### **Electronic Supplementary Information**

### Binuclear Cu(II) complex as an efficient Photocatalyst for N-alkylation of aromatic amines

Rishi Ranjan,<sup>a</sup> Argha Chakraborty,<sup>a</sup> Reena Kyarikwal,<sup>a</sup> Dr. Rakesh Ganguly,<sup>b</sup> and Dr. Suman Mukhopadhyay<sup>a</sup>\*

<sup>a</sup>Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India.

<sup>b</sup>Shiv Nadar University, Greater Noida 201314, India.

| Entry       | Content                                                      | Page  |
|-------------|--------------------------------------------------------------|-------|
|             |                                                              | No.   |
|             | Experimental Section                                         |       |
| Section 01. | Materials and Instrumentation                                | S 4   |
| Section 02. | X-ray Crystallography                                        | S 4-5 |
| Section 03. | Powder X-ray Diffraction (PXRD)                              | S 5   |
| Section 04. | Procedure of HPLC analysis                                   | S 5   |
| Section 05. | Formulas for calculation of Yield                            | S 6   |
| Section 06. | Recovery and reusability of catalyst                         | S 6   |
| Section 07. | Mechanism for Photocatalytic Oxidation                       | S 6-7 |
|             | Scheme(s)                                                    |       |
| Scheme S1.  | Probable Mechanistic Pathway for Photocatalytic Oxidation of | S 7   |
|             | benzyl alcohols                                              |       |
|             | Figures                                                      |       |

### **Table of Contents**

| Figure S1.  | ESI-MS data in MeOH for complex (A) synthesized and (B)             |         |
|-------------|---------------------------------------------------------------------|---------|
|             | recovered from catalytic reaction.                                  |         |
| Figure S2.  | FTIR stretching frequencies of complex (A) synthesized and (B)      | S 8     |
|             | recovered.                                                          |         |
| Figure S3.  | Cyclic voltammograms of complex.                                    | S 9     |
| Figure S4.  | UV-Vis spectra in dichloromethane for (a) Ligand and (b) complex.   | S 9     |
| Figure S5.  | Powder X-ray diffraction patterns of photocatalyst.                 | S 9     |
| Figure S6.  | HPLC Chromatogram of benzyl alcohol oxidation reaction in (a) $N_2$ | S 10    |
|             | atmosphere and (b) dark reaction.                                   |         |
| Figure S7.  | HPLC Chromatogram of oxidation reactions after catalysis.           | S 10    |
| Figure S8.  | HPLC Chromatogram of N-alkylation reactions of substituted          | S 11    |
|             | benzyl alcohols with aniline after catalysis.                       |         |
| Figure S9.  | HPLC Chromatogram of N-alkylation reactions of substituted          | S 11    |
|             | anilines with benzyl alcohol after catalysis.                       |         |
| Figure S10. | HPLC Chromatogram of N-alkylation reactions of substituted          | S 12-13 |
|             | anilines with substituted benzyl alcohol after catalysis.           |         |
| Figure S11. | Product identification by GC-MS.                                    | S 14    |
| Figure S12. | HPLC Chromatogram of N-alkylation reaction in the presence of       | S 14    |
|             | (a) $Cu(OAC)_2$ in DCM (b) Complex-1 in DCM (C) $Cu(OAC)_2$ in ACN  |         |
|             | (d) complex-1 in ACN.                                               |         |
| Figure S13. | ESI-MS data in MeOH for photocatalytic borrowing hydrogen           | S 15    |
|             | reaction intermediates.                                             |         |
| Figure S14. | ESI-MS Spectrum in MeOH of (A) free schiff base intermediate        | S 15    |
|             | and (B) N-alkyl amine product.                                      |         |
| Figure S15. | ESI-MS data in MeOH for photocatalytic oxidation of benzyl          | S 15    |
|             | alcohol reaction intermediates.                                     |         |
| Figure S16. | Reusability of the photocatalyst. The blue and green bar indicates  | S 16    |
|             | the yield of benzaldehyde and N-benzylamine in the presence of      |         |
|             | catalyst for separate run, respectively.                            |         |

| Figure S17. | Optimized structures of the intermediates.                                         | S 16    |
|-------------|------------------------------------------------------------------------------------|---------|
|             | Table(S)                                                                           |         |
| Table S1.   | Crystal data and structure refinement parameters for complex.                      | S 17-18 |
| Table S2.   | Selected bond lengths (Å) and bond angles (°) for complex.                         | S 18    |
| Table S3.   | Cartesian coordinates, multiplicity and energies (in Hartree) for all the species. | S 18-58 |
|             | References                                                                         | S 59    |

#### Section 01. Materials and Instrumentation

All the chemical reagents required were purchased from Sigma and used without further purification. Infrared spectra (4000 to 500 cm<sup>-1</sup>) were recorded with a BRUKER alpha-II instrument. NMR spectra were recorded on an AVANCE III 400 Ascend Bruker BioSpin machine at ambient temperature. Mass spectrometric analyses were done on Bruker- Daltonics, microTOF-Q II mass spectrometer and elemental analyses were carried out with a ThermoFlash 2000 elemental analyzer. Spectrophotometric measurements were performed on a Perkin Elmer UV-Vis-NIR spectrophotometer (Model: Lambda 1050) using a quartz cuvette with a path length of 2 cm. All voltammetric experiments were performed using a CHI 104 electrochemical workstation (CH Instruments Model CHI62OD series). Potentials were referenced vs the Ag/AgCl electrode, and ferrocene was added as internal standard. HPLC analysis was done through a Dionex HPLC-Ultimate 3000 (High Performance Liquid Chromatography) pump, which was used to analyze products onto a Dionex Acclaim ® 120 C18 column. GC-MS analysis was performed using GC-Hewlett Packard 6890 equipped with HP-5 column (30 m length, 0.25 mm internal diameter and 1  $\mu$ m film thickness). The Gaussian 09 D.01 package has been used for the computational study.<sup>1</sup> The Pople diffuse basis set 6-31G(d,p) has been considered for nonmetals (C, H, O, and N), whereas the effective core potential (ECP) LANL2DZ has been considered for the Cu atom.<sup>2-4</sup> All the calculations are performed using Becke's threeparameter hybrid exchange functional and Lee–Yang–Parr's correlation functional (B3LYP).<sup>5-7</sup>

#### Section 02. X-ray crystallography

Single crystal X-ray structural studies of complex 1 and complex 2 were performed on a CCD Agilent Technologies (Oxford Diffraction) SUPER NOVA diffractometer. Data for both the compounds were collected at 293 K using a graphite-monochromated MoK $\alpha$  radiation ( $\lambda \alpha = 0.71073$  Å). The strategy for the data collection was evaluated by using the CrysAlisPro CCD software.<sup>8</sup> The data were collected by the standard 'phi-omega scan techniques and were scaled and reduced using CrysAlisPro RED software. The structures were solved by direct

methods using SHELXS and refined by full matrix least-squares with SHELXL, refining on F2.<sup>9</sup> The positions of all the atoms were obtained by direct methods. All non-hydrogen atoms were refined anisotropically. The remaining hydrogen atoms were placed in geometrically constrained positions and refined with isotropic temperature factors, generally 1.2*U*eq of their parent atoms. The crystal and refinement data are summarized in Table S1, and the corresponding bond length(s) and bond angle(s) are summarized in Table S2.

#### Section 03. Powder X-ray Diffraction (PXRD)

Powder X-ray diffraction (PXRD) spectra were recorded with the help of a Rigaku Smart Lab automated multipurpose X-ray diffractometer with a Cu K $\alpha$  source (the wavelength of X-rays was 0.154 nm). The tube voltage and current were 40 kV and 30 mA, respectively. The XRD patterns were recorded between 20° and 80° (20) with a step size and a scan speed of 2°/min.

#### Section 04. Procedure of HPLC analysis

A Dionex HPLC-Ultimate 3000 (High Performance Liquid Chromatography) pump was used to analyze products. 20  $\mu$ L of sample was injected onto a Dionex Acclaim <sup>®</sup> 120 C18 column of 250 mm length with an internal diameter of 4.6 mm and 5  $\mu$ m fused silica particles at a flow rate of 1 mL min-1 (linear gradient of 40 % v/v acetonitrile in water for 35 min, gradually rising to 100 % (v/v) acetonitrile in water at 35 min). This concentration was kept constant until 40 min when the gradient was decreased to 40 % (v/v) acetonitrile in water at 42 min. The sample preparation involved mixing of 100  $\mu$ L of the reaction mixture in 900  $\mu$ L acetonitrile-water (50: 50 mixture) solution containing 0.1 % trifluoroacetic acid. The samples were then filtered through a 0.45  $\mu$ m syringe filter (Whatman, 150 units, 13 mm diameter, 2.7 mm pore size) before injection. The products were identified by using Ultimate 3000 RS Variable Wavelength Detector at 254 nm as well as 280 nm.

#### Section 05. Formulas for calculation of Yield

Conversion of primary alcohol, selectivity, and yield of aldehyde was calculated from the following formulas

conversion (%) = 
$$(C_0 - C_R / C_0) \times 100\%$$
 (1)

yield (%) = 
$$C_P/C_0 \times 100\%$$
 (2)

selectivity (%) = 
$$C_P/(C_0 - C_P) \times 100\%$$
 (3)

In the equations,  $C_0$  is the initial concentration of reactant;  $C_R$  and  $C_P$  are the concentrations of the residual alcohol and the product aldehyde at a certain reaction time, respectively.

