Supporting Information

Design of "turn-off" luminescent Ln-MOFs for sensitive detection of

cyanide anion

Weisai Liu,^{a,b,c} Fei Wang,^{*a,b,c} Xiaoyi Chen,^c Wenke Zhi,^c Xuquan Wang,

^c Baoqiang Xu^a and Bin Yang^a

a. National Engineering Research Center of Vacuum Metallurgy, Kunming 650093,
 China.

b. Key Laboratory of Vacuum Metallurgy for Nonferrous Metal of Yunnan
 Province, Kunming 650093, China

c. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.

Corresponding author: Fei Wang, E-mail: feiwang@kust.edu.cn;

Crystallographic Data Collection and Structure Determination

Single-crystal X-ray diffraction data of Ln-MOFs 1 and 2 were collected at 150(10) K using a Rigaku HyPix diffractometer with graphite-monochromatic Mo K α radiation ($\lambda = 0.71073$ Å). An empirical absorption correction was applied using the SADABS program. The program Olex2 was used to solve the structures of Ln-MOFs 1 and 2. All the structures were solved with ShelXT using intrinsic phasing and refined with full-matrix least-squares method on F² by using the ShelXL refinement package. All non-hydrogen atoms were refined and treated anisotropically. The diffraction contribution of disordered solvent molecules in the structure were removed by the PLATON/SQUEEZE. The Ln-MOFs 1 and 2 topological type was explored from the crystallographic data with TOPOS Pro software.

Table S1. Crystanographic data and structure remement for 1 and 2				
Compound	1	2		
CCDC number	2106266	2106267		
Formula	$C_{21}H_{24}Br_3EuN_3O_9$	$C_{21}H_{24}Br_3N_3O_9Tb$		
$D_{calc.}$ / g cm ⁻³	2.057	2.091		
μ/mm^{-1}	6.673	7.011		
Formula Weight	854.12	861.08		
Size/mm ³	0.12×0.11×0.10	0.12 imes 0.11 imes 0.10		
T/K	149.98(10)	150.04(10)		
Crystal System	triclinic	triclinic		
Space Group	<i>P</i> -1	<i>P</i> -1		
a/Å	11.2941(2)	11.2415(3)		
b/Å	11.5981(2)	11.5520(3)		
$c/{ m \AA}$	12.9541(3)	12.9279(4)		
$\alpha/^{\circ}$	108.813(2)	109.079(3)		
β /°	114.558(2)	114.551(3)		
γ/°	98.648(2)	97.782(2)		
V/Å ³	1378.90(5)	1369.46(8)		
Ζ	2	2		
Wavelength/Å	0.71073	0.71073		
Radiation type	Μο Κα	Μο Κα		
$\Theta_{min}/^{\circ}$	1.912	1.913		
$\Theta_{max}/^{\circ}$	29.481	29.482		
Measured Refl's.	30072	31328		
Refl's I $\geq 2\sigma(I)$	5641	5384		
Indep't Refl's	6452	6425		
$R_{\rm int}$	0.0364	0.0588		
Parameters	388	388		
Restraints	240	120		
GooF	1.051	1.065		
Final P indexes [1-2-(1)]	$R_1 = 0.0233$	$R_{I} = 0.0414$		
$1 \mod N \mod x \in [1/-20 (1)]$	$wR_2 = 0.0464$	<i>wR</i> ₂ =0.1041		
Final R indexas [all data]	$R_1 = 0.0303$	$R_I = 0.0530$		
rmai k muexes [all data]	$wR_2 = 0.0481$	$wR_2 = 0.1094$		

