# **Supporting Information**

## Electrochemical hydroboration of carbonyl compounds

Zewei Chen,<sup>†a</sup> Kang Lv,<sup>†a</sup> Taoyue Yuan,<sup>b</sup> Xuguang Zhang,<sup>b</sup> Weiwei Yao<sup>\*a</sup> and Mengtao Ma<sup>\*b</sup>

<sup>a</sup>College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China

<sup>b</sup>Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China

### Contents

General Procedure for Catalytic Hydroboration of Aldehydes and Ketones Spectroscopic Data for Hydroborated Products NMR Spectra of Hydroborated Products References

#### **EXPERIMENTAL SECTION**

**General Information.** All air-sensitive manipulations were carried out using standard Schlenk and glove box techniques under an atmosphere of high purity argon. <sup>1</sup>H, <sup>13</sup>C{<sup>1</sup>H} and <sup>11</sup>B NMR spectra were recorded at 25 °C on Bruker Avance III 600 MHz spectrometer in deuterated solvents and chemical shifts were referenced to CDCl<sub>3</sub> as an internal standard. DBpin was synthesized by literature procedure.<sup>1-3</sup> All reagents were used without further purification.

General Procedure for Aldehyde Hydroboration with HBpin. In a 5 mL, oven-dried, round-bottomed flask equipped with a magnetic stir bar, aldehydes (0.5 mmol), HBpin (79.8  $\mu$ L, 0.55 mmol), Et<sub>4</sub>NBF<sub>4</sub> (108.5 mg, 0.5 mmol) and MeCN (3 mL) were added, respectively. The flask was equipped with graphite felt electrode (10×10×3 mm<sup>3</sup>) as the anode and platinum plate (10×10×0.10 mm<sup>3</sup>) as the cathode. The mixture was stirred for 3 h under a continuous current of 5 mA at room temperature. The progress of the reaction was monitored by <sup>1</sup>H and <sup>11</sup>B NMR spectroscopy which indicated the completion of the reaction by the disappearance of aldehyde (RCHO) proton and appearance of a new CH<sub>2</sub> resonance.

General Procedure for Ketone Hydroboration with HBpin. In a 5 mL, oven-dried, round-bottomed flask equipped with a magnetic stir bar, ketones (0.5 mmol), HBpin (108.8  $\mu$ L, 0.75 mmol), Et<sub>4</sub>NBF<sub>4</sub> (108.5 mg, 0.5 mmol) and MeCN (3 mL) were added, respectively. The flask was equipped with graphite felt electrode (10×10×3 mm<sup>3</sup>) as the anode and platinum plate (10×10×0.10 mm<sup>3</sup>) as the cathode. The mixture was stirred for 3 h under a continuous current of 10 mA at room temperature. Then the mixture was extracted with ethyl acetate, the combined organic phases were washed with brine, dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>. After the solvent were removed in vacuum, the pure alcohol product was obtained by flash column chromatography on silica gel with ethyl acetate/petroleum ether as eluents.



Figure S1. Set-up diagrams of undivided cell electrolysis.

**Gram-scale Hydroboration of Benzophenone.** In a 5 mL, oven-dried, round-bottomed flask equipped with a magnetic stir bar, benzophenone (1.82 g, 10 mmol), HBpin (2.2 mL, 15 mmol), Et<sub>4</sub>NBF<sub>4</sub> (2.17 g, 10 mmol) and MeCN (15 mL) were added, respectively. The flask was equipped with graphite felt electrode  $(15\times15\times3 \text{ mm}^3)$  as the anode and platinum plate  $(15\times15\times0.10 \text{ mm}^3)$  as the cathode. The mixture was stirred for 6 h under a continuous current of 10 mA at room temperature. Then the mixture was extracted with ethyl acetate, the combined organic phases were washed with brine, dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>. The pure alcohol product **40** (1.40 g, 7.6 mmol, 76% yield) was obtained by flash column chromatography on silica gel with ethyl acetate/petroleum ether as eluents.