#### Section 06. Recovery and Reusability of catalyst

The photocatalyst was then further tested for probable reusability for oxidation as well as Nalkylation reactions. The catalyst can be recovered almost quantitatively by extraction using DCM and ethyl acetate. The catalytic reaction mixture was poured into 10 mL of DCM which was further extracted with (2 × 10 mL) ethyl acetate. The product was obtained in the ethyl acetate layer and the photocatalyst was recovered from DCM. After extraction the dichloromethane was evaporated by rotatory evaporator and the solid was washed with ether and dried in vacuum.

The stability of the compound was investigated by the PXRD pattern and it has been found that the pattern remains almost same after the reaction (Fig. S5). The recovered catalyst can be utilized further for four more cycles without much depreciation of its activity (Fig. S16) or significant changes in the structure of the molecule or solid which was further confirmed by LCMS, IR and PXRD pattern (Fig.S1B, S2B and S5).

#### Section 07. Mechanism for Photocatalytic Oxidation

The plaussible simplified mechanism on the basis of ESI-MS data for the oxidation of benzyl alcohol is depicted in Scheme S1. The reaction begins by the binding of the Benzyl alcohol to complex A through an unshared pair of electrons, forming B. TEMPO is converted into TEMPOH by abstraction of hydrogen from benzyl alcohol to form an intermediate C. In the presence of visible light the phenoxide ion get oxidized to phenoxyl radical by donating a single electron to Cu(II) which gets reduced to Cu(I) and then generate the species D by releasing the acetate ion, which gives the desired product benzaldehyde. After that, the intermediate D gets converted into E. ESI-MS spectrometry of the reaction mixture reveals a molecular ion peak at 571.18, 499.12 and 416.30 indicating formation of intermediate B,C and E respectively (Fig S15). TEMPO is regenerated from TEMPOH which leads to the formation of Cu(II) complex (A) by the oxidation of Cu(I) species in the presence of molecular oxygen under visible light irradiation.



Scheme S1. Proposed Mechanism for the Photocatalytic Oxidation of Benzyl Alcohol.



Figure S1. ESI-MS Spectra in MeOH for Complex (A) synthesized and (B) recovered from catalytic reaction.



Figure S2. FTIR stretching frequencies of Complex (A) before and (B) after catalytic reaction.



Figure S3. Cyclic voltammograms of  $(1.0 \times 10^{-4} \text{ M})$  solution of complex in CH<sub>2</sub>Cl<sub>2</sub> containing 0.1 M Bu<sub>4</sub>NPF<sub>6</sub> as the supporting electrolyte. The data were recorded at a scan speed of 100 mV s<sup>-1</sup> at 25 °C.



Figure S4. UV-Vis spectra in dichloromethane for (a) Ligand and Complex, and (b) complex.



Figure S5. Powder X-ray diffraction patterns of photocatalyst.



Figure S6. HPLC Chromatogram of benzyl alcohol oxidation reaction in (a)  $N_2$  atmosphere and (b) dark reaction.



Figure S7. HPLC Chromatogram of oxidation reactions after catalysis ('Ref.' signifies the standard sample).



Figure S8. HPLC Chromatogram of N-alkylation reactions of substituted benzyl alcohols with aniline after catalysis.



**Time (min)** Figure S9. HPLC Chromatogram of N-alkylation reactions of substituted anilines with benzyl alcohol after catalysis.



S12



Figure S10. HPLC Chromatogram of N-alkylation reactions of substituted anilines with substituted benzyl alcohol after catalysis.

| 0     |        |         |           | n       | P       | eak Re  | port TIC                                  |
|-------|--------|---------|-----------|---------|---------|---------|-------------------------------------------|
| Peak# | R.Time | Area    | Area%     | Height  | Height% | A/H     | Name                                      |
| 1     | 14.614 | 2568693 | 24.87     | 612570  | 25.50   | 4.19    | Benzenamine, N-(phenylmethylene)-         |
| 2     | 14.886 | 2302317 | 22.29     | 693810  | 28.88   | 3.32    | Benzenemethanamine, N-phenyl-             |
| 3     | 14.950 | 1247037 | 12.07     | 526348  | 21.91   | 2.37    | Benzenemethanamine, N-phenyl-             |
| 4     | 15.057 | 4212249 | 40.78     | 569576  | 23.71   | 7.40    | Benzenemethanamine, N-phenyl-             |
|       | 8      | 0330296 | 100.00    | 2402304 | 100.00  | 1       |                                           |
|       |        |         |           |         | P       | eak Rep | port TIC                                  |
| Peak# | R.Time | Area    | Area%     | Height  | Height% | A/H     | Name                                      |
| 1     | 14.621 | 408419  | 100.00    | 112914  | 100.00  | 3.62    | Benzenamine, N-[(4-chlorophenyl)methyl]-  |
|       |        | 408419  | 100.00    | 112914  | 100.00  |         |                                           |
|       |        |         | ter entre |         | Pe      | eak Rep | port TIC                                  |
| eak#  | R.Time | Area    | Area%     | Height  | Height% | A/H     | Name                                      |
| 1     | 11.584 | 3823812 | 62.13     | 688456  | 57.24   | 5.55    | Benzaldehyde, 4-methoxy-                  |
| 2     | 16.356 | 2330575 | 37.87     | 514292  | 42.76   | 4.53    | Benzenamine, N-[(4-methoxyphenyl)methyl]- |
|       |        | 6154387 | 100.00    | 1202748 | 100.00  |         |                                           |
|       |        |         |           |         | P       | eak Rep | port TIC                                  |
| Peak# | R.Time | Area    | Area%     | Height  | Height% | A/H     | Name                                      |
| 1     | 16.209 | 1022833 | 100.00    | 370934  | 100.00  | 2.76    | Benzenamine, N-[(4-bromophenyl)methyl]-   |
|       |        | 1022833 | 100.00    | 370934  | 100.00  |         |                                           |
|       |        |         |           |         | P       | eak Rep | port TIC                                  |
| Peak# | R.Time | Area    | Area%     | Height  | Height% | A/H     | Name                                      |
| 1     | 12.300 | 3421917 | 54.44     | 718886  | 56.24   | 4.76    | Benzaldehyde, 4-nitro-                    |
| 2     | 17.238 | 2863906 | 45.56     | 559358  | 43.76   | 5.12    | Benzenamine, N-[(4-nitrophenyl)methyl]-   |
|       |        | 6285823 | 100.00    | 1278244 | 100.00  |         |                                           |
|       |        |         |           |         | P       | eak Re  | port TIC                                  |
| Peak# | R.Time | Area    | Area%     | Height  | Height% | A/H     | Name                                      |
| 1     | 10.484 | 1314983 | 51.85     | 526409  | 58.39   | 2.50    | Benzenemethanol, 4-methyl-                |
| 2     | 15.548 | 1221023 | 48.15     | 375138  | 41.61   | 3.25    | Benzenamine, N-[(4-methylphenyl)methyl]-  |
|       |        | 2536006 | 100.00    | 901547  | 100.00  |         |                                           |

Figure S11. Product identification by GCMS of N-alkylation reactions of substituted benzyl alcohol with aniline during catalysis.



Figure S12. HPLC Chromatogram of N-alkylation reactions in presence of (a)  $Cu(OAC)_2$  in DCM (b) Complex-1 in DCM (c)  $Cu(OAC)_2$  in ACN (d) Complex in ACN.



Figure S13. ESI-MS Spectrum in MeOH of the borrowing hydrogen reaction intermediates.



Figure S14. ESI-MS Spectrum in MeOH of (A) free Schiff base intermediate and (B) N-alkyl amine product.



Figure S15. ESI-MS Spectrum in MeOH of the photocatalytic alcohol oxidation reaction intermediates.



Figure S16. Reusability of the photocatalyst. The blue and green bar indicates the yield of benzaldehyde and N-benzylamine in the presence of catalyst for separate run, respectively.