Table S1. Crystallographic data and structure refinement for 1 and 2 $\,$

Eu1-O1	2.3645(17)	N2-C16	1.320(4)
Eu1-O1 ⁱ	2.6528(17)	N2-C17	1.462(5)
Eu1-O2 ⁱ	2.5144(19)	N2-C18	1.447(5)
Eu1-O3 ⁱⁱ	2.4555(19)	C1-C2	1.385(4)
Eu1-O4 ⁱⁱ	2.4925(19)	C1-C6	1.394(4)
Eu1-O5	2.3781(17)	C1-C7	1.501(4)
Eu1-O6 ⁱ	2.4161(18)	C2-C3	1.372(4)
Eu1-O7	2.4238(17)	C3-C4	1.401(4)
Eu1-O8	2.4417(19)	C4-C5	1.399(4)
Br1-C2	1.904(3)	C4-C8	1.510(4)
Br2-C5	1.900(3)	C5-C6	1.384(4)
Br3-C10	1.902(3)	C9-C10	1.388(3)
O1-C7	1.259(3)	C9-C11 ⁱⁱⁱ	1.394(4)
O2-C7	1.248(3)	C9-C12	1.513(3)
O3-C8	1.257(3)	C10-C11	1.384(4)
O4-C8	1.255(3)	O9-C19	1.177(7)
O5-C12	1.258(3)	N3-C19	1.351(7)
O6-C12	1.257(3)	N3-C20	1.458(7)
O7-C13	1.229(3)	N3-C21	1.452(7)
O8-C16	1.236(3)	N3A-C19A	1.381(8)
N1-C13	1.325(4)	N3A-C20A	1.469(8)
N1-C14	1.443(5)	N3A-C21A	1.435(8)
N1-C15	1.440(5)	O9A-C19A	1.191(8)
O1-Eu1-O1 ⁱ	71.05(6)	C16-N2-C17	120.8(3)
O1-Eu1-O2 ⁱ	121.13(6)	C16-N2-C18	121.0(3)
O1-Eu1-O3 ⁱⁱ	84.46(6)	C18-N2-C17	118.1(3)
O1-Eu1-O4 ⁱⁱ	75.86(6)	C2-C1-C6	117.7(2)
O1-Eu1-O5	74.85(6)	C2-C1-C7	123.0(2)
O1-Eu1-O6 ⁱ	75.14(6)	C6-C1-C7	119.3(2)
O1-Eu1-O7	144.58(6)	C1-C2-Br1	119.6(2)
O1-Eu1-O8	140.49(6)	C3-C2-Br1	118.8(2)
O2 ⁱ -Eu1-O1 ⁱ	50.09(5)	C3-C2-C1	121.6(2)
O3 ⁱⁱ -Eu1-O1 ⁱ	148.65(6)	C2-C3-C4	121.2(2)
O3 ⁱⁱ -Eu1-O2 ⁱ	147.99(6)	C3-C4-C8	116.1(2)
O3 ⁱⁱ -Eu1-O4 ⁱⁱ	52.55(6)	C5-C4-C3	117.3(2)
O4 ⁱⁱ -Eu1-O1 ⁱ	133.71(6)	C5-C4-C8	126.6(2)
O4 ⁱⁱ -Eu1-O2 ⁱ	145.93(6)	C4-C5-Br2	124.1(2)
O5-Eu1-O1 ⁱ	67.29(6)	C6-C5-Br2	115.0(2)
O5-Eu1-O2 ⁱ	82.60(6)	C6-C5-C4	120.9(2)