**Deuterium-labelling Experiment in CD<sub>3</sub>CN.** In a 5 mL, oven-dried, round-bottomed flask equipped with a magnetic stir bar, acetophenone (58.2  $\mu$ L 0.5 mmol), HBpin (108.8  $\mu$ L, 0.75 mmol), Et<sub>4</sub>NBF<sub>4</sub> (108.5 mg, 0.5 mmol) and CD<sub>3</sub>CN (3 mL) were added. The flask was equipped with graphite felt electrode (10×10×3 mm<sup>3</sup>) as the anode and platinum plate (10×10×0.10 mm<sup>3</sup>) as the cathode. The mixture was stirred for 3 h under a continuous current of 10 mA at room temperature. The ratio of mixed products *d*-4a and 4a were monitored by <sup>1</sup>H NMR spectroscopy.

**Deuterium-labelling Experiment in DBpin.** In a 5 mL, oven-dried, round-bottomed flask equipped with a magnetic stir bar, acetophenone (58.2  $\mu$ L, 0.5 mmol), DBpin (560  $\mu$ L, 1.33 M solution in anhydrous THF, 0.75 mmol), Et<sub>4</sub>NBF<sub>4</sub> (108.5 mg, 0.5 mmol) and MeCN (3 mL) were added. The flask was equipped with graphite felt electrode (10×10×3 mm<sup>3</sup>) as the anode and platinum plate (10×10×0.10 mm<sup>3</sup>) as the cathode. The mixture was stirred for 3 h under a continuous current of 10 mA at room temperature. The ratio of mixed products *d*-4a and 4a were monitored by <sup>1</sup>H NMR spectroscopy.

Kinetic Isotope Effect (KIE) Experiment. In a 5 mL, oven-dried, round-bottomed flask equipped with a magnetic stir bar, acetophenone (58.2  $\mu$ L, 0.5 mmol), DBpin (560  $\mu$ L, 1.33 M solution in anhydrous THF, 0.75 mmol) or HBpin (108.8  $\mu$ L, 0.75mmol), Et<sub>4</sub>NBF<sub>4</sub> (108.5 mg, 0.5 mmol) and MeCN (3 mL) were added. The flask was equipped with graphite felt electrode (10×10×3 mm<sup>3</sup>) as the anode and platinum plate (10×10×0.10 mm<sup>3</sup>) as the cathode. Then the mixture was extracted with ethyl acetate, the combined organic phases were washed with brine, dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>.

HBpin: 5 reactions were set up and stopped at 5 min, 10 min, 15 min, 20 min, 40 min, respectively.

DBpin: 3 reactions were set up and stopped at 10 min, 20 min, 40 min, respectively. The reaction yields were determined by <sup>1</sup>H NMR using dimethylsulfoxide as an internal standard.



The coefficient of the linear trend curve corresponds to the reaction rate  $k_H = 1.02$ 



The coefficient of the linear trend curve corresponds to the reaction rate  $k_D = 0.20$ With the method, the KIE =  $k_H/k_D = 5.1$ .

**Radical Inhibition Experiment with 1,1-diphenylethylene, TEMPO or BHT.** In a 25 mL, over-dried, three-necked, round-bottomed flask equipped with a magnetic stir bar, acetophenone (58.2  $\mu$ L 0.5 mmol), HBpin (108.8  $\mu$ L, 0.75 mmol), Et<sub>4</sub>NBF<sub>4</sub> (108.5 mg, 0.5 mmol), CH<sub>3</sub>CN (3 mL) and 1,1-diphenylethylene (132  $\mu$ L, 0.75 mmol), TEMPO (117 mg, 0.75 mmol) or BHT (165mg, 0.75 mmol) were added, respectively. The flask was equipped with graphite felt electrode (10×10×3 mm<sup>3</sup>) as the anode and platinum plate  $(10 \times 10 \times 0.10 \text{ mm}^3)$  as the cathode. The mixtures were stirred for 3 h under a continuous current of 10 mA at room temperature. The yield of **4a** and **5** were determined by <sup>1</sup>H spectroscopy.

**Procedures for Cyclic Voltammetry (CV).** Cyclic voltammetry experiments were conducted in a 25 mL three-electrode cell equipped with a glassy Carbon working electrode, a Ag/AgCl reference electrode and a platinum wire counter electrode, and the reference electrode was submerged in a saturated aqueous KCl solution, at 100 mV S<sup>-1</sup> scan rate: background (Et<sub>4</sub>NBF<sub>4</sub>, 0.1 M in MeCN) and the potential range was 0-5 V; HBpin (0.1 M in MeCN) and the potential range was -5-5 V; acetophenone (0.1 M in MeCN) and the potential range was 0-5 V; the mixture of acetophenone (0.1 M in MeCN) and the potential range was 0-5 V; the mixture of acetophenone (0.1 M in MeCN) and the potential range was -3.5-3.5 V. The current was reported in mA and potential was reported in V.