Figure S17. Optimized structures of the complex and intermediates.

| Complex                         | 1                          |
|---------------------------------|----------------------------|
| Empirical formula               | $C_{15}H_{20}CI_2CuN_2O_4$ |
| Formula weight                  | 426.77 g/mol               |
| Crystal system                  | monoclinic                 |
| Space group                     | P 1 21/n 1                 |
| a (Å)                           | 10.4399(4)                 |
| b (Å)                           | 14.9215(5)                 |
| c (Å)                           | 11.5303(5)                 |
| α (°)                           | 90°                        |
| β (°)                           | 102.3293(13)°              |
| γ (°)                           | 90°                        |
| V (Å <sup>3</sup> )             | 1754.75(12)                |
| λ (Å)                           | 0.71073                    |
| $ ho_{Calcd}$ g/cm <sup>3</sup> | 1.615                      |
| Z                               | 2                          |
| Т (К)                           | 148(2)                     |
| F (0 0 0)                       | 876                        |
| μ (mm–1)                        | 1.571                      |
| Crystal size (mm <sup>3</sup> ) | 0.040 x 0.060 x 0.100      |
| ϑ ranges (°)                    | 2.27 to 28.30              |
| Reflections collected           | 35789                      |
| h/k/l                           | -13,13/-19,19/-15,15       |
| Independent reflections         | 4353                       |
| Tmax and Tmin                   | 0.9400 and 0.8590          |
| Data/restraints/parameters      | 4353 / 0 / 219             |
| Goodness-of-fit (GOF) on F2     | 1.065                      |
| Final R indices[I > 2σ(I)]      | R1 = 0.0428, wR2 = 0.0828  |

**Table S1.** Crystallographic data and structure refinement parameters.

| R indices (all data)                      | R1 = 0.0888, wR2 = 0.1059 |
|-------------------------------------------|---------------------------|
| Largest peak and hole(e Å <sup>-3</sup> ) | 0.560 and -0.512          |

Table S2. Selected bond lengths (Å) and bond angles (°).

| Bond Lengths (Å) |          | Bond angles (°) |            |
|------------------|----------|-----------------|------------|
| Cu1-O2           | 1.947(2) | 01-Cu1-O2       | 91.90(10)  |
| Cu1-O3           | 2.374(2) | O1-Cu1-N1       | 92.52(10)  |
| Cu1-N1           | 2.020(3) | 02-Cu1-O3       | 94.13(10)  |
| Cu1-N2           | 2.066(3) | O2-Cu1-N1       | 164.74(10) |
| Cu1-O1           | 1.943(2) | 01-Cu1-N2       | 165.28(10) |
| C1-01            | 1.328(4) | 02-Cu1-O1       | 92.86(9)   |
| C13-O4           | 1.418(4) | 03-Cu1-O1       | 84.96(9)   |
| C14-O3           | 1.242(4) | O2-Cu1-N2       | 100.06(11) |
| C14-O2           | 1.268(4) | N1-Cu1-N2       | 73.76(11)  |

Table S3. Cartesian coordinates, multiplicity and energies (in Hartree) for all the species

 $H_2O$ 

- 8 0.000000 0.000000 0.110812
- 1 0.000000 0.783976 -0.443248
- 1 0.000000 -0.783976 -0.443248

-76.3861166

### PhCH<sub>2</sub>OH

- 6 -2.316877 0.119570 -0.180763
- 6 -1.717197 -1.140425 -0.130471

- 6 -1.541575 1.268911 -0.014465
- 1 -2.320383 -2.034616 -0.259851
- 1 -2.008127 2.249191 -0.053592
- 6 -0.342212 -1.251079 0.086120
- 6 -0.166590 1.158257 0.202125
- 1 0.124340 -2.231359 0.125247
- 1 0.436596 2.052448 0.331506
- 6 0.433090 -0.101738 0.252418
- 1 -3.386617 0.205659 -0.349270
- 6 1.949548 -0.223778 0.491293
- 1 2.225368 -1.240560 0.793264
- 1 2.285155 0.457647 1.281317
- 8 2.694983 0.092215 -0.699537
- 1 3.294683 0.825559 -0.509870

#### -346.6852127

#### PhNH<sub>2</sub>

- 7 2.327472 -0.010181 -0.071739
- 6 0.927847 -0.004802 -0.039781
- 6 0.235098 1.205568 -0.021740
- 6 0.225783 -1.210671 -0.025580
- 6 -1.159706 1.210829 0.009303
- 1 0.788074 2.156003 -0.033295

- 6 -1.168675 -1.205335 0.005934
- 1 0.772209 -2.164880 -0.039750
- 6 -1.861508 0.005492 0.022981
- 1 -1.705699 2.165211 0.023072
- 1 -1.722272 -2.155535 0.017141
- 1 -2.960829 0.009455 0.047628
- 1 2.673184 0.840996 0.323206
- 1 2.669995 -0.786465 0.457469

-287.5376479

#### TEMPO

- 6 -1.270439 -0.080812 0.036157
- 6 -1.270439 1.209423 -0.798772
- 6 0.000000 2.038928 -0.554396
- 6 1.270439 1.209424 -0.798772
- 6 1.270440 -0.080811 0.036157
- 7 0.000000 -0.910315 -0.208219
- 1 -2.162938 1.806510 -0.575585
- 1 -1.329777 0.947889 -1.865179
- 1 -0.000001 2.930982 -1.192454

- 1 0.000000 2.399468 0.484428
- 1 2.162937 1.806510 -0.575585
- 1 1.329777 0.947889 -1.865180
- 8 0.000000 -2.262842 -0.606680
- 6 -1.353541 0.285466 1.529654
- 1 -2.242745 -0.150957 1.998652
- 1 -0.478094 -0.078867 2.079163
- 1 -1.404382 1.370936 1.672060
- 6 -2.523630 -0.919203 -0.277228
- 1 -2.502911 -1.298905 -1.305093
- 1 -2.603356 -1.783224 0.392264
- 1 -3.438744 -0.327172 -0.162454
- 6 1.353541 0.285467 1.529654
- 1 0.501747 -0.119516 2.087816
- 1 2.266840 -0.111169 1.987555
- 1 1.356632 1.371799 1.674505
- 6 2.523631 -0.919203 -0.277228
- 1 3.398967 -0.547294 0.267362
- 1 2.381806 -1.969061 0.003473
- 1 2.764240 -0.892947 -1.346119

#### -483.5922355

#### TEMPOH

| 6 | -1.268916 | -0.054644 | 0.030875 |
|---|-----------|-----------|----------|
|   |           |           |          |

- 6 -1.260609 1.254555 -0.773949
- 6 0.015109 2.070020 -0.510557
- 6 1.280217 1.238275 -0.774205
- 6 1.271910 -0.070924 0.030620
- 7 -0.003807 -0.886389 -0.232773
- 1 -2.149273 1.852019 -0.536905
- 1 -1.321570 1.018173 -1.846121
- 1 0.020854 2.976593 -1.127784
- 1 0.017369 2.406398 0.536339
- 1 2.176513 1.824301 -0.537340
- 1 1.337929 1.001132 -1.846389
- 8 -0.011474 -2.076910 -0.613692
- 6 -1.349741 0.277473 1.532463
- 1 -2.241746 -0.163988 1.991318
- 1 -0.476672 -0.105091 2.073299
- 1 -1.393632 1.359657 1.699974

- 6 -2.527439 -0.877506 -0.301716
- 1 -2.509104 -1.233426 -1.338100
- 1 -2.612732 -1.756271 0.347595
- 1 -3.438747 -0.282440 -0.173169
- 6 1.357286 0.260128 1.532191
- 1 0.502888 -0.152207 2.080909
- 1 2.268002 -0.152850 1.980691
- 1 1.367331 1.342772 1.702160
- 6 2.519718 -0.909847 -0.302224
- 1 3.397393 -0.556266 0.250745
- 1 2.371155 -1.964993 -0.045897
- 1 2.760541 -0.860385 -1.370244
- 1 -0.183262 -2.858307 -0.083118

-484.1901072

#### PhCH<sub>2</sub>NHPh (Product)

Multiplicity 1

7 -0.502003 -0.231705 -0.970103
1 -2.397692 1.494300 -1.796932
6 -1.874450 -0.101559 -0.459857
6 -2.737628 0.857086 -1.007438

| 0 -2.3190/1 -0.930132 0.5/4155 | 6 | -2.319671 | -0.936132 | 0.574159 |
|--------------------------------|---|-----------|-----------|----------|
|--------------------------------|---|-----------|-----------|----------|

- 6 -4.046026 0.981161 -0.521000
- 1 -2.397692 1.494300 -1.796932
- 6 -3.628069 -0.812058 1.060596
- 1 -1.660615 -1.668079 0.992248
- 6 -4.491247 0.146590 0.513017
- 1 -4.705083 1.713107 -0.939091
- 1 -2.397692 1.494300 -1.796932
- 1 -3.968005 -1.449271 1.850091
- 1 -5.490237 0.241325 0.884425
- 1 -0.183306 0.656941 -1.299862
- 6 0.379826 -0.698817 0.109287
- 6 1.864528 -0.290038 0.121881
- 6 2.263282 0.881152 0.780085
- 6 2.816853 -1.089238 -0.524863
- 6 3.614361 1.253140 0.791547
- 1 1.536160 1.491359 1.273888
- 6 4.167932 -0.717250 -0.513401
- 1 2.512396 -1.983467 -1.027416
- 6 4.566687 0.453938 0.144806

- 1 3.918818 2.147369 1.294100
- 1 4.895054 -1.327457 -1.007203
- 1 5.598266 0.737957 0.153561