Table S2. Selected Bond Lengths (Å) and Angles (°) for 1.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	121.2(2) 54.09(13) 118.5(2) 57.71(13) 121.8(2) 119.7(2) 77.36(17) 59.84(13) 118.4(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54.09(13) 118.5(2) 57.71(13) 121.8(2) 119.7(2) 77.36(17) 59.84(13) 118.4(2)
O5-Eu1-O6i133.16(6)O1-C7-C1O5-Eu1-O7140.50(6)O2-C7-Eu1iO5-Eu1-O873.05(6)O2-C7-O1O6i-Eu1-O1i69.36(6)O2-C7-C1O6i-Eu1-O2i83.13(6)C1-C7-Eu1i	118.5(2) 57.71(13) 121.8(2) 119.7(2) 77.36(17) 59.84(13) 118.4(2)
O5-Eu1-O7140.50(6)O2-C7-Eu1i5O5-Eu1-O8 $73.05(6)$ O2-C7-O11O6i-Eu1-O1i $69.36(6)$ O2-C7-C11O6i-Eu1-O2i $83.13(6)$ C1-C7-Eu1i1	57.71(13) 121.8(2) 119.7(2) 77.36(17) 59.84(13) 118.4(2)
O5-Eu1-O8 $73.05(6)$ O2-C7-O1O6 ⁱ -Eu1-O1 ⁱ 69.36(6)O2-C7-C1O6 ⁱ -Eu1-O2 ⁱ 83.13(6)C1-C7-Eu1 ⁱ	121.8(2) 119.7(2) 77.36(17) 59.84(13) 118.4(2)
$O6^{i}$ -Eu1-O1 ⁱ 69.36(6)O2-C7-C11 $O6^{i}$ -Eu1-O2 ⁱ 83.13(6)C1-C7-Eu1 ⁱ 1	119.7(2) 77.36(17) 59.84(13) 118.4(2)
O6 ⁱ -Eu1-O2 ⁱ 83.13(6) C1-C7-Eu1 ⁱ 1'	77.36(17) 59.84(13) 118.4(2)
	59.84(13) 118.4(2)
O6 ⁱ -Eu1-O3 ⁱⁱ 85.95(6) O3-C8-Eu1 ⁱⁱ 5	118.4(2)
O6 ⁱ -Eu1-O4 ⁱⁱ 130.94(6) O3-C8-C4	
O6 ⁱ -Eu1-O7 75.07(6) O4-C8-Eu1 ⁱⁱ 6	51.52(14)
O6 ⁱ -Eu1-O8 144.37(6) O4-C8-O3	121.4(2)
O7-Eu1-O1 ⁱ 114.83(6) O4-C8-C4	120.2(2)
O7-Eu1-O2 ⁱ 73.37(6) C4-C8-Eu1 ⁱⁱ 17	78.18(18)
O7-Eu1-O3 ⁱⁱ 74.76(6) C10-C9-C11 ⁱⁱⁱ	117.9(2)
O7-Eu1-O4 ⁱⁱ 110.97(6) C10-C9-C12	124.5(2)
O7-Eu1-O8 71.20(6) C11 ⁱⁱⁱ -C9-C12	117.6(2)
O8-Eu1-O1 ⁱ 115.46(6) C9-C10-Br3 12	20.22(19)
O8-Eu1-O2 ⁱ 76.65(7) C11-C10-Br3 1	18.05(19)
O8-Eu1-O3 ⁱⁱ 95.87(7) C11-C10-C9	121.7(2)
O8-Eu1-O4 ⁱⁱ 73.40(7) C10-C11-C9 ⁱⁱⁱ	120.5(2)
Eu1-O1-Eu1 ⁱ 108.95(6) O5-C12-C9	114.5(2)
C7-O1-Eu1 ⁱ 90.64(15) O6-C12-O5	127.3(2)
C7-O1-Eu1 160.36(17) 06-C12-C9	118.2(2)
C7-O2-Eu1 ⁱ 97.48(15) O7-C13-N1	124.8(3)
C8-O3-Eu1 ⁱⁱ 93.88(15) O8-C16-N2	124.9(3)
C8-O4-Eu1 ⁱⁱ 92.21(16) C19-N3-C20	118.9(7)
C12-O5-Eu1 138.50(16) C19-N3-C21	121.4(6)
C12-O6-Eu1 ⁱ 135.86(15) C21-N3-C20	119.5(6)
C13-O7-Eu1 125.31(18) O9-C19-N3	123.5(7)
C16-O8-Eu1 123.83(18) C19A-N3A-C20A	120.7(8)
C13-N1-C14 121.2(3) C19A-N3A-C21A	119.7(8)
C13-N1-C15 121.6(3) C21A-N3A-C20A	119.5(8)
C15-N1-C14 117.1(3) O9A-C19A-N3A	124.4(8)