**Spectroscopic Data for Products of 2, 4 and 5.** *2-(benzyloxy)pinacolborane (2a).*<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.33-7.25 (m, 5H), 4.92 (s, 2H), 1.26 (s, 12H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>): δ 22.35.

*2-(2-fluorobenzyloxy)pinacolborane (2b).*<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.44-7.42 (m, 1H), 7.27-7.25 (m, 1H), 7.14-7.11 (m, 1H), 7.03-7.00 (m, 1H), 4.99 (s, 2H), 1.27 (s, 12H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>): δ 22.35.

*2-(3-fluorobenzyloxy)pinacolborane (2c).*<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.32-7.31 (m, 1H), 7.10-7.06 (m, 2H), 6.97-6.95 (m, 1H), 4.90 (s, 2H), 1.26 (s, 12H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>): δ 22.33.

2-(4-fluorobenzyloxy)pinacolborane (2d).<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.24-7.22 (m, 2H), 6.94-6.91 (m, 2H), 4.79 (s, 2H), 1.17 (s, 12H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>): δ 22.28.

*2-(2-chlorobenzyloxy)pinacolborane (2e).*<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.49 (m, 1H), 7.31 (m, 1H), 7.28-7.20 (m, 2H), 5.01 (s, 2H), 1.28 (s, 12H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>): δ 22.38.

2-(3-chlorobenzyloxy)pinacolborane (2f).<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ

7.20 (s, 1H), 7.16-7.12 (m, 3H), 4.81 (s, 2H), 1.19 (s, 12H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>): δ 24.47.

2-(4-chlorobenzyloxy)pinacolborane (2g).<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$ 7.25-7.22 (m, 4H), 4.86 (s, 2H), 1.25 (s, 12H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>):  $\delta$  24.35. 2-(4-nitrophenyl) pinacolborane (2h).<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$ 8.10 (d, J = 6.0 Hz, 2H), 7.43 (d, J = 6.0 Hz, 2H), 4.94 (s, 2H), 1.18 (s, 12H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>):  $\delta$  22.34.

2-((4-methylbenzyl)oxy)pinacolborane (2i).<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.19 (d, *J* = 6.0 Hz, 2H), 7.10 (d, *J* = 6.0 Hz, 2H), 4.83 (s, 2H), 2.29 (s, 3H), 1.22 (s, 12H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>): δ 22.33.

*2-(4-methoxybenzyloxy)pinacolborane (2j).*<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.28 (d, *J* = 6.0 Hz, 2H), 7.19 (m, 2H), 4.81 (s, 2H), 3.16 (s, 3H), 1.19 (s, 12H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>): δ 22.36.

*N*,*N*-dimethyl-4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)-aniline (2k).<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.18 (d, *J* = 12 Hz, 2H), 6.68 (d, *J* = 12 Hz, 2H), 4.75 (s, 2H), 2.91 (s, 6H), 1.24 (s, 12H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>): δ 24.47.

4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)phenyl acetate (21).<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.28 (d, J = 6.0 Hz, 2H), 6.98 (d, J = 6.0 Hz, 2H), 4.82 (s, 2H), 2.21 (s, 3H), 1.18 (s, 12H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>):  $\delta$ 22.08.

*N*-(4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)phenyl)acetamide (2m).<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 8.77 (s, 1H), 7.59 (d, *J* = 6.0 Hz, 2H), 7.19 (d, *J* = 6.0 Hz, 2H), 4.82 (s, 2H), 2.13 (s, 3H), 1.25 (s, 12H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>): δ 22.02.

2-(*cinnamyloxy*)-4,4,5,5-*tetramethyl*-1,3,2-*dioxaborolane* (2*n*).<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.38-7.23 (m, 5H), 6.62 (d, *J* = 18 Hz, 1H), 6.30-6.27 (m, 1H), 4.53 (d, *J* = 6.0 Hz, 2H), 1.25 (s, 12H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>): δ 22.18.

