Supporting Information

Highly Stable Halide Perovskites for Photocatalysis via Multi-

dimensional Structure Design and In-situ Phase Transition⁺

Yiqin Gong,^{a‡} Fan Ye,^{b‡} Qiliang Zhu,^a Wei Yan,^a Jianhua Shen,^{*a} Kan-Hao Xue,^{*b} Yihua Zhu,^{*a} Chunzhong Li^a

^{a.} Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

^{b.} School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.

E-mail: jianhuashen@ecust.edu.cn; xkh@hust.edu.cn; yhzhu@ecust.edu.cn.

^{*†*} These authors contributed equally to this work.

Fig. S1 (a) TEM image of $CsPbBr_3$ QDs. (b) Size distribution of $CsPbBr_3$ QDs.

Fig. S2 TEM image of 0.1 PEABr sample.

Fig. S3 Size distribution of 0.3 PEABr sample.

Fig. S4 TEM image of 0.5 PEABr sample.

Fig. S5 AFM images of 0.5 PEABr sample.

Fig. S6 XRD pattern of CsPbBr₃ QDs, 0.1 PEABr sample, 0.3 PEABr sample, 0.5 PEABr sample, 2D (PEA)₂PbBr₄ sample.

Fig. S7 Time-resolved PL spectra of 0.5 PEABr sample and 2D (PEA)₂PbBr₄ sample.

Fig. S8 XRD patterns of $CsPbBr_3$ QDs sample before and after photocatalytic reaction.

Fig. S9 TEM image of CsPbBr₃ QDs sample after reaction.

Fig. S10 Optical photographs of samples after photocatalytic reaction.

Fig. S11 Yield of CO after 3 h photochemical reaction of 0.3 PEABr sample as photocatalysts after 9 cycles.

Fig. S12 Yield of the CO after 3 h photochemical reaction of 0.1 PEABr sample as photocatalysts after 3 cycles.

Fig. S13 Partly enlarged area of Figure 4a (marked with yellow).

Fig. S14 High-resolution XPS spectra of Cs 3d, Pb 4f and Br 3d of 0.3 PEABr sample before and after catalysis.

Fig. S15 Absorbance spectra of 0.3 PEABr sample before and after reaction.

Fig. S16 Tauc plots of CsPbBr₃ QDs sample.

Fig. S17 UPS spectra of CsPbBr₃ QDs. (a) shows valence band maximum. (b)shows the spectra close to the Fermi edge.

Fig. S18 Time-resolved PL spectra of 0.3 PEABr sample before and after reaction.

Fig. S19 XRD patterns of 0.5 PEABr sample before and after photocatalytic reaction.

Fig. S20 High-resolution XPS spectra of Cs 3d, Pb 4f and Br 3d of 0.5 PEABr sample before and after catalysis.

Fig. S21 Yield of the CO after 3 h photochemical reaction of 0.5 PEABr sample as photocatalysts after 3 cycles.

Fig. S22 Schematic structure of (a) CsPbBr₃ QDs and (b) (PEA)₂PbBr₄ NSs/CsPbBr₃ QDs/CsPb₂Br₅ NSs.

Fig. S23 Simulated process of CO₂ adsorbed on (a) CsPbBr₃ QDs and (d) (PEA)₂PbBr₄ NSs/CsPbBr₃ QDs/CsPb₂Br₅ NSs. (b, e) The conversion process of CO₂ to *COOH. (c, f) The conversion process of *COOH to *CO.

Sample	τ ₁ (ns)	A ₁ (%)	τ ₂ (ns)	A ₂ (%)	τ _{average} (ns)
CsPbBr₃ QDs	5.22	28.09	27.52	71.91	21.26
0.1 PEABr	5.04	28.26	25.23	71.74	19.60
0.3 PEABr	3.63	37.35	13.03	62.65	9.52
0.3 PEABr (505 nm) after reaction	2.36	88.57	17.01	11.43	4.03
0.5 PEABr (508 nm)	2.48	36.84	15.99	63.16	11.01
0.5 PEABr (438 nm)	1.80	96.59	11.80	3.41	2.14
0.5 PEABr (483 nm) after reaction	1.53	77.93	10.22	22.07	3.45
(PEA) ₂ PbBr ₄	2.01	92.57	10.48	7.43	2.64

Table S1 Fitted data by biexponential decay kinetics of PL decay curves

· · · ·					
0.3 PEABr before catalysis	Peak Area	ASF Area/ASF		Pb:Cs	Br:Pb
Cs 3d	87718.82	7.2	12183.17		
Pb 4f	88157.39	6.7	13157.82	1.08	3.14
Br 3d	34291.91	0.83	41315.56		
0.3 PEABr after catalysis	/sis Peak Area		Area/ASF	Pb:Cs	Br:Pb
Cs 3d	39046.68	7.2	5423.15		
Pb 4f	53103.53	6.7	7375.49	1.36	2.89
Br 3d	17691.58	0.83	21315.16		
0.3 PEABr before catalysis	Peak Area	ASF	Area/ASF	Pb:Cs	Br:Pb
Cs 3d	61679.23	7.2	8566.56		
Pb 4f	64283.42	6.7	9594.54	1.12	3.21
Br 3d	25562.76	0.83	30798.50		
0.3 PEABr before catalysis	Peak Area	ASF	Area/ASF	Pb:Cs	Br:Pb
Cs 3d	13362.55	7.2	1855.91		
Pb 4f	23501.46	6.7	3507.68	1.89	2.65
Br 3d	7715.13	0.83	9295.34		

Table S2 Composition analysis of 0.3 PEABr and 0.5 PEABr sample before and afterphotocatalysis based on XPS spectra.

