Enhanced photocatalytic performance over PANI /NH₂-

MIL-101(Fe) with tight interfacial contact

Huaizhi Yang, ‡ ^a Yuqi Wan, ^a Qingrong Cheng, *^a Hong Zhou, ^a Zhiquan Pan^a ^a School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.

Corresponding authors:

*(Q.C.) E-mail: chengqr383121@sina.com

‡These authors contributed equally to this work.

Total number of pages: 6 Total number of Tables: 2 Total number of Figures: 6

Fig.S1 (a)XRD patterns of all samples, (b) Comparison of NH₂-MIL-101(Fe) and its standard spectrum

Fig.S2 (a) N_2 adsorption isotherms of the PM-2; the pore size distribution graph is given in the inset, (b) N_2 adsorption isotherms of the other remaining materials, (c) BET for all samples.

The average pore sizes of PANI, PM-1, PM-3, and NH₂-MIL-101(Fe) are 36.96, 23.05, 15.37 4.31 nm, respectively

Fig.S3 The photocatalytic efficiencies of all materials under visible light.

Fig.S4 The radical trapping test for the PM-2.

Fig.S5 The ESR spectrum of PM-2 for DMPO– $\bullet O_2^-$.

Fig.S6 Stability test of PM-2 for photocatalytic H₂ production activity.

Table SI Comparison of TC degradation over FM-2 and other photocatalysis.							
	Catalyst / mg	V (mL) / C ₀ (mg·L ⁻¹)	Light source	Time (min)	Result (%)	TOF	Ref.
	PM-2/20	50/20	Sun light	60	90%	75	This work
	PANI/PDI/25	50/20	Visible light	120	70%	23.3	1
	PANI/Bi ₄ O ₅ Br ₂ /20	50/20	Visible light	20	75.3%	188.3	2

Table S1 Comparison of TC degradation over PM-2 and other photocatalysts.

PANI/AgFeO ₂ /30	50/20	Visible light	60	91.8%	51	3
RP/MIL-101(Fe)/50	50/100	Sun light	60	90.1%	150.2	4
In ₂ S ₃ /MIL-100(Fe)/30	10/ 100	Visible light	90	88%	32.6	5
In ₂ S ₃ @MIL-125(Ti)/30	46/100	Visible light	60	63.3%	48.3	6

TOF is calculated according to an equation: $TOF = \frac{C_0 \times V_{TC} \times \text{Degradation rate}}{m_{\text{catalyst}} \times t}$

photocatarysis.							
Photocatalysts	Irrigation	Sacrificial agents	Activity µmol·g ⁻¹ h ⁻¹	Ref			
PM-2	Visible light	TEOA	7040.2	This work			
g-C ₃ N ₄ /PANI	Sun light	TEOA	163.2	7			
Cu/BN@PANI	Sun light	lactic acid	3121	8			
UiO-66-PANI-Co ₃ O ₄	Visible light	TEOA	710	9			
NH ₂ -MIL-125(Ti)/B-CTF- 1	Visible light	TEOA	360	10			
MIL-101-CH ₂ @1	Visible light	TEOA	1500	11			
Au@CdS/MIL-101	Visible light	Na_2S Na_2SO_3	25000	12			

 Table S2 Comparison of the photocatalytic H₂ evolution rates over different photocatalysts.

References

- 1. W. Dai, L. Jiang, J. Wang, Y. Pu, Y. Zhu, Y. Wang and B. Xiao, Chem. Eng. J., 2020, 397.
- 2. Y. Xu, Y. Ma, H. Ji, S. Huang, M. Xie, Y. Zhao, H. Xu and H. Li, *J. Colloid Interface Sci.*, 2019, 537, 101-111.
- 3. S. Chen, D. Huang, G. Zeng, X. Gong, W. Xue, J. Li, Y. Yang, C. Zhou, Z. Li, X. Yan, T. Li and Q. Zhang, *Chem. Eng. J.*, 2019, 370, 1087-1100.
- 4. X. Lei, J. Wang, Y. Shi, W. Yao, Q. Wu, Q. Wu and R. Zou, *Appl. Surf. Sci.*, 2020, 528, 146963.
- 5. Y. He, W. Dong, X. Li, D. Wang, Q. Yang, P. Deng and J. Huang, J. Colloid Interface Sci., 2020, 574, 364-376.
- 6. H. Wang, X. Yuan, Y. Wu, G. Zeng, H. Dong, X. Chen, L. Leng, Z. Wu and L. Peng, *Appl. Catal.*, *B*, 2016, 186, 19-29.
- 7. C. Yu, L. Tan, S. Shen, M. Fang, L. Yang, X. Fu, S. Dong and J. Sun, *J Environ Sci (China)*, 2021, 104, 317-325.

- 8. S. Sk, A. Tiwari, B. M. Abraham, N. Manwar, V. Perupogu and U. Pal, *Int. J. Hydrogen Energy*, 2021, 46, 27394-27408.
- 9. A. K. Singh, S. Gonuguntla, B. Mahajan and U. Pal, *Chem Commun (Camb)*, 2019, 55, 14494-14497.
- 10. F. Li, D. Wang, Q.-J. Xing, G. Zhou, S.-S. Liu, Y. Li, L.-L. Zheng, P. Ye and J.-P. Zou, *Appl. Catal.*, *B*, 2019, 243, 621-628.
- 11. S. Roy, A. Bhunia, N. Schuth, M. Haumann and S. Ott, *Sustain Energy Fuels*, 2018, 2, 1148-1152.
- 12. Y. Wang, Y. Zhang, Z. Jiang, G. Jiang, Z. Zhao, Q. Wu, Y. Liu, Q. Xu, A. Duan and C. Xu, *Appl. Catal.*, *B*, 2016, 185, 307-314.