### -557.7545981

### Complex I

| 29 | -0.04180000 | 1.40880000  | -0.03470000 |
|----|-------------|-------------|-------------|
| 6  | -2.53440000 | 0.09970000  | 0.30310000  |
| 6  | -3.52510000 | 0.01170000  | 1.30760000  |
| 6  | -4.90430550 | 0.12631147  | 1.03786608  |
| 1  | -5.56420550 | 0.02251147  | 1.75586608  |
| 6  | -5.28510000 | 0.38620000  | -0.25670000 |
| 6  | -4.35740000 | 0.58840000  | -1.26020000 |
| 1  | -4.65680000 | 0.82890000  | -2.16220000 |
| 6  | -2.99730000 | 0.45100000  | -0.99520000 |
| 6  | -1.98220000 | 0.63670000  | -2.08720000 |
| 1  | -1.55410000 | -0.25390000 | -2.29930000 |
| 1  | -2.44680000 | 0.96920000  | -2.92430000 |
| 6  | 0.14870000  | 1.62040000  | -2.75750000 |
| 1  | -0.16510000 | 1.97590000  | -3.65250000 |

| 1 | 0.50010000  | 0.68140000 | -2.88780000 |
|---|-------------|------------|-------------|
| 6 | 1.25290000  | 2.52870000 | -2.18190000 |
| 1 | 2.12070000  | 2.01530000 | -2.11020000 |
| 1 | 1.40030000  | 3.32490000 | -2.78970000 |
| 6 | -0.36760000 | 3.86400000 | -1.04240000 |
| 1 | -0.13240000 | 4.62680000 | -1.66560000 |
| 1 | -0.66940000 | 4.25240000 | -0.15820000 |
| 6 | -1.49240000 | 3.00200000 | -1.65500000 |
| 1 | -2.30810000 | 3.01620000 | -1.05750000 |
| 1 | -1.75330000 | 3.36380000 | -2.56490000 |
| 6 | 1.89050000  | 3.72350000 | -0.12170000 |
| 1 | 1.49030000  | 4.17550000 | 0.69090000  |
| 1 | 2.25320000  | 4.44830000 | -0.73090000 |
| 6 | 3.04470000  | 2.83430000 | 0.32910000  |
| 1 | 2.70540000  | 2.14120000 | 0.98210000  |
| 1 | 3.43840000  | 2.35190000 | -0.46950000 |
| 6 | 0.16810000  | 1.85210000 | 1.86310000  |
| 6 | 0.40310000  | 1.99100000 | 3.35470000  |
| 1 | 0.84640000  | 2.87280000 | 3.54210000  |
| 1 | 0.99390000  | 1.24440000 | 3.67240000  |

| 1  | -0.47810000 1.95090000 3.83520000  |
|----|------------------------------------|
| 17 | -3.08506495 -0.19698945 2.81066948 |
| 17 | -6.84153128 0.50292102 -0.56001153 |
| 7  | -0.92940000 1.60430000 -1.69490000 |
| 7  | 0.82180000 2.99010000 -0.83310000  |
| 8  | -1.15530000 -0.14190000 0.59410000 |
| 8  | 1.07190000 1.01630000 1.38930000   |
| 8  | -0.86800000 2.58000000 1.24280000  |
| 8  | 4.04600000 3.63080000 0.95430000   |
| 1  | 4.54080000 4.01970000 0.34730000   |
| 29 | 0.20470000 -1.60720000 0.07980000  |
| 6  | 2.66530000 -0.37380000 -0.20960000 |
| 6  | 3.65590000 -0.28580000 -1.21400000 |
| 6  | 5.01110000 -0.39850000 -0.94910000 |
| 1  | 5.67090000 -0.29460000 -1.66710000 |
| 6  | 5.41600000 -0.66040000 0.35020000  |
| 6  | 4.48820000 -0.86260000 1.35380000  |
| 1  | 4.78760000 -1.10310000 2.25580000  |
| 6  | 3.12830000 -0.72520000 1.08880000  |
| 6  | 2.11300000 -0.91080000 2.18090000  |

| 1 | 1.68500000  | -0.02020000 | 2.39290000  |
|---|-------------|-------------|-------------|
| 1 | 2.57760000  | -1.24340000 | 3.01790000  |
| 6 | -0.06720000 | -1.88510000 | 2.76110000  |
| 1 | 0.24670000  | -2.24060000 | 3.65610000  |
| 1 | -0.41860000 | -0.94610000 | 2.89140000  |
| 6 | -1.17130000 | -2.79340000 | 2.18560000  |
| 1 | -2.03910000 | -2.28000000 | 2.11380000  |
| 1 | -1.31890000 | -3.58970000 | 2.79340000  |
| 6 | 0.44910000  | -4.12880000 | 1.04600000  |
| 1 | 0.21390000  | -4.89160000 | 1.66920000  |
| 1 | 0.75100000  | -4.51720000 | 0.16180000  |
| 6 | 1.57390000  | -3.26680000 | 1.65860000  |
| 1 | 2.38960000  | -3.28100000 | 1.06100000  |
| 1 | 1.83480000  | -3.62860000 | 2.56850000  |
| 6 | -1.77440000 | -3.92810000 | 0.09770000  |
| 1 | -1.37430000 | -4.38010000 | -0.71490000 |
| 1 | -2.13710000 | -4.65280000 | 0.70690000  |
| 6 | -2.92860000 | -3.03890000 | -0.35310000 |
| 1 | -2.58950000 | -2.34580000 | -1.00620000 |
| 1 | -3.32230000 | -2.55640000 | 0.44560000  |

| 6  | -0.00090000 -2.09150000 -1.93670000 |
|----|-------------------------------------|
| 6  | -0.23600000 -2.23030000 -3.42830000 |
| 1  | -0.67920000 -3.11220000 -3.61560000 |
| 1  | -0.82680000 -1.48370000 -3.74600000 |
| 1  | 0.64520000 -2.19030000 -3.90890000  |
| 17 | 3.22702838 -0.08240489 -2.67902545  |
| 17 | 6.89410420 -0.77124706 0.63833350   |
| 7  | 1.06030000 -1.87850000 1.78840000   |
| 7  | -0.70580000 -3.19470000 0.80900000  |
| 8  | 1.27660000 -0.13050000 -0.50250000  |
| 8  | -0.78230000 -1.29870000 -1.30630000 |
| 8  | 1.04260000 -2.82440000 -1.31200000  |
| 8  | -3.93000000 -3.83540000 -0.97840000 |
| 1  | -4.42480000 -4.22430000 -0.37120000 |
|    |                                     |

-4220.6080899

## Complex II

- 29 -0.464313 -0.599140 1.478413
- 6 0.788783 -2.522845 -0.094414
- 6 2.062111 -2.652792 -0.687791

- 6 2.772418 -3.838876 -0.696642
- 1 3.611923 -3.898018 -1.138274
- 6 2.237186 -4.938214 -0.050960
- 6 1.047797 -4.842961 0.637690
- 1 0.720423 -5.590904 1.122440
- 6 0.323758 -3.655816 0.624895
- 6 -0.989083 -3.549829 1.342826
- 1 -1.719209 -3.469118 0.679548
- 1 -1.142969 -4.375614 1.867460
- 6 -2.387759 -2.138695 2.778833
- 1 -2.663878 -2.884600 3.368132
- 1 -3.035398 -2.069561 2.034140
- 6 -2.348352 -0.822620 3.572857
- 1 -3.022367 -0.191598 3.215429
- 1 -2.555067 -0.994807 4.524979
- 6 -0.060928 -1.171406 4.141641
- 1 -0.344194 -1.291974 5.082206
- 1 0.858259 -0.802902 4.136241
- 6 -0.094222 -2.521389 3.399564
- 1 0.812378 -2.758694 3.082065

- 1 -0.410757 -3.236117 4.007857
- 6 -0.901590 1.112475 4.024001
- 1 0.051442 1.375273 4.085993
- 1 -1.267867 1.091691 4.944038
- 6 -1.650615 2.164437 3.219555
- 1 -1.258770 2.232949 2.313121
- 1 -2.600242 1.899689 3.126916
- 6 0.391481 2.826567 0.154975
- 6 -0.378341 3.828149 -0.678993
- 1 -0.652499 4.580741 -0.114331
- 1 -1.171993 3.396388 -1.056907
- 1 0.193071 4.155669 -1.404898
- 6 2.802236 -1.259973 -1.420123
- 6 3.131221 -6.434659 -0.077090
- 7 -1.019736 -2.381774 2.249520
- 7 -0.987366 -0.240247 3.443966
- 8 0.086650 -1.401499 -0.203097
- 8 -0.022567 1.169150 0.795278
- 8 1.471096 3.429841 0.277168
- 8 -1.563921 3.417603 3.875684

- 1 -2.124778 3.446089 4.500645
- 29 -1.859741 -0.747348 -1.393994
- 6 -3.112885 1.176445 0.178846
- 6 -4.386165 1.306305 0.772211
- 6 -5.096519 2.492476 0.781073
- 1 -5.935978 2.551531 1.222693
- 6 -4.561241 3.591726 0.135379
- 6 -3.371851 3.496474 -0.553271
- 1 -3.044477 4.244417 -1.038020
- 6 -2.647860 2.309416 -0.540464
- 6 -1.334885 2.203390 -1.258421
- 1 -0.604893 2.122718 -0.595117
- 1 -1.180999 3.029175 -1.783054
- 6 0.063705 0.792207 -2.694414
- 1 0.339777 1.538200 -3.283701
- 1 0.711343 0.723074 -1.949721
- 6 0.024337 -0.523732 -3.488439
- 1 0.698265 -1.154802 -3.130998
- 1 0.231099 -0.351632 -4.440574
- 6 -2.263127 -0.175081 -4.057221

