochem. 2017, 21, 409–417
CoS1.097-160	163	53	0.5 M H2SO4	This Work

Table S1. Hydrogen evolution reaction (HER) comparison of cobalt sulfide-basedelectrocatalysts.