2-(cyclohexylmethoxy)pinacolborane (20).<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  3.54 (d, J = 6.0 Hz, 2H), 1.61-1.59 (m, 6H), 1.55-1.53 (m, 1H), 1.14 (s, 12H), 1.04-1.02 (m, 2H), 0.84-0.79 (m, 2H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>): δ 22.01.

4,4,5,5-*tetramethyl-2-(pentyloxy)-1,3,2-dioxaborolane (2p).*<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 3.70 (t, *J* = 6.0 Hz, 2H), 1.44 (m, 2H), 1.19 (m, 2H), 1.17 (s, 12H), 0.77 (m. 3H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>): δ 21.98.

2-(4-chlorobutoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2q).<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 3.70 (t, *J* = 6.0 Hz, 2H), 1.44 (m, 2H), 1.19 (m, 2H), 1.17 (s, 12H), 0.77 (m, 2H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>): δ 21.97.

*4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)pyridine (2r).*<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 8.38 (m, 2H), 7.17 (m, 2H), 4.75 (s, 2H), 1.05 (s, 12H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>): δ 22.23.

2-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)pyridine (2s).<sup>4</sup> Yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 8.63-8.60 (m, 1H), 7.98-7.96 (m, 1H), 7.74-7.72 (m, 1H), 7.50-7.48 (m, 1H), 5.08 (s, 2H), 1.23 (s, 12H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>): δ 22.32.

*1-phenylethan-1-ol (4a).*<sup>5</sup> Colorless oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.36–7.24 (m, 5H), 4.87 (q, *J* = 6.0 Hz, 1H), 2.05 (s, 1H), 1.48 (d, *J* = 6.0 Hz, 3H).

*1-(2-fluorophenyl)ethan-1-ol* (4*b*).<sup>4</sup> Colorless oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.49-7.46 (m, 1H), 7.25-7.21 (m, 1H), 7.25-7.21 (m, 1H), 7.02-6.99 (m, 1H), 5.20(q, J = 6.0 Hz, 1H), 2.07 (s, 1H) 1.51 (d, J = 6.0 Hz, 3H).

*1-(3-fluorophenyl)ethan-1-ol* (*4c*).<sup>4</sup> Colorless oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.29-7.25 (m, 1H), 7.18-7.10 (m, 1H), 6.95-6.91 (m, 2H), 4.86 (q, *J* = 6.0 Hz, 1H), 2.33 (s, 1H) 1.46 (d, *J* = 6.0 Hz, 3H).

*1-(4-fluorophenyl)ethan-1-ol* (4*d*).<sup>5</sup> Colorless oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.33-7.31 (m, 2H), 7.11-7.09 (m, 2H), 4.86 (q, *J* = 6.0 Hz, 1H), 2.71 (s, 1H) 1.46 (d, *J* = 6.0 Hz, 3H).

*1-(4-chlorophenyl)ethan-1-ol (4e).*<sup>5</sup> Colorless oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.31-7.30 (m, 2H), 7.12-7.10 (m, 2H), 4.87 (q, *J* = 6.0 Hz, 1H), 1.47 (d, *J* = 6.0 Hz, 3H).

*1-(2-bromophenyl)ethan-1-ol* (4*f*).<sup>4</sup> Colorless oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.59-7.58 (m, 1H), 7.51-7.50 (m, 1H), 7.35-7.32 (m, 1H), 7.13-7.10 (m, 1H), 5.23 (q, *J* = 6.0 Hz, 1H), 2.05 (s, 1H) 1.48 (d, *J* = 6.0 Hz, 3H).

*1-(4-bromophenyl)ethan-1-ol* (4g).<sup>4</sup> Colorless oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.46-7.44 (d, J = 12 Hz, 2H), 7.23-7.21 (d, J = 12 Hz, 2H), 4.83 (q, J = 6.0 Hz, 1H), 2.13 (s, 1H) 1.45-1.44 (d, J = 6.0 Hz, 3H).

*1-(4-nitrophenyl)ethan-1-ol (4h).*<sup>5</sup> Yellowish oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 8.20 (d, *J* = 12 Hz, 1H), 7.55 (d, *J* = 6.0 Hz, 1H), 5.02 (q, *J* = 6.0 Hz, 1H), 2.15 (s, 1H), 1.53 (d, *J* = 6.0 Hz, 3H).