Symmetry codes: (i) 1-X, -Y, 1-Z; (ii) 1-X, 1-Y, 1-Z; (iii) -X, -Y, 1-Z

Tb1-O1	2.335(3)	N2-C16	1.313(7)
Tb1-O1 ⁱ	2.650(3)	N2-C17	1.440(7)
Tb1-O2 ⁱ	2.483(3)	N2-C18	1.455(7)
Tb1-O3 ⁱⁱ	2.475(3)	C1-C2	1.385(6)
Tb1-O4 ⁱⁱ	2.434(3)	C1-C6	1.383(6)
Tb1-O5	2.350(3)	C1-C7	1.509(6)
Tb1-O6 ⁱ	2.387(3)	C2-C3	1.390(6)
Tb1-O7	2.421(3)	C3-C4	1.391(6)
Tb1-O8	2.397(3)	C4-C5	1.405(6)
Br1-C2	1.895(5)	C4-C8	1.507(6)
Br2-C5	1.901(5)	C5-C6	1.386(6)
Br3-C12	1.902(4)	C9-C10	1.525(6)
O1-C7	1.255(6)	C10-C11	1.390(6)
O2-C7	1.245(6)	C10-C12 ⁱⁱⁱ	1.391(6)
O3-C8	1.254(6)	C11-C12	1.382(6)
O4-C8	1.261(6)	O9-C19	1.175(18)
O5-C9	1.251(6)	N3-C19	1.35(2)
O6-C9	1.261(6)	N3-C20	1.42(2)
O7-C13	1.241(6)	N3-C21	1.422(19)
O8-C16	1.227(6)	O9A-C19A	1.194(17)
N1-C13	1.316(7)	C19A-N3A	1.35(2)
N1-C14	1.459(8)	N3A-C20A	1.458(18)
N1-C15	1.448(8)	N3A-C21A	1.43(3)
O1-Tb1-O1 ⁱ	71.01(11)	C16-N2-C17	121.1(6)
O1-Tb1-O2 ⁱ	121.43(11)	C16-N2-C18	121.6(5)
O1-Tb1-O3 ⁱⁱ	75.74(11)	C17-N2-C18	117.2(5)
O1-Tb1-O4 ⁱⁱ	84.06(12)	C2-C1-C7	122.0(4)
O1-Tb1-O5	75.18(11)	C6-C1-C2	118.8(4)
O1-Tb1-O6 ⁱ	75.17(11)	C6-C1-C7	119.2(4)
O1-Tb1-O7	140.86(11)	C1-C2-Br1	120.6(3)
O1-Tb1-O8	144.23(11)	C1-C2-C3	120.4(4)
O2 ⁱ -Tb1-O1 ⁱ	50.42(10)	C3-C2-Br1	119.0(3)
O3 ⁱⁱ -Tb1-O1 ⁱ	133.70(11)	C2-C3-C4	121.7(4)
O3 ⁱⁱ -Tb1-O2 ⁱ	145.82(11)	C3-C4-C5	117.1(4)
O4 ⁱⁱ -Tb1-O1 ⁱ	147.82(12)	C3-C4-C8	116.3(4)
O4 ⁱⁱ -Tb1-O2 ⁱ	147.79(11)	C5-C4-C8	126.6(4)
O4 ⁱⁱ -Tb1-O3 ⁱⁱ	53.08(11)	C4-C5-Br2	123.8(3)
O5-Tb1-O1 ⁱ	67.14(10)	C6-C5-Br2	115.3(3)
O5-Tb1-O2 ⁱ	82.13(11)	C6-C5-C4	121.0(4)