- 1 -1.979908 -0.054426 -4.997774
- 1 -3.182361 -0.543498 -4.051810
- 6 -2.229832 1.174902 -3.315145
- 1 -3.136432 1.412207 -2.997645
- 1 -1.913212 1.889678 -3.923451
- 6 -1.422511 -2.458875 -3.939569
- 1 -2.375497 -2.721760 -4.001574
- 1 -1.056235 -2.438091 -4.859606
- 6 -0.673487 -3.510837 -3.135123
- 1 -1.065285 -3.579436 -2.228702
- 1 0.276227 -3.246041 -3.042498
- 6 -3.995307 -2.311932 -1.357474
- 6 -4.912368 -3.454616 -0.977482
- 1 -5.087302 -4.008826 -1.766499
- 1 -4.485857 -3.998374 -0.283556
- 1 -5.758240 -3.094559 -0.637338
- 17 -5.126291 -0.086514 1.504542
- 17 -5.455323 5.088259 0.161522
- 7 -1.304319 1.035286 -2.165101

7 -1.336689 -1.106241 -3.359547

- 8 -2.410665 0.055147 0.287515
- 8 -2.788495 -2.407316 -0.981210
- 8 -4.440286 -1.349295 -2.005365
- 8 -0.760133 -4.764090 -3.791265
- 1 -0.199237 -4.792440 -4.416227
- 6 5.472673 -0.717848 0.569713
- 6 4.265992 -1.391571 0.760735
- 6 3.881539 -1.783992 2.042696
- 6 4.704494 -1.503758 3.134223
- 6 5.911095 -0.830612 2.943109
- 6 6.295054 -0.437269 1.660819
- 1 5.775386 -0.408152 -0.441027
- 1 3.617503 -1.611945 -0.099579
- 1 4.401184 -1.813317 4.144902
- 1 6.559904 -0.609614 3.803157
- 1 7.246225 0.093564 1.510421
- 6 2.531578 -2.461840 1.743153
- 1 2.786088 -1.617288 1.057608
- 1 1.863711 -2.314483 2.626466
- 8 1.646167 -1.741140 0.882026

- 1 2.196335 -1.018355 0.571388
- 6 5.665567 2.847073 -2.384954
- 17 4.355144 2.115429 -2.177509
- 17 4.211377 3.027331 0.147110
- 6 5.522165 3.758527 -0.059750
- 6 5.745279 4.089256 -1.521352
- 1 6.518256 2.162921 -2.133487
- 1 5.769668 3.132494 -3.463927
- 1 5.524075 4.703352 0.543448
- 1 6.367068 3.120394 0.310919
- 1 4.971721 4.828210 -1.858845
- 1 6.749467 4.571003 -1.648325
- 6 4.075305 2.659558 1.543078
- 1 4.110017 3.540725 2.149080
- 1 4.875532 2.005086 1.819130
- 1 3.139953 2.161470 1.691153
- 6 3.109396 3.911002 -0.180399
- 1 2.182890 3.400681 -0.018971
- 1 3.180679 4.204729 -1.206821
- 1 3.151431 4.779685 0.442917

| 0 5.277400 2.520000 2.040057 | 6 | 3.277400 | 2.928686 | -2.648657 |
|------------------------------|---|----------|----------|-----------|
|------------------------------|---|----------|----------|-----------|

- 1 3.071425 2.690444 -3.671259
- 1 3.548805 3.960744 -2.570571
- 1 2.405547 2.743393 -2.056679
- 6 4.352514 0.910430 -2.947490
- 1 4.494678 1.147381 -3.981194
- 1 3.415599 0.409071 -2.822077
- 1 5.145299 0.273195 -2.615340
- 7 4.133471 1.783965 -0.715742
- 8 2.916493 1.196991 -0.560740

-5050.9073010

### Complex III

| 29 | -0.16250000 | -1.09170000 | 0.79890000  |
|----|-------------|-------------|-------------|
| 6  | -2.24910000 | 0.66020000  | 0.23210000  |
| 6  | -3.30260000 | 0.68820000  | -0.70580000 |
| 6  | -4.58910000 | 1.07860000  | -0.38340000 |
| 1  | -5.26480000 | 1.11990000  | -1.05040000 |
| 6  | -4.87360000 | 1.40890000  | 0.92890000  |
| 6  | -3.91240000 | 1.29740000  | 1.90950000  |

| 1 | -4.13720000 | 1.47440000  | 2.81490000 |
|---|-------------|-------------|------------|
| 6 | -2.61330000 | 0.92770000  | 1.57860000 |
| 6 | -1.54970000 | 0.83550000  | 2.63240000 |
| 1 | -0.89050000 | 1.56120000  | 2.49650000 |
| 1 | -1.96110000 | 0.95980000  | 3.52470000 |
| 6 | 0.34470000  | -0.47690000 | 3.46830000 |
| 1 | 0.07530000  | -0.39820000 | 4.41760000 |
| 1 | 0.93580000  | 0.28420000  | 3.24470000 |
| 6 | 1.07950000  | -1.80710000 | 3.23450000 |
| 1 | 2.01590000  | -1.63330000 | 2.96410000 |
| 1 | 1.08840000  | -2.34050000 | 4.06770000 |
| 6 | -0.96720000 | -2.90710000 | 2.70670000 |
| 1 | -0.86580000 | -3.43130000 | 3.54000000 |
| 1 | -1.46610000 | -3.45590000 | 2.05040000 |
| 6 | -1.73030000 | -1.59910000 | 2.99150000 |
| 1 | -2.57440000 | -1.57730000 | 2.47580000 |
| 1 | -1.94960000 | -1.53630000 | 3.95530000 |
| 6 | 1.09210000  | -3.73430000 | 1.71790000 |
| 1 | 0.49830000  | -4.28770000 | 1.15010000 |
| 1 | 1.32120000  | -4.26670000 | 2.52110000 |

| 6  | 2.36840000  | -3.43220000 | 0.94700000  |
|----|-------------|-------------|-------------|
| 1  | 2.14770000  | -2.94600000 | 0.11350000  |
| 1  | 2.95980000  | -2.85630000 | 1.49380000  |
| 6  | 1.18510000  | -2.20440000 | -2.12510000 |
| 6  | 2.34480000  | -2.04070000 | -3.08410000 |
| 1  | 2.93440000  | -2.82090000 | -3.01940000 |
| 1  | 2.84630000  | -1.23150000 | -2.85440000 |
| 1  | 2.00270000  | -1.96500000 | -3.99950000 |
| 17 | -2.99550000 | 0.18250000  | -2.34100000 |
| 17 | -6.49420000 | 1.91340000  | 1.32670000  |
| 7  | -0.85610000 | -0.47010000 | 2.59150000  |
| 7  | 0.36050000  | -2.52520000 | 2.13780000  |
| 8  | -0.81550000 | 0.42580000  | -0.17810000 |
| 8  | 0.60760000  | -1.72750000 | -0.87190000 |
| 8  | 0.30370000  | -3.00350000 | -2.48440000 |
| 8  | 3.03440000  | -4.64330000 | 0.63380000  |
| 1  | 3.46230000  | -4.90980000 | 1.30610000  |
| 29 | 0.96490000  | 1.71360000  | -0.41410000 |
| 6  | 2.85460000  | -0.22510000 | 0.21380000  |
| 6  | 3.89190000  | -0.24810000 | 1.15580000  |

| 6 | 5.19460000  | -0.64350000 | 0.82930000  |
|---|-------------|-------------|-------------|
| 1 | 5.87030000  | -0.68470000 | 1.49640000  |
| 6 | 5.47900000  | -0.97370000 | -0.48290000 |
| 6 | 4.51780000  | -0.86220000 | -1.46350000 |
| 1 | 4.74270000  | -1.03920000 | -2.36890000 |
| 6 | 3.21890000  | -0.49250000 | -1.13270000 |
| 6 | 2.15510000  | -0.40030000 | -2.18650000 |
| 1 | 1.49610000  | -1.12600000 | -2.05050000 |
| 1 | 2.56650000  | -0.52460000 | -3.07870000 |
| 6 | 0.26080000  | 0.91210000  | -3.02230000 |
| 1 | 0.53030000  | 0.83330000  | -3.97160000 |
| 1 | -0.33040000 | 0.15100000  | -2.79870000 |
| 6 | -0.47390000 | 2.24220000  | -2.78860000 |
| 1 | -1.41040000 | 2.06850000  | -2.51820000 |
| 1 | -0.48290000 | 2.77570000  | -3.62180000 |
| 6 | 1.57270000  | 3.34230000  | -2.26070000 |
| 1 | 1.47130000  | 3.86640000  | -3.09400000 |
| 1 | 2.07160000  | 3.89100000  | -1.60440000 |
| 6 | 2.33570000  | 2.03430000  | -2.54550000 |
| 1 | 3.17990000  | 2.01250000  | -2.02980000 |

| 1  | 2.55510000  | 1.97140000  | -3.50940000 |
|----|-------------|-------------|-------------|
| 1  | -0.49560000 | 4.19450000  | -1.29530000 |
| 1  | 0.09800000  | 4.74790000  | -0.72750000 |
| 1  | -0.72470000 | 4.72690000  | -2.09850000 |
| 6  | -1.77200000 | 3.89240000  | -0.52430000 |
| 1  | -1.55130000 | 3.40620000  | 0.30920000  |
| 1  | -2.36340000 | 3.31640000  | -1.07120000 |
| 6  | 1.27070000  | 2.92630000  | 1.23760000  |
| 6  | 1.27440000  | 3.62300000  | 2.58130000  |
| 6  | 1.11300000  | 4.58100000  | 2.45260000  |
| 1  | 0.56940000  | 3.24540000  | 3.14660000  |
| 1  | 2.14470000  | 3.49360000  | 3.01330000  |
| 17 | 3.58480000  | 0.25760000  | 2.79110000  |
| 17 | 7.09980000  | -1.47820000 | -0.88070000 |
| 7  | 1.46160000  | 0.90530000  | -2.14550000 |
| 7  | 0.23590000  | 2.98540000  | -1.71520000 |
| 8  | 1.50990000  | 0.04610000  | 0.62710000  |
| 8  | 0.11760000  | 2.15820000  | 0.92650000  |
| 8  | 2.24460000  | 3.04590000  | 0.47480000  |
| 8  | -2.43800000 | 5.10350000  | -0.21120000 |

