Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2022

Supporting information

Curcumin based ionic Pt(II) complexes: antioxidant and antimicrobial activity

Rossella Caligiuri,^a Giuseppe Di Maio,^{a,b} Nicolas Godbert,^a Francesca Scarpelli,^a Angela Candreva,^a Isabella Rimoldi,^c Giorgio Facchetti,^c Maria Giovanna Lupo,^d Emilia Sicilia,^e Gloria Mazzone,^e Fortuna Ponte,^e Isabella Romeo,^{f,g} Massimo La Deda,^{a,b} Alessandra Crispini,^a Renata De Rose^h and Iolinda Aiello^{*a,b}

^a MAT-INLAB, LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy, E-mail: <u>iolinda.aiello@unical.it</u>

^b CNR NANOTEC-Istituto di Nanotecnologia UOS Cosenza, Arcavacata di Rende (CS), 87036, Italy

^c Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, Milan, 20133, Italy

^d Dipartimento di Medicina, Università degli Studi di Padova, 35128 Padova, Italy

^e Dipartimento di Chimica e Tecnologie Chimiche, Ponte Pietro Bucci Cubo 14C, Arcavacata di Rende (CS), 87036, Italy

^f Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy

^g Net4Science Academic Spin-Off, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, 88100 Catanzaro, Italy

^h LAB CF-INABEC Dipartimento di Chimica e Tecnologie Chimiche, Ponte Pietro Bucci Cubo 15C, Arcavacata di Rende (CS), 87036, Italy

Table of Contents

Figure S1: Absorption spectra of DPPH in MeOH dilute solution (100 µM) varying time

Figure S2: FT-IR spectrum of complex [(pn)Pt(curc)][CF₃SO₃], 1

Figure S3: ¹H-NMR spectrum of complex [(pn)Pt(curc)][CF₃SO₃], 1

Figure S4: ¹³C-NMR spectrum of complex [(pn)Pt(curc)][CF₃SO₃], 1

Figure S5: ESI-MS spectrum of complex [(pn)Pt(curc)][CF₃SO₃], 1

Figure S6: FT-IR spectrum of complex [(pic)Pt(curc)][CF₃SO₃], 2

Figure S7: ¹H-NMR spectrum of complex [(pic)Pt(curc)][CF₃SO₃], 2

Figure S8: ¹³C-NMR spectrum of complex [(pic)Pt(curc)][CF₃SO₃], 2

Figure S9: ESI-MS spectrum of complex [(pic)Pt(curc)][CF₃SO₃], **2**

Figure S10: FT-IR spectrum of complex [(bipy)Pt(curc)][CF₃SO₃], 3

Figure S11: ¹H-NMR spectrum of complex [(bipy)Pt(curc)][CF₃SO₃], 3

Figure S12: ¹³C-NMR spectrum of complex [(bipy)Pt(curc)][CF₃SO₃], 3

Figure S13: ESI-MS spectrum of complex [(bipy)Pt(curc)][CF₃SO₃], 3

Figure S14: FT-IR spectrum of complex [(bipy-C₉)Pt(curc)][CF₃SO₃], **4**

Figure S15: ¹H-NMR spectrum of complex [(bipy-C₉)Pt(curc)][CF₃SO₃], 4

Figure S16: ¹³C-NMR spectrum of complex [(bipy-C₉)Pt(curc)][CF₃SO₃], 4

Figure S17: ESI-MS spectrum of complex [(bipy-C₉)Pt(curc)][CF₃SO₃], 4

Figure S18: Simulated absorption spectra of H(curc) (violet) and complexes 1 (blue), 2 (red), 3 (orange) and 4 (green) in implicit solvent methanol.

Table S1: Absorption wavelength (λ , nm), oscillator strength (f), MO contribution (%) for **H(curc)** and complexes **1-4**.

Figure S19: Natural Transition Orbitals (NTOs) for the main excitations of Pt(II) complexes 1-4.

Figure S20: Absorption spectra of H(curc) in MeOH dilute solution (10 μ M) varying time.

Figure S21: Absorption spectra of complex 1 in MeOH dilute solution (10 μ M) varying time.

Figure S22: Absorption spectra of complex 2 in MeOH dilute solution (10 μ M) varying time.

Figure S23: Absorption spectra of complex **3** in MeOH dilute solution (10 μ M) varying time.

Figure S24: Absorption spectra of complex 4 in MeOH dilute solution (10 μ M) varying time.

Figure S25: Absorption spectra of H(curc) in DMSO dilute solution (10 μ M) varying time.

Figure S26: Absorption spectra of complex **1** in DMSO dilute solution (10 μ M) varying time.

Figure S27: Absorption spectra of complex 2 in DMSO dilute solution (10 μ M) varying time.

Figure S28: Absorption spectra of complex 3 in DMSO dilute solution (10 μ M) varying time.

Figure S29: Absorption spectra of complex 4 in DMSO dilute solution (10 μ M) varying time.

Figure S30: Absorption spectra of H(curc) in 10% DMSO/PBS dilute solution (10 μ M) varying time.