Table S3. Selected Bond Lengths (Å) and Angles (°) for 2 $\,$

_

O5-Tb1-O3 ⁱⁱ	73.91(11)	C1-C6-C5	121.0(4)
O5-Tb1-O4 ⁱⁱ	126.41(11)	O1-C7-Tb1 ⁱ	65.1(2)
O5-Tb1-O6 ⁱ	133.28(11)	O1-C7-C1	118.1(4)
O5-Tb1-O7	73.33(11)	O2-C7-Tb1 ⁱ	57.4(2)
O5-Tb1-O8	140.51(12)	O2-C7-O1	122.5(4)
O6 ⁱ -Tb1-O1 ⁱ	69.46(10)	O2-C7-C1	119.4(4)
O6 ⁱ -Tb1-O2 ⁱ	83.49(11)	C1-C7-Tb1 ⁱ	176.8(3)
O6 ⁱ -Tb1-O3 ⁱⁱ	130.69(11)	O3-C8-Tb1 ⁱⁱ	61.6(2)
O6 ⁱ -Tb1-O4 ⁱⁱ	84.99(11)	O3-C8-O4	121.4(4)
O6 ⁱ -Tb1-O7	143.96(12)	O3-C8-C4	120.3(4)
O6 ⁱ -Tb1-O8	74.73(11)	O4-C8-Tb1 ⁱⁱ	59.8(2)
O7-Tb1-O1 ⁱ	115.79(11)	O4-C8-C4	118.3(4)
O7-Tb1-O2 ⁱ	76.34(12)	C4-C8-Tb1 ⁱⁱ	178.0(3)
O7-Tb1-O3 ⁱⁱ	73.67(12)	05-C9-O6	128.0(4)
O7-Tb1-O4 ⁱⁱ	96.39(12)	O5-C9-C10	114.8(4)
O8-Tb1-O1 ⁱ	114.90(10)	O6-C9-C10	117.1(4)
O8-Tb1-O2 ⁱ	73.46(11)	C11-C10-C9	117.3(4)
O8-Tb1-O3 ⁱⁱ	110.98(12)	C11-C10-C12 ⁱⁱⁱ	118.3(4)
O8-Tb1-O4 ⁱⁱ	74.51(12)	C12 ⁱⁱⁱ -C10-C9	124.3(4)
O8-Tb1-O7	71.06(12)	C12-C11-C10	120.1(4)
Tb1-O1-Tb1 ⁱ	108.99(11)	C10 ⁱⁱⁱ -C12-Br3	120.1(3)
C7-O1-Tb1	161.5(3)	C11-C12-Br3	118.3(3)
C7-O1-Tb1 ⁱ	89.5(3)	C11-C12-C10 ⁱⁱⁱ	121.6(4)
C7-O2-Tb1 ⁱ	97.6(3)	O7-C13-N1	124.5(5)
C8-O3-Tb1 ⁱⁱ	91.9(3)	O8-C16-N2	125.8(5)
C8-O4-Tb1 ⁱⁱ	93.6(3)	C19-N3-C20	121.3(15)
C9-O5-Tb1	138.4(3)	C19-N3-C21	120.7(16)
C9-O6-Tb1 ⁱ	135.3(3)	C20-N3-C21	117.8(15)
C13-O7-Tb1	123.7(3)	O9-C19-N3	124.5(18)
C16-O8-Tb1	126.1(3)	O9A-C19A-N3A	126.7(16)
C13N1-C14	120.7(6)	C19A-N3A-C20A	122.0(14)
C13-N1-C15	120.8(5)	C19A-N3A-C21A	121.1(16)
C15-N1-C14	118.5(5)	C21A-N3A-C20A	116.8(16)

Symmetry codes: (i) 1-X, -Y, 1-Z; (ii) 1-X, 1-Y, 1-Z; (iii) -X, -Y, 1-Z

Fig. S1 ORTEP diagrams of the structural unit 1 and 2 with partial atom numbering schemes, the thermal displacement ellipsoids are drawn at 40% probability. Hydrogen atoms have been omitted for clarity.

Fig. S2 The coordination modes of DBTA²⁻ ligand.

Fig. S3 N₂ adsorption-desorption isotherms of 1, insert: Pore size distribution plot.

Fig. S4 N₂ adsorption-desorption isotherms of 2, insert: Pore size distribution plot.

Fig. S5 Thermogravimetric curve of 1 and 2.

Fig. S6 Simulated PXRD patterns of 1 and synthesized PXRD of compounds 1, 2, 1+CN⁻ and 2+CN⁻.

Fig. S7 Emission spectra and luminescence intensity at 546 nm of 2/DMF treated with different anions ($\lambda ex=303$ nm, 100 µg/mL).