| 1 | -2.86580000 | 5.36990000  | -0.88350000 |
|---|-------------|-------------|-------------|
| 6 | -4.27380000 | -2.67860000 | -2.41170000 |
| 6 | -3.74470000 | -1.99000000 | -1.31980000 |
| 6 | -3.74750000 | -2.57930000 | -0.05570000 |
| 6 | -4.28050000 | -3.85730000 | 0.11710000  |
| 6 | -4.80990000 | -4.54540000 | -0.97460000 |
| 6 | -4.80620000 | -3.95620000 | -2.23920000 |
| 1 | -4.27120000 | -2.21400000 | -3.40840000 |
| 1 | -3.32440000 | -0.98310000 | -1.45630000 |
| 1 | -4.28260000 | -4.32170000 | 1.11390000  |
| 1 | -5.23000000 | -5.55260000 | -0.83870000 |
| 1 | -5.22340000 | -4.49900000 | -3.09970000 |
| 6 | -3.08290000 | -1.46970000 | 0.78030000  |
| 1 | -2.73110000 | -1.52310000 | -0.27870000 |
| 1 | -2.51100000 | -1.95280000 | 1.60940000  |
| 8 | -1.89900000 | -0.89090000 | 0.22490000  |

### -4566.6699028

### Complex V

Multiplicity 2

29 -2.07240000 -0.96490000 0.43750000

| 6 | -3.26820000 | 1.76370000  | 0.32410000  |
|---|-------------|-------------|-------------|
| 6 | -4.10580000 | 2.59920000  | -0.44230000 |
| 6 | -4.94140000 | 3.52960000  | 0.13650000  |
| 1 | -5.58700000 | 4.14250000  | -0.46750000 |
| 6 | -4.93990000 | 3.65250000  | 1.52420000  |
| 6 | -4.10980000 | 2.87000000  | 2.29680000  |
| 1 | -4.11940000 | 2.99180000  | 3.36850000  |
| 6 | -3.23410000 | 1.94900000  | 1.70980000  |
| 6 | -2.25300000 | 1.21710000  | 2.58120000  |
| 1 | -1.24330000 | 1.56440000  | 2.35800000  |
| 1 | -2.47160000 | 1.46290000  | 3.62790000  |
| 6 | -1.07820000 | -0.87610000 | 3.11530000  |
| 1 | -1.18890000 | -0.74220000 | 4.19820000  |
| 1 | -0.17140000 | -0.36830000 | 2.79580000  |
| 6 | -1.03870000 | -2.39710000 | 2.76070000  |
| 1 | -0.08010000 | -2.66130000 | 2.32790000  |
| 1 | -1.18880000 | -3.00480000 | 3.66180000  |
| 6 | -3.42210000 | -2.44570000 | 2.46040000  |
| 1 | -3.49230000 | -3.09190000 | 3.34420000  |
| 1 | -4.23250000 | -2.69780000 | 1.78270000  |

| 6  | -3.47910000 | -0.94310000 | 2.89660000  |
|----|-------------|-------------|-------------|
| 1  | -4.33930000 | -0.43730000 | 2.46480000  |
| 1  | -3.54600000 | -0.86580000 | 3.98920000  |
| 6  | -2.52200000 | -4.09100000 | 1.45630000  |
| 1  | -3.51220000 | -4.05990000 | 1.00900000  |
| 1  | -2.58910000 | -4.66760000 | 2.39310000  |
| 6  | -1.57410000 | -4.82150000 | 0.50010000  |
| 1  | -1.55680000 | -4.31900000 | -0.45590000 |
| 1  | -0.55240000 | -4.84340000 | 0.89370000  |
| 6  | -3.22580000 | -2.86470000 | -2.52640000 |
| 6  | -2.08780000 | -3.08190000 | -3.42810000 |
| 1  | -1.87870000 | -4.14670000 | -3.62080000 |
| 1  | -1.08900000 | -2.69960000 | -3.07750000 |
| 1  | -2.20350000 | -2.68020000 | -4.44030000 |
| 17 | -4.14140000 | 2.35970000  | -2.24870000 |
| 17 | -6.02020000 | 4.88310000  | 2.31050000  |
| 7  | -2.24290000 | -0.26100000 | 2.40980000  |
| 7  | -2.11900000 | -2.68910000 | 1.76520000  |
| 8  | -2.25170000 | 0.98490000  | -0.32630000 |
| 8  | -2.43920000 | -2.50230000 | -1.11370000 |

| 8  | -4.44460000 | -3.18740000 | -3.08750000 |
|----|-------------|-------------|-------------|
| 8  | -2.06270000 | -6.16640000 | 0.27630000  |
| 1  | -1.79390000 | -6.74080000 | 1.02340000  |
| 29 | 0.10590000  | 1.36460000  | -0.22640000 |
| 6  | 0.02900000  | -1.60450000 | 0.32060000  |
| 6  | 0.84440000  | -2.61220000 | 0.87970000  |
| 6  | 0.90160000  | -3.89840000 | 0.36580000  |
| 1  | 1.51440000  | -4.64560000 | 0.83900000  |
| 6  | 0.15890000  | -4.19870000 | -0.77240000 |
| 6  | -0.60260000 | -3.22530000 | -1.40440000 |
| 1  | -1.13900000 | -3.47320000 | -2.30460000 |
| 6  | -0.68010000 | -1.93450000 | -0.86940000 |
| 6  | -1.56110000 | -0.88510000 | -1.51350000 |
| 1  | -2.39810000 | -0.62860000 | -0.85620000 |
| 1  | -1.96000000 | -1.25670000 | -2.47310000 |
| 6  | -1.78940000 | 1.48070000  | -2.16870000 |
| 1  | -2.23430000 | 1.19260000  | -3.12480000 |
| 1  | -2.60850000 | 1.90910000  | -1.53520000 |
| 6  | -1.02850000 | 2.83150000  | -2.24970000 |
| 1  | -1.49990000 | 3.56650000  | -1.60580000 |

| 1  | -1.01430000 | 3.23180000  | -3.26940000 |
|----|-------------|-------------|-------------|
| 6  | 1.02900000  | 1.66700000  | -2.75120000 |
| 1  | 1.02280000  | 2.14190000  | -3.73940000 |
| 1  | 2.05250000  | 1.51000000  | -2.43110000 |
| 6  | 0.27010000  | 0.31210000  | -2.76580000 |
| 1  | 0.92850000  | -0.50250000 | -2.48240000 |
| 1  | -0.16770000 | 0.08810000  | -3.74340000 |
| 6  | 1.16140000  | 3.81060000  | -1.53860000 |
| 1  | 2.19140000  | 3.50830000  | -1.37370000 |
| 1  | 1.13130000  | 4.43150000  | -2.44620000 |
| 6  | 0.71310000  | 4.63690000  | -0.32810000 |
| 1  | 0.83370000  | 4.05100000  | 0.57750000  |
| 1  | -0.33770000 | 4.93310000  | -0.41500000 |
| 6  | 2.63700000  | 1.43330000  | 0.53310000  |
| 6  | 3.85470000  | 1.71890000  | 1.38140000  |
| 1  | 4.46250000  | 2.48920000  | 0.90610000  |
| 1  | 3.56330000  | 2.05940000  | 2.36970000  |
| 1  | 4.45040000  | 0.81380000  | 1.46360000  |
| 17 | 1.87420000  | -2.20730000 | 2.31250000  |
| 17 | 0.21640000  | -5.88470000 | -1.45550000 |

| 7 | -0.80290000 | 0.43200000  | -1.74280000 |
|---|-------------|-------------|-------------|
| 7 | 0.35940000  | 2.57560000  | -1.75940000 |
| 8 | -0.05100000 | -0.27030000 | 0.97910000  |
| 8 | 1.37400000  | 1.96660000  | 1.00510000  |
| 8 | 2.05400000  | 0.93160000  | -0.46570000 |
| 8 | 1.56080000  | 5.80360000  | -0.19230000 |
| 1 | 1.25570000  | 6.50130000  | -0.80920000 |
| 6 | -7.86640000 | -1.42090000 | -1.91360000 |
| 6 | -6.85140000 | -1.05080000 | -1.04190000 |
| 6 | -6.55420000 | -1.86750000 | 0.08160000  |
| 6 | -7.30720000 | -3.02760000 | 0.32250000  |
| 6 | -8.32480000 | -3.38830000 | -0.56110000 |
| 6 | -8.60670000 | -2.59380000 | -1.67670000 |
| 1 | -8.09140000 | -0.80490000 | -2.77820000 |
| 1 | -6.24750000 | -0.13620000 | -1.19900000 |
| 1 | -7.09240000 | -3.65450000 | 1.18390000  |
| 1 | -8.89660000 | -4.29270000 | -0.37900000 |
| 1 | -9.40150000 | -2.88530000 | -2.35600000 |
| 6 | -5.44300000 | -1.44870000 | 0.96480000  |
| 1 | -5.04000000 | -2.13850000 | 1.73480000  |