Figure S31: Absorption spectra of complex 1 in 10% DMSO/PBS dilute solution (10 μ M) varying time.

Figure S32: Absorption spectra of complex 2 in 10% DMSO/PBS dilute solution (10 μ M) varying time.

Figure S33: Absorption spectra of complex 3 in 10% DMSO/PBS dilute solution (10 μ M) varying time.

Figure S34: Absorption spectra of complex **4** in 10% DMSO/PBS dilute solution (10 μM) varying time.

Figure S35: Thermodynamic parameters: bond dissociation enthalpies (BDE, grey), electron transfer enthalpies (ETE, light violet), adiabatic ionization potentials (IP, red), O-H proton dissociation enthalpies (PDE, blue) and proton affinities (PA, green), at 298.15 K.

Table S2: ADME properties for H(curc) and Pt(II) complexes 1-4.

 Table S3. Theoretical and experimental logPow values of the Pt(II) complexes 1-4.

Figure S36: BOILED-Egg Model of complexes 1-3.

Table S4: Antimicrobial activity data against *E. coli* and *S. aureus*.

Figure S37: Inhibition halos on *S. aureus* (A) and *E. Coli* (B) at 0.5 µg/µl. C: H(curc).

Figure S1: Absorption spectra of DPPH in MeOH dilute solution (100 µM) varying time.

Figure S2: FT-IR spectrum of complex [(pn)Pt(curc)][CF₃SO₃], 1.

Figure S5: MS spectrum of complex [(pn)Pt(curc)][CF₃SO₃], 1

Figure S6: FT-IR spectrum of complex [(pic)Pt(curc)][CF₃SO₃], **2**.

Figure S7: ¹H-NMR spectrum of complex [(pic)Pt(curc)][CF₃SO₃], 2.

Figure S8: ¹³C-NMR spectrum of complex [(pic)Pt(curc)][CF₃SO₃], 2.

Figure S9: MS spectrum of complex [(pic)Pt(curc)][CF₃SO₃], 2.

Figure S10: FT-IR spectrum of complex[(bipy)Pt(curc)][CF₃SO₃], 3.

Figure S11: ¹H-NMR spectrum of complex [(bipy)Pt(curc)][CF₃SO₃], 3.

Figure S12: ¹³C-NMR spectrum of complex [(bipy)Pt(curc)][CF₃SO₃], 3.

Figure S13: MS spectrum of complex[(bipy)Pt(curc)][CF₃SO₃], 3.

Figure S14: FT-IR spectrum of complex [(bipy-C₉)Pt(curc)][CF₃SO₃], 4.

Figure S15: ¹H-NMR spectrum of complex [(bipy-C₉)Pt(curc)][CF₃SO₃], 4.

Figure S16: ¹³C-NMR spectrum of complex [(bipy-C₉)Pt(curc)][CF₃SO₃], 4.

Figure S17: MS spectrum of complex [(bipy-C₉)Pt(curc)][CF₃SO₃], 4.

Figure S18: Simulated absorption spectra of H(curc) (violet) and complexes 1 (blue), 2 (red), 3 (orange) and 4 (green) in implicit solvent methanol.

Comp	Band	λ	f a	MO contribution ^b	Theoretical
					Assignment
H(curc)	I	425	1.949	H → L 94%	ππ*
	11	257	0.105	H-1 → L+1 67%	ππ*
		243	0.107	H → L+3 34%	
				H-1 → L+2 18%	
1	I	430	1.749	H → L 93%	LMCT
		361	0.308	H-1 → L 93%	LC/MLCT
	П	259	0.122	H-1 → L+1 57%	MLCT/LC _{curc}
				$H \rightarrow L+3 16\%$	
2	I	432	1.725	H → L 93%	LMCT
		363	0.349	H-1 → L 92%	LC/MLCT
	Ш	260	0.130	H-1 → L+2 41%	MLCT/LC _{curc}
3	I	435	1.665	H → L 93%	LMCT
		366	0.417	H-1 → L 89%	LC/MLCT
	Ш	307	0.131	H-2 → L+1 40%, H-4 → L+1 33%	LC _{bipy}
		293	0.309	H-5 → L+1 70%	L _{curc} L _{bipy} CT
4	I	434	1.657	H → L 93%	LMCT
		366	0.441	$H-1 \rightarrow L 90\%$	LC/MLCT
	Ш	303	0.180	H-2 → L+1 36%, H-3 → L 25%,	LC _{bipy}
				H-4 → L+1 20%	.,
		287	0.344	H-5 → L+1 61%	L _{curc} L _{bipy} CT

Table S1: Absorption wavelength (λ , nm), oscillator strength (f), MO contribution (%) for H(curc) and its Pt(II)cationic complexes 1-4.

Figure S19: Natural Transition Orbitals (NTOs) for the main excitations of Pt(II) complexes 1-4.

Figure S20: Absorption spectra of H(curc) in MeOH dilute solution (10 μ M) varying time.