Fig. S8 Comparison of the luminescence intensity (546 nm) of 2/DMF suspension dispersion mixed with interfering anions ($\lambda ex=303$ nm, 100 µg/mL)

Fig. S9 Emission spectra of 2/DMF with different concentrations of CN⁻(1-70 µg/mL)

Fig. S10 Relationship between I_0/I and different CN⁻ concentrations and Stern-Volmer formula fitting of 2 with concentrations of 1-10 µg/mL.

Fig. S11 Emission spectra of 2 with different concentrations of $CN^{-}(1-9 \mu g/mL)$ in aqueous solution.

Fig. S12 Relationship between I_0/I and different CN⁻ concentrations of 2.

Fig. S13 Fluorescence intensity (619 nm) of 1 during five recycles.

Fig. S14 Fluorescence intensity (546 nm) of 2 during five recycles.

Fig. S15 FT-IR spectra of ligand, 1, 2, 1+CN⁻ and 2+CN⁻.

Material	Solvent	LOD	Ref.
1	DMF	1.691 µM	This work
2	DMF	8.307 μM	This work
2-HPEAPB	CH ₃ CN-H ₂ O	8.0 μΜ	1
$[Hf_6O_4(OH)_4(C_8H_2O_4S_2)_6] \cdot 9H_2O \cdot 2DMF$	H_2O	0.35 μM	2
4-(p-tolyl)thiazol-2-amine and 2-hydroxy-1-	Bis-tris	10.4 mM	2
naphthaldehyde	buffer/DMSO	19.4 µīvi	5
6,7-dihydroxycoumarin	DMSO-water	5.77 μM	4
HBTM-HC	DMSO	1.38 µM	5
triarylborane substituted bisthiazole	THF	2.1 μM	6
L	DMSO/H ₂ O	6.4 µM	7
M-ZIF-90	H ₂ O/DMSO	2 µм	8
bio-MOF-1⊃DAAC	H_2O	5.2 ppb	9
TIP-Co	THF-H ₂ O	89.3 nM	10
CuCl ₂ @MOF-867	H ₂ O	0.19 µM	11

Table S4. Comparison of the LOD values of CN⁻ with other materials.

References

- X. X. Ou, Y. L. Jin, X. Q. Chen, C. B. Gong, X. B. Ma, Y. S. Wang, C. F. Chow and Q. Tang, Anal. Methods, 2015, 7, 5239-5244.
- 2. R. Dalapati, S. Nandi and S. Biswas, Dalton Trans., 2020, 49, 8684-8692.
- 3. S. M. Kim, M. Kang, I. Choi, J. J. Lee and C. Kim, New J. Chem., 2016, 40, 7768-7778.
- 4. R. Kaushik, A. Ghosh, A. Singh, P. Gupta, A. Mittal and D. A. Jose, Acs Sensors, 2016, 1, 1265-1271.
- L. Tang, L. Zhou, A. Liu, X. Yan, K. Zhong, X. Liu, X. Gao and J. Li, *Dyes Pigm.*, 2021, 186, 109034.
- 6. R. Maragani, T. S. Reddy and R. Misra, Tetrahedron Lett., 2016, 57, 3853-3857.
- 7. Z. Li, C. Liu, S. Wang, L. Xiao and X. Jing, Spectrochim. Acta, Part A, 2019, 210, 321-328.
- A. Karmakar, N. Kumar, P. Samanta, A. V. Desai and S. K. Ghosh, *Chem. Eur. J.*, 2016, 22, 864-868.
- 9. A. Karmakar, B. Joarder, A. Mallick, P. Samanta, A. V. Desai, S. Basu and S. K. Ghosh, *Chem. Commun.*, 2017, **53**, 1253-1256.
- 10. Y. Liu, Q. Qiu, X. Zhang, K. Huang and D. Qin, J. Solid State Chem., 2021, 300, 122258.
- 11. D. Mahato, S. Fajal, P. Samanta, W. Mandal and S. K. Ghosh, *ChemPlusChem*, 2022, 87, e202100426.