*1-(4-(trifluoromethyl)phenyl)ethan-1-ol* (4*i*).<sup>5</sup> Colorless oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.61 (d, J = 6.0 Hz, 2H), 7.49 (d, J = 6.0 Hz, 2H), 4.97 (q, J = 6.0 Hz, 1H), 1.95 (s, 1H), 1.51 (d, J = 6.0 Hz, 3H).

*1-(o-tolyl)ethan-1-ol (4j).*<sup>5</sup> Colorless oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.51 (d, *J* = 6.0 Hz, 2H), 7.24-7.21 (m, 1H), 7.18-7.10 (m, 2H), 2.34 (s, 3H), 1.47 (d, *J* = 6.0 Hz, 3H).

*1-(p-tolyl)ethan-1-ol (4k).*<sup>5</sup> Colorless oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.27-7.26 (m, 2H), 7.16 (d, *J* = 6.0 Hz, 2H), 4.86 (q, *J* = 6.0 Hz, 1H), 2.34 (s, 3H) 1.76 (s, 1H), 1.49 (d, *J* = 6.0 Hz, 3H).

*1-(4-methoxyphenyl)ethan-1-ol (4l)*.<sup>5</sup> Colorless oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.31 (d, *J* = 6.0 Hz, 2H), 6.89 (d, *J* = 6.0 Hz, 2H), 4.86 (q, *J* = 6.0 Hz, 1H), 3.81 (s, 3H), 1.49 (d, *J* = 6.0 Hz, 3H).

*1-(naphthalen-2-yl)ethan-1-ol* (4*m*).<sup>5</sup> White solid. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.85-7.81 (m, 4H), 7.52-7.46 (m, 3H), 5.08 (q, J = 6.0 Hz, 1H), 1.90 (s, 1H), 1.57 (d, J = 6.0 Hz, 3H).

2-methyl-1-phenylpropan-1-ol (4n).<sup>4</sup> Colorless oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.50-7.48 (m, 2H), 7.31-7.29 (m, 2H), 7.18-7.15 (m, 1H), 2.28-2.22 (m, 1H), 1.20 (s, 12H), 1.09 (d, *J* = 6.0 Hz, 3H), 0.65 (d, *J* = 6.0 Hz, 3H), <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>): δ 22.02.

*diphenylmethanol (40).*<sup>5</sup> White solid. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.39-7.35 (m, 4H), 7.35-7.33 (m, 4H), 7.27-7.25 (m, 2H), 5.86 (s, 1H), 2.22 (s, 1H).

(2-fluorophenyl)(phenyl)methanol (4p).<sup>5</sup> White solid. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.50-7.47 (m, 1H), 7.38-7.37 (m, 2H), 7.33-7.30 (m, 2H), 7.26-7.21 (m, 2H), 7.14-7.11 (m, 1H), 7.01-6.98 (m, 1H), 6.11 (s, 1H), 2.41 (s, 1H).

*1-(pyridin-4-yl)ethan-1-ol* (4q).<sup>6</sup> Colorless oil. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta 8.15-8.13$  (m, 2 H), 7.51-7.49 (m, 2 H), 5.00-4.96 (q, J = 6.5 Hz, 1 H), 2.69 (s, 1 H), 1.49-1.47 (dd, J = 6.5 and 4.5 Hz, 3 H).

*1-cyclohexylethan-1-ol* (4*r*).<sup>6</sup> Yellow oil. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 3.88-3.84 (m, 1H), 1.79-1.74 (m, 1H), 1.73-1.69 (m, 2H), 1.67-1.65 (m, 4H), 1.60-1.56 (m, 4H), 1.19 (s, 12H), 1.09-1.07(d, *J* = 6.0 Hz, 3H). <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>) δ 21.94. *Cyclohexanol (4s).*<sup>6</sup> Colorless oil. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 3.60 (br, 1 H), 1.88

(m, 2 H), 1.75-1.68 (m, 2 H), 1.54-1.50(m, 1 H,), 1.26 (m, 4 H), 1.16 (m, 1 H).

2-(2,6-di-tert-butyl-4-methylphenoxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (5).

Green oil. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.02(s, 2H), 2.27 (s, 3H), 1.40 (s, 18H),

1.27 (s, 12H). <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>): δ 149.1, 140.6, 131.5, 126.4, 83.6, 35.2, 31.7, 30.4, 25.2, 21.4. <sup>11</sup>B NMR (193 MHz, CDCl<sub>3</sub>) δ 21.20.