1 -2.54630000 0.98900000 -1.26850000

8 -4.49330000 -0.75730000 0.40790000

-4566.7220646

## Complex VI

| 27 | 2.42930000 | 1.43430000  | 11.30450000 |
|----|------------|-------------|-------------|
| 6  | 1.97730000 | 0.28250000  | 8.74570000  |
| 6  | 0.85750000 | -0.06370000 | 7.96050000  |
| 6  | 0.81470000 | 0.11090000  | 6.58970000  |
| 1  | 0.05670000 | -0.16810000 | 6.08880000  |
| 6  | 1.89690000 | 0.69880000  | 5.96110000  |
| 6  | 2.97390000 | 1.15540000  | 6.68880000  |
| 1  | 3.68460000 | 1.60670000  | 6.24970000  |
| 6  | 3.02510000 | 0.95700000  | 8.06420000  |
| 6  | 4.20770000 | 1.41950000  | 8.86280000  |
| 1  | 4.70940000 | 0.63190000  | 9.19070000  |
| 1  | 4.81140000 | 1.94500000  | 8.27950000  |
| 6  | 4.93260000 | 2.51180000  | 10.93430000 |
| 1  | 5.61230000 | 3.07500000  | 10.48630000 |
| 1  | 5.35740000 | 1.65970000  | 11.20310000 |

| 6  | 4.37170000  | 3.23840000  | 12.16780000 |
|----|-------------|-------------|-------------|
| 1  | 4.60100000  | 2.73610000  | 12.98960000 |
| 1  | 4.76400000  | 4.14420000  | 12.23520000 |
| 6  | 2.63960000  | 4.22770000  | 10.86450000 |
| 1  | 3.07160000  | 5.10590000  | 11.01140000 |
| 1  | 1.66590000  | 4.37200000  | 10.75580000 |
| 6  | 3.21870000  | 3.55480000  | 9.60510000  |
| 1  | 2.50570000  | 3.41810000  | 8.93280000  |
| 1  | 3.92090000  | 4.12790000  | 9.20570000  |
| 6  | 2.24770000  | 3.85470000  | 13.24020000 |
| 1  | 1.30500000  | 4.07620000  | 13.03180000 |
| 1  | 2.70050000  | 4.69310000  | 13.51060000 |
| 6  | 2.27740000  | 2.88030000  | 14.40830000 |
| 1  | 1.78130000  | 2.05770000  | 14.16940000 |
| 1  | 3.21390000  | 2.62940000  | 14.60950000 |
| 6  | -0.09850000 | -0.29360000 | 14.20010000 |
| 1  | -0.24190000 | -0.22320000 | 15.25810000 |
| 1  | 0.54240000  | -1.08450000 | 14.59000000 |
| 1  | -0.77410000 | -1.06120000 | 14.51510000 |
| 17 | -0.55550000 | -0.71310000 | 8.73880000  |

| 17 | 1.84270000  | 0.90400000  | 4.23070000  |
|----|-------------|-------------|-------------|
| 7  | 3.79430000  | 2.25090000  | 10.01400000 |
| 7  | 2.88430000  | 3.27340000  | 12.00530000 |
| 8  | 2.14680000  | -0.15600000 | 10.17220000 |
| 8  | 1.09800000  | 1.02290000  | 12.25560000 |
| 8  | -0.92370000 | 0.88220000  | 13.08380000 |
| 8  | 1.68710000  | 3.48290000  | 15.54710000 |
| 1  | 2.24400000  | 3.99390000  | 15.91410000 |
| 29 | 3.20050000  | -1.53390000 | 11.34330000 |
| 6  | 4.69050000  | 0.04180000  | 14.59750000 |
| 6  | 4.73330000  | -0.13280000 | 15.96840000 |
| 1  | 5.49130000  | 0.14620000  | 16.46920000 |
| 6  | 3.65110000  | -0.72070000 | 16.59690000 |
| 6  | 2.57410000  | -1.17730000 | 15.86920000 |
| 1  | 1.86340000  | -1.62860000 | 16.30830000 |
| 6  | 2.52290000  | -0.97890000 | 14.49390000 |
| 6  | 1.34020000  | -1.44140000 | 13.69520000 |
| 1  | 0.83860000  | -0.65380000 | 13.36740000 |
| 1  | 0.73650000  | -1.96690000 | 14.27850000 |
| 6  | 0.61540000  | -2.53370000 | 11.62370000 |

| 1 | -0.06430000 | -3.09690000 | 12.07180000 |
|---|-------------|-------------|-------------|
| 1 | 0.19060000  | -1.68160000 | 11.35490000 |
| 6 | 1.17620000  | -3.26030000 | 10.39030000 |
| 1 | 0.94700000  | -2.75800000 | 9.56850000  |
| 1 | 0.78390000  | -4.16610000 | 10.32280000 |
| 6 | 2.90840000  | -4.24960000 | 11.69350000 |
| 1 | 2.47640000  | -5.12780000 | 11.54670000 |
| 1 | 3.88210000  | -4.39390000 | 11.80230000 |
| 6 | 2.32930000  | -3.57670000 | 12.95290000 |
| 1 | 3.04230000  | -3.44000000 | 13.62520000 |
| 1 | 1.62700000  | -4.14980000 | 13.35230000 |
| 6 | 3.30030000  | -3.87660000 | 9.31790000  |
| 1 | 4.24300000  | -4.09810000 | 9.52620000  |
| 1 | 2.84750000  | -4.71500000 | 9.04750000  |
| 6 | 3.27060000  | -2.90220000 | 8.14980000  |
| 1 | 3.76670000  | -2.07960000 | 8.38860000  |
| 1 | 2.33400000  | -2.65130000 | 7.94860000  |
| 6 | 5.80810000  | -1.81300000 | 10.97940000 |
| 6 | 7.20510000  | -1.55330000 | 10.45780000 |
| 1 | 7.51600000  | -2.33460000 | 9.95460000  |

| 1  | 7.19380000  | -0.76930000 | 9.87100000  |
|----|-------------|-------------|-------------|
| 1  | 7.80940000  | -1.38900000 | 11.21190000 |
| 17 | 6.10350000  | 0.69120000  | 13.81920000 |
| 17 | 3.70530000  | -0.92590000 | 18.32740000 |
| 7  | 1.75370000  | -2.27280000 | 12.54400000 |
| 7  | 2.65230000  | -3.35350000 | 10.53440000 |
| 8  | 3.52110000  | -0.02870000 | 12.56110000 |
| 8  | 4.65870000  | -1.09300000 | 10.25000000 |
| 8  | 5.63940000  | -2.57440000 | 11.94700000 |
| 8  | 3.86090000  | -3.50480000 | 7.01090000  |
| 1  | 3.30390000  | -4.01580000 | 6.64400000  |
| 1  | 1.11800000  | -0.36910000 | 9.99410000  |
| 6  | -1.91520000 | 3.36850000  | 9.79310000  |
| 6  | -0.52510000 | 3.44160000  | 9.88640000  |
| 6  | 0.08790000  | 4.64260000  | 10.24280000 |
| 6  | -0.68920000 | 5.77150000  | 10.50500000 |
| 6  | -2.07900000 | 5.69850000  | 10.41120000 |
| 6  | -2.69210000 | 4.49680000  | 10.05560000 |
| 1  | -2.39830000 | 2.42140000  | 9.51250000  |
| 1  | 1.18360000  | 4.70010000  | 10.31700000 |

| 1 | -0.20570000 | 6.71840000  | 10.78590000 |
|---|-------------|-------------|-------------|
| 1 | -2.69170000 | 6.58810000  | 10.61780000 |
| 1 | -3.78770000 | 4.43940000  | 9.98200000  |
| 6 | 0.33220000  | 2.19530000  | 9.59750000  |
| 1 | 1.39830000  | 2.25100000  | 9.66890000  |
| 7 | 0.54920000  | 1.03470000  | 9.86720000  |
| 6 | -0.32840000 | 1.01600000  | 8.47550000  |
| 6 | 0.60410000  | 1.41360000  | 7.51760000  |
| 6 | -1.65400000 | 0.78610000  | 8.10530000  |
| 6 | 0.21200000  | 1.58020000  | 6.18910000  |
| 1 | 1.64890000  | 1.59450000  | 7.80900000  |
| 6 | -2.04610000 | 0.95320000  | 6.77720000  |
| 1 | -2.38910000 | 0.47270000  | 8.86080000  |
| 6 | -1.11290000 | 1.34990000  | 5.81890000  |
| 1 | 0.94740000  | 1.89320000  | 5.43390000  |
| 1 | -3.09070000 | 0.77200000  | 6.48510000  |
| 1 | -1.42220000 | 1.48130000  | 4.77190000  |
| 6 | 3.56450000  | -0.33080000 | 13.90700000 |
| 6 | 0.18620000  | 0.52040000  | 13.16140000 |