Figure S21: Absorption spectra of complex 1 in MeOH dilute solution (10 μ M) varying time.

Figure S22: Absorption spectra of complex 2 in MeOH dilute solution (10 μ M) varying time.

Figure S23: Absorption spectra of complex **3** in MeOH dilute solution (10 μ M) varying time.

Figure S24: Absorption spectra of complex 4 in MeOH dilute solution (10 μ M) varying time.

Figure S25: Absorption spectra of **H(curc)** in DMSO dilute solution (10 µM) varying time.

Figure S26: Absorption spectra of complex **1** in DMSO dilute solution (10 μ M) varying time.

Figure S27: Absorption spectra of complex 2 in DMSO dilute solution (10 µM) varying time.

Figure S28: Absorption spectra of complex **3** in DMSO dilute solution (10 μ M) varying time.

Figure S29: Absorption spectra of complex 4 in DMSO dilute solution (10 µM) varying time.

Figure S30: Absorption spectra of H(curc) in 10% DMSO/PBS dilute solution (10 μ M) varying time.

Figure S31: Absorption spectra of complex 1 in 10% DMSO/PBS dilute solution (10 µM) varying time.

Figure S32: Absorption spectra of complex 2 in 10% DMSO/PBS dilute solution (10 µM) varying time.

Figure S33: Absorption spectra of complex 3 in 10% DMSO/PBS dilute solution (10 μ M) varying time.

Figure S34: Absorption spectra of complex 4 in 10% DMSO/PBS dilute solution (10 µM) varying time.

Figure S35: Thermodynamic parameters: bond dissociation enthalpies (BDE, grey), electron transfer enthalpies (ETE, light violet), adiabatic ionization potentials (IP, red), O–H proton dissociation enthalpies (PDE, blue) and proton affinities (PA, green), at 298.15 K.

	1	2	3	4
MW (g/mol)	636.57	670.59	718.63	971.11
H-bond acceptors	6	6	6	6
H-bond donors	4	3	2	2
TPSA (Å)	126.28	113.55	92.98	100.82
LogS	-5.88	-6.67	-7.96	-14.11
GI absorption	High	High	High	Low
BBB permeant	No	No	No	No
Lipinski #violations	1	1	1	2
Bioavailability Score	0.56	0.56	0.56	0.56

Table S2: ADME properties of the Pt(II) complexes 1-4.

Table S3. Theoretical and experimental $\mathsf{logP}_\mathsf{ow}$ values of the $\mathsf{Pt}(\mathsf{II})$ complexes 1-4.

	1	2	3	4	-
LogPow ^{theo}	-0.32	0.89	2.69	8.01	
logP _{ow} ^{exp}	2.79	3.22	3.65	8.12	

Figure S36:	BOILED-Egg	Model of	complexes	1-3.
-------------	------------	----------	-----------	------

	Complex Concentration (µg/µL)						
_	0.05	0.1	0.2	0.3	0.4	0.5	
H(curc)	0	0.20 ± 0.5	0.60 ± 0.4	0.80 ± 0.1	1.35 ± 0.3	1.99 ± 0.1	
1	0.50 ± 0.3	0.90 ± 0.1	1.25 ± 0.1	1.78 ± 0.1	2.11 ± 0.2	2.31 ± 0.2	
2	0.50 ± 0.2	1.08 ± 0.1	1.40 ± 0.2	2.10 ± 0.1	2.40 ± 0.1	2.60 ± 0.1	
3	0.97 ± 0.3	1.50 ± 0.2	1.70 ± 0.3	2.45 ± 0.2	2.70 ± 0.2	2.88 ± 0.1	
4	1.57 ± 0.5	2.00 ± 0.3	2.55 ± 0.2	2.67 ± 0.1	2.93 ± 0.2	3.12 ± 0.1	
DMSO	0	0	0	0	0	0	

	Complex Concentration (µg/µL)					
-	0.05	0.1	0.2	0.3	0.4	0.5
H(curc)	0	0	0	0.80 ± 0.2	1.30 ± 0.1	1.80 ± 0.2
1	0	0.26 ± 0.1	0.52 ± 0.4	1.08 ± 0.2	1.6 ± 0.4	2.06 ± 0.1
2	0	0	0.30 ± 0.2	0.60 ± 0.3	0.80 ± 0.2	1.00 ± 0.4
3	0	0.15 ± 0.2	0.80 ± 0.5	1.40 ± 0.04	1.90 ± 0.3	2.37 ± 0.1
4	0	0.40 ± 0.1	0.60 ± 0.3	1.80 ± 0.6	2.50 ± 0.2	3.00 ± 0.1
DMSO	0	0	0	0	0	0

Table S4: Antimicrobial activity data against *E. coli* (on the top) and *S. aureus* (on the bottom). The diameter(mm) ofgrowth inhibition area is subtracted from the disk diameter (6mm). The values are the mean of three replicates ±standard deviation. 0= no alone.

Figure S37: Inhibition halos on S. aureus (A) and E. Coli (B) at 0.5 µg/µl. C: H(curc).