Supporting Information

Remarkable proton conducting behavior driven by the synergistic effects in an acid base conjugated MOFs impregnated with sulphuric acid molecules

Lu Feng^{a,§}, Shuyang Bian^{c,§}, Kun Zhang^{b,*} and Hong Zhou^{a,*}

^a College of Chemistry and Environmental Technology, Wuhan Institute of Technology, Wuhan 430073, Hubei, China.

^b Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu road, Zhenjiang 212013, P. R. China.

^c School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.

[§] These authors contributed equally to this work.

* Corresponding Authors: <u>hzhouh@126.com</u> (H. Zhou); <u>zh198958@126.com</u> (K. Zhang)

Table S1. Elemental analysis for UiO-66-SO ₃ ⁻ -NH ₃ ⁺					
Sample	N(%)	C(%)	H(%)	S(%)	
UiO-66-SO ₃ ⁻ -NH ₃ ⁺	2.62	27.73	2.55	3.26	

Fig. S1. TG plots of UiO-66-SO₃⁻-NH₃⁺ and H₂SO₄@UiO-66-SO₃⁻-NH₃⁺.

Fig. S2. SEM of composites: (a) for UiO-66-SO₃⁻-NH₃⁺ and (b) for H₂SO₄@UiO-66-SO₃⁻-NH₃⁺.

Fig. S3. XPS of UiO-66-SO₃⁻-NH₃⁺ and H₂SO₄@UiO-66-SO₃⁻-NH₃⁺.

Fig. S4. Nyquist plots of UiO-66-SO₃⁻-NH₃⁺ at 30 °C and different relative humidity.

Fig. S5. Nyquist plots of UiO-66-SO₃⁻-NH₃⁺ versus different temperature at 100% RH.

Fig. S6. Nyquist plots of H_2SO_4 (2000-66-SO₃⁻-NH₃⁺ versus different relative humidity at 30 °C.

Fig. S7. Nyquist plots of H_2SO_4 @UiO-66-SO₃⁻-NH₃⁺ versus different temperature at 100% RH.

Fig. S8. Long-term proton conducting durability measurement of H_2SO_4 @UiO-66-SO₃⁻-NH₃⁺ at 100% RH and 30 °C(a) as well as 90 °C (b).

Fig. S9. Complete IR spectra of H₂SO₄@UiO-66-SO₃⁻-NH₃⁺ and UiO-66-SO₃⁻-NH₃⁺.

Fig. S10. S binding energy of H_2SO_4 @UiO-66, H_2SO_4 @UiO-66-NH₂ and H_2SO_4 @UiO-66-SO₃H.

Fig. S11. IR spectrum of $H_2SO_4@UiO-66$.

Fig. S12. Nitrogen adsorption of washed H₂SO₄@UiO-66-SO₃⁻-NH₃⁺.

Fig. S13 Water adsorption–desorption isotherms of UiO-66-SO₃⁻-NH₃⁺ (a) and $H_2SO_4@UiO-66-SO_3^--NH_3^+$ (b) measured at 25 ^oC.