-4854.1930025

## Complex VII

| 29 | 2.42930000 | 1.43430000  | 11.30450000 |
|----|------------|-------------|-------------|
| 6  | 1.97730000 | 0.28250000  | 8.74570000  |
| 6  | 0.85750000 | -0.06370000 | 7.96050000  |
| 6  | 0.81470000 | 0.11090000  | 6.58970000  |
| 1  | 0.05670000 | -0.16810000 | 6.08880000  |
| 6  | 1.89690000 | 0.69880000  | 5.96110000  |
| 6  | 2.97390000 | 1.15540000  | 6.68880000  |
| 1  | 3.68460000 | 1.60670000  | 6.24970000  |
| 6  | 3.02510000 | 0.95700000  | 8.06420000  |
| 6  | 4.20770000 | 1.41950000  | 8.86280000  |
| 1  | 4.70940000 | 0.63190000  | 9.19070000  |
| 1  | 4.81140000 | 1.94500000  | 8.27950000  |
| 6  | 4.93260000 | 2.51180000  | 10.93430000 |
| 1  | 5.61230000 | 3.07500000  | 10.48630000 |
| 1  | 5.35740000 | 1.65970000  | 11.20310000 |
| 6  | 4.37170000 | 3.23840000  | 12.16780000 |
| 1  | 4.60100000 | 2.73610000  | 12.98960000 |
| 1  | 4.76400000 | 4.14420000  | 12.23520000 |

| 1  | 2.63960000  | 4.22770000  | 10.86450000 |
|----|-------------|-------------|-------------|
| 1  | 3.07160000  | 5.10590000  | 11.01140000 |
| 1  | 1.66590000  | 4.37200000  | 10.75580000 |
| 6  | 3.21870000  | 3.55480000  | 9.60510000  |
| 1  | 2.50570000  | 3.41810000  | 8.93280000  |
| 1  | 3.92090000  | 4.12790000  | 9.20570000  |
| 6  | 2.24770000  | 3.85470000  | 13.24020000 |
| 1  | 1.30500000  | 4.07620000  | 13.03180000 |
| 1  | 2.70050000  | 4.69310000  | 13.51060000 |
| 6  | 2.27740000  | 2.88030000  | 14.40830000 |
| 1  | 1.78130000  | 2.05770000  | 14.16940000 |
| 1  | 3.21390000  | 2.62940000  | 14.60950000 |
| 6  | -0.09850000 | -0.29360000 | 14.20010000 |
| 1  | -0.24190000 | -0.22320000 | 15.25810000 |
| 1  | 0.54240000  | -1.08450000 | 14.59000000 |
| 1  | -0.77410000 | -1.06120000 | 14.51510000 |
| 17 | -0.55550000 | -0.71310000 | 8.73880000  |
| 17 | 1.84270000  | 0.90400000  | 4.23070000  |
| 7  | 3.79430000  | 2.25090000  | 10.01400000 |
| 7  | 2.88430000  | 3.27340000  | 12.00530000 |

| 8  | 2.14680000  | -0.15600000 | 10.17220000 |
|----|-------------|-------------|-------------|
| 8  | 1.09800000  | 1.02290000  | 12.25560000 |
| 8  | -0.92370000 | 0.88220000  | 13.08380000 |
| 8  | 1.68710000  | 3.48290000  | 15.54710000 |
| 1  | 2.24400000  | 3.99390000  | 15.91410000 |
| 29 | 3.20050000  | -1.53390000 | 11.34330000 |
| 6  | 4.69050000  | 0.04180000  | 14.59750000 |
| 6  | 4.73330000  | -0.13280000 | 15.96840000 |
| 1  | 5.49130000  | 0.14620000  | 16.46920000 |
| 6  | 3.65110000  | -0.72070000 | 16.59690000 |
| 6  | 2.57410000  | -1.17730000 | 15.86920000 |
| 1  | 1.86340000  | -1.62860000 | 16.30830000 |
| 6  | 2.52290000  | -0.97890000 | 14.49390000 |
| 6  | 1.34020000  | -1.44140000 | 13.69520000 |
| 1  | 0.83860000  | -0.65380000 | 13.36740000 |
| 1  | 0.73650000  | -1.96690000 | 14.27850000 |
| 6  | 0.61540000  | -2.53370000 | 11.62370000 |
| 1  | -0.06430000 | -3.09690000 | 12.07180000 |
| 1  | 0.19060000  | -1.68160000 | 11.35490000 |
| 6  | 1.17620000  | -3.26030000 | 10.39030000 |

| 1  | 0.94700000 | -2.75800000 | 9.56850000  |
|----|------------|-------------|-------------|
| 1  | 0.78390000 | -4.16610000 | 10.32280000 |
| 6  | 2.90840000 | -4.24960000 | 11.69350000 |
| 1  | 2.47640000 | -5.12780000 | 11.54670000 |
| 1  | 3.88210000 | -4.39390000 | 11.80230000 |
| 6  | 2.32930000 | -3.57670000 | 12.95290000 |
| 1  | 3.04230000 | -3.44000000 | 13.62520000 |
| 1  | 1.62700000 | -4.14980000 | 13.35230000 |
| 6  | 3.30030000 | -3.87660000 | 9.31790000  |
| 1  | 4.24300000 | -4.09810000 | 9.52620000  |
| 1  | 2.84750000 | -4.71500000 | 9.04750000  |
| 6  | 3.27060000 | -2.90220000 | 8.14980000  |
| 1  | 3.76670000 | -2.07960000 | 8.38860000  |
| 1  | 2.33400000 | -2.65130000 | 7.94860000  |
| 6  | 5.80810000 | -1.81300000 | 10.97940000 |
| 6  | 7.20510000 | -1.55330000 | 10.45780000 |
| 1  | 7.51600000 | -2.33460000 | 9.95460000  |
| 1  | 7.19380000 | -0.76930000 | 9.87100000  |
| 1  | 7.80940000 | -1.38900000 | 11.21190000 |
| 17 | 6.10350000 | 0.69120000  | 13.81920000 |

| 17 | 3.70530000  | -0.92590000 | 18.32740000 |
|----|-------------|-------------|-------------|
| 7  | 1.75370000  | -2.27280000 | 12.54400000 |
| 7  | 2.65230000  | -3.35350000 | 10.53440000 |
| 8  | 3.52110000  | -0.02870000 | 12.56110000 |
| 8  | 4.65870000  | -1.09300000 | 10.25000000 |
| 8  | 5.63940000  | -2.57440000 | 11.94700000 |
| 8  | 3.86090000  | -3.50480000 | 7.01090000  |
| 1  | 3.30390000  | -4.01580000 | 6.64400000  |
| 1  | 1.11800000  | -0.36910000 | 9.99410000  |
| 6  | -1.91520000 | 3.36850000  | 9.79310000  |
| 6  | -0.52510000 | 3.44160000  | 9.88640000  |
| 6  | 0.08790000  | 4.64260000  | 10.24280000 |
| 6  | -0.68920000 | 5.77150000  | 10.50500000 |
| 6  | -2.07900000 | 5.69850000  | 10.41120000 |
| 6  | -2.69210000 | 4.49680000  | 10.05560000 |
| 1  | -2.39830000 | 2.42140000  | 9.51250000  |
| 1  | 1.18360000  | 4.70010000  | 10.31700000 |
| 1  | -0.20570000 | 6.71840000  | 10.78590000 |
| 1  | -2.69170000 | 6.58810000  | 10.61780000 |
| 1  | -3.78770000 | 4.43940000  | 9.98200000  |

| 6 | 0.33220000  | 2.19530000  | 9.59750000  |
|---|-------------|-------------|-------------|
| 1 | 1.39830000  | 2.25100000  | 9.66890000  |
| 7 | 0.54920000  | 1.03470000  | 9.86720000  |
| 6 | -0.32840000 | 1.01600000  | 8.47550000  |
| 6 | 0.60410000  | 1.41360000  | 7.51760000  |
| 6 | -1.65400000 | 0.78610000  | 8.10530000  |
| 6 | 0.21200000  | 1.58020000  | 6.18910000  |
| 1 | 1.64890000  | 1.59450000  | 7.80900000  |
| 6 | -2.04610000 | 0.95320000  | 6.77720000  |
| 1 | -2.38910000 | 0.47270000  | 8.86080000  |
| 6 | -1.11290000 | 1.34990000  | 5.81890000  |
| 1 | 0.94740000  | 1.89320000  | 5.43390000  |
| 1 | -3.09070000 | 0.77200000  | 6.48510000  |
| 1 | -1.42220000 | 1.48130000  | 4.77190000  |
| 6 | 3.56450000  | -0.33080000 | 13.90700000 |
| 6 | 0.18620000  | 0.52040000  | 13.16140000 |

-4777.7267896

### **Refrences** :

- 1. M. J. Frisch, et al., Gaussian Revision D.01, Gaussian, Inc., Wallingford CT, 2013.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al. Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.
- 3. C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B: Condens. Matter Mater. Phys.* 1988, **37**, 785–789.
- 4. A. D. Becke, J. Chem. Phys. 1993, **98**, 1372–1377.
- 5. A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098–3100.
- 6. A. D. Becke, J. Chem. Phys., 1993, **98**, 5648–5652.
- 7. A. D. Becke, J. Chem. Phys., 1997, **107**, 8554–8560.
- 8. SAINT V8.34A; Bruker AXS Inc., 2013.
- 9. SHELXTL -2014/7; Bruker AXS Inc., 2014.