NMR spectra of hydroboration products (o: residual MeCN; x: residual Et<sub>4</sub>NBF<sub>4</sub>)



Figure S2. <sup>1</sup>H NMR spectrum of 2a in CDCl<sub>3.</sub>



Figure S3. <sup>11</sup>B NMR spectrum of 2a in CDCl<sub>3</sub>.



Figure S4. <sup>1</sup>H NMR spectrum of 2b in CDCl<sub>3</sub>.



Figure S5. <sup>11</sup>B NMR spectrum of 2b in CDCl<sub>3.</sub>



Figure S6. <sup>1</sup>H NMR spectrum of 2c in CDCl<sub>3.</sub>



Figure S7. <sup>11</sup>B NMR spectrum of 2c in CDCl<sub>3</sub>.



Figure S8. <sup>1</sup>H NMR spectrum of 2d in CDCl<sub>3.</sub>



Figure S9. <sup>11</sup>B NMR spectrum of 2d in CDCl<sub>3.</sub>



Figure S10. <sup>1</sup>H NMR spectrum of 2e in CDCl<sub>3</sub>.



Figure S11. <sup>11</sup>B NMR spectrum of 2e in CDCl<sub>3.</sub>



Figure S12. <sup>1</sup>H NMR spectrum of 2f in CDCl<sub>3</sub>.





Figure S13. <sup>11</sup>B NMR spectrum of 2f in CDCl<sub>3.</sub>



Figure S14. <sup>11</sup>B NMR spectrum of 2g in CDCl<sub>3</sub>.

 $^{11}\mathbf{B}$ 



**`Figure S14.** <sup>11</sup>B NMR spectrum of 2g in CDCl<sub>3.</sub>



Figure S15. <sup>1</sup>H NMR spectrum of 2h in CDCl<sub>3</sub>.



Figure S15. <sup>1</sup>H NMR spectrum of 2h in CDCl<sub>3</sub>.



Figure S17. <sup>1</sup>H NMR spectrum of 2i in CDCl<sub>3</sub>.



Figure S18. <sup>11</sup>B NMR spectrum of 2i in CDCl<sub>3</sub>.



Figure S19. <sup>1</sup>H NMR spectrum of 2j in CDCl<sub>3</sub>.



Figure S20. <sup>11</sup>B NMR spectrum of 2j in CDCl<sub>3</sub>.



Figure S21. <sup>1</sup>H NMR spectrum of 2k in CDCl<sub>3</sub>.



Figure S22. <sup>11</sup>B NMR spectrum of 2k in CDCl<sub>3</sub>.



Figure S23. <sup>1</sup>H NMR spectrum of 21 in CDCl<sub>3</sub>.



Figure S24. <sup>11</sup>B NMR spectrum of 21 in CDCl<sub>3</sub>.



Figure S25. <sup>1</sup>H NMR spectrum of 2m in CDCl<sub>3.</sub>



Figure S26. <sup>11</sup>B NMR spectrum of 2m in CDCl<sub>3</sub>.



Figure S27. <sup>1</sup>H NMR spectrum of 2n in CDCl<sub>3</sub>.



Figure S28. <sup>11</sup>B NMR spectrum of 2n in CDCl<sub>3</sub>.



Figure S29. <sup>1</sup>H NMR spectrum of 20 in CDCl<sub>3</sub>.



Figure S30. <sup>11</sup>B NMR spectrum of 20 in CDCl<sub>3.</sub>



Figure S31. <sup>1</sup>H NMR spectrum of 2p in CDCl<sub>3</sub>.



Figure S32. <sup>11</sup>B NMR spectrum of 2p in CDCl<sub>3.b</sub>



Figure S33. <sup>1</sup>H NMR spectrum of 2q in CDCl<sub>3</sub>.



Figure S34. <sup>11</sup>B NMR spectrum of 2q in CDCl<sub>3.</sub>



Figure S35. <sup>1</sup>H NMR spectrum of 2r in CDCl<sub>3</sub>.



Figure S36. <sup>11</sup>B NMR spectrum of 2r in CDCl<sub>3.</sub>



Figure S37. <sup>1</sup>H NMR spectrum of 2s in CDCl<sub>3</sub>.