ASF: Atomic sensitivity factor

Catalyst	Light	Condition	Product	R _{electron} (µmolg⁻¹h⁻¹)	Refs
0.3 PEABr	150 mW cm ⁻²		CO	30.0	This
	AM 1.5G filter	n ₂ 0 vapor			work
CsPbBr ₃ @ZIF	150 mW cm ⁻²		CO, CH_4	29.6	C 1
	AM 1.5G filter				51
α -Fe ₂ O ₃ /RGO/CsPbBr ₃	150 mW cm ⁻²	LL O Vanar	CO, CH ₄ , H ₂	81.0	S2
	AM 1.5G filter	n20 vapor			
CsPbBr ₃ QDs/PbS	150 mW cm ⁻²	Ethyl agotata (watar	CO. CU4	22 50	S3
	AM 1.5G filter	Elliyi acelale/waler	СО, СП4	33.38	
CsPbBr ₃ NC/Pd NS	150 mW cm ⁻² >420 nm	H ₂ O Vapor	CO, CH ₄ , H ₂	33.8	S4
CsPbBr ₃ /BZNW/MRG	150 mW cm ⁻²			52.0	с г
0	>420 nm	H ₂ O vapor	CO, CH ₄	52.0	55
Fe: CsPbBr ₃	150 mW cm ⁻²	H ₂ O Vapor	CO, CH_4	55.0	S6
CsPbBr ₃ @GDY-Co	100 mW cm ⁻² >400 nm	Acetonitrile/water	CO	55.4	S7
CsPbBr ₃ /Cs ₄ PbBr ₆	100 mW cm ⁻² >400 nm	Deionized water	CO, CH ₄	24.7	S8
CsPbBr ₃ NCs (glycine)	100 mW/cm ⁻² >400 nm	H_2O Vapor	СО	55.4	S9
TiO ₂ /CsPbBr ₃	300 W Xe lamp	Acetonitrile/water	CO, H ₂	9.02	S10
P-CN/CsPbBr ₃	300 W Xe lamp	Deionized water	CO	12.16	S11

Table S3 Summary of relevant works on CsPbBr₃ QDs as photocatalysts for CO₂ reduction

References

- S1 Z. C. Kong, J. F. Liao, Y. J. Dong, Y. F. Xu, H. Y. Chen, D. Bin Kuang and C. Y. Su, *ACS Energy Lett.*, 2018, **3**, 2656–2662.
- S2 Y. Jiang, J. F. Liao, H. Y. Chen, H. H. Zhang, J. Y. Li, X. D. Wang and D. Bin Kuang, *Chem*, 2020, 6, 766–780.
- J. Hu, M. Yang, X. Ke, S. Yang, K. Wang, H. Huang, W. Wang, D. Luo, Z. Zheng, L. Huang, P. Xiao, C. Tu, Y. Min, N. Huo and M. Zhang, *J. Power Sources*, 2021, 481, 1–6.
- S4 Y. F. Xu, M. Z. Yang, H. Y. Chen, J. F. Liao, X. D. Wang and D. Bin Kuang, ACS Appl. Energy Mater., 2018, 1, 5083–5089.
- S5 Y. Jiang, J. F. Liao, Y. F. Xu, H. Y. Chen, X. D. Wang and D. Bin Kuang, J. Mater. Chem. A, 2019, 7, 13762–13769.
- S6 S. Shyamal, S. K. Dutta and N. Pradhan, J. Phys. Chem. Lett., 2019, 10, 7965–7969.
- K. Su, G. X. Dong, W. Zhang, Z. L. Liu, M. Zhang and T. B. Lu, ACS Appl. Mater. Interfaces, 2020, 12, 50464–50471.
- Y. F. Mu, W. Zhang, X. X. Guo, G. X. Dong, M. Zhang and T. B. Lu, *ChemSusChem*, 2019, 12, 4769–4774.
- S9 Y. Xu, W. Zhang, K. Su, Y. X. Feng, Y. F. Mu, M. Zhang and T. B. Lu, *Chem. Eur. J.*, 2021, 27, 2305–2309.
- S10 F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu and J. Yu, *Nat. Commun.*, 2020, **11**, 4613.
- S11 Y. Wang, Z. Liu, X. Tang, P. Huo, Z. Zhu, B. Yang and Z. Liu, New J. Chem., 2021, 45, 1082– 1091.