Figure S38. <sup>11</sup>B NMR spectrum of 2s in CDCl<sub>3.</sub>



Figure S39. <sup>1</sup>H NMR spectrum of 4a in CDCl<sub>3.</sub>



Figure S40. <sup>1</sup>H NMR spectrum of 4b in CDCl<sub>3</sub>.



Figure S41. <sup>1</sup>H NMR spectrum of 4c in CDCl<sub>3</sub>.



Figure S42. <sup>1</sup>H NMR spectrum of 4d in CDCl<sub>3</sub>.



Figure S43. <sup>1</sup>H NMR spectrum of 4e in CDCl<sub>3.</sub>



Figure S44. <sup>1</sup>H NMR spectrum of 4f in CDCl<sub>3</sub>.



Figure S45. <sup>1</sup>H NMR spectrum of 4g in CDCl<sub>3</sub>.



Figure S46. <sup>1</sup>H NMR spectrum of 4h in CDCl<sub>3</sub>.



Figure S47. <sup>1</sup>H NMR spectrum of 4i in CDCl<sub>3</sub>.



Figure S48. <sup>1</sup>H NMR spectrum of 4j in CDCl<sub>3</sub>.



Figure S49. <sup>1</sup>H NMR spectrum of 4k in CDCl<sub>3</sub>.



Figure S50. <sup>1</sup>H NMR spectrum of 4l in CDCl<sub>3</sub>.



Figure S51. <sup>1</sup>H NMR spectrum of 4m in CDCl<sub>3</sub>.



Figure S52. <sup>1</sup>H NMR spectrum of 4n in CDCl<sub>3</sub>.



Figure S53. <sup>11</sup>B NMR spectrum of 4n in CDCl<sub>3.</sub>



Figure S54. <sup>1</sup>H NMR spectrum of 40 in CDCl<sub>3</sub>.



Figure S55. <sup>1</sup>H NMR spectrum of 4p in CDCl<sub>3.</sub>



Figure S56. <sup>1</sup>H NMR spectrum of 4q in CDCl<sub>3</sub>.



Figure S57. <sup>1</sup>H NMR spectrum of 4r in CDCl<sub>3</sub>.



Figure S58. <sup>11</sup>B NMR spectrum of 4r in CDCl<sub>3.</sub>



Figure S59. <sup>1</sup>H NMR spectrum of 4s in CDCl<sub>3</sub>.



Figure S60. <sup>1</sup>H NMR spectrum of 5 in CDCl<sub>3</sub>.



Figure S61.  $^{13}C\{^{1}H\}$  NMR spectrum of 5 in CDCl<sub>3.</sub>



Figure S62. <sup>11</sup>B NMR spectrum of 5 in CDCl<sub>3</sub>.

#### References

(1) F. Labre, Y. Gimbert, P. Bannwarth, S. Olivero, E. Duñach, P. Y. Chavant, Application of cooperative iron/copper catalysis to a palladium-free borylation of aryl bromides with pinacolborane. *Org. Lett.* 2014, **16**, 2366-2369.

(2) M. Espinal-Viguri, S. Neale, N. T. Coles, S. A. Macgregor, and R. L. Webster, Room temperature iron-catalyzed transfer hydrogenation and regioselective deuteration of carbon-carbon double bonds. *J. Am. Chem. Soc.*, 2019, **141**, 572-582.

(3) Y. Zhang, X. Zhao, C. Bi, W. Lu, M. Song, D. Wang and G. Qing, Selective Electrocatalytic Hydroboration of Arylalkenes. *Green Chem.*, 2021, **23**, 1691-1699.

(4) A. Baishya, S. Baruah and K. Geetharani, Efficient Hydroboration of Carbonyls by an Iron(II) Amide Catalyst. *Dalton Trans.*, 2018, **47**, 9231-9236.

(5) G. Zhang, H. Zeng, S. Li, J. Johnson, Z. Mo, M. C. Neary and S. Zheng, 1-D manganese(II) Terpy- ridine Coordination Polymers as Precatalysts for Hydrofunction-alisation of Carbonyl Compounds. *Dalton Trans.*, 2020, **49**, 2610-2615.

(6) W. Wang, X. Shen, F. Zhao, H. Jiang, W. Yao, S. A. Pullarkat, L. Xu, and M. Ma. Ytterbium-catalyzed hydroboration of aldehydes and ketones. *J. Org. Chem.*, 2018, 83